Ячейка памяти для быстродействующего эсппзу и способ ее программирования

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия, надежности и интеграции энергонезависимых электрически программируемых постоянных запоминающих устройств (ЭСППЗУ). Ячейка памяти, содержащая n(р)-МОП-транзистор, конденсатор, адресную разрядную шину, дополнительно содержит первый и второй диоды и числовую шину, при этом катод (анод) первого диода соединен с числовой шиной истоком n(р)-МОП-транзистора, его анод соединен с анодом второго диода, с подзатворной областью n(р)-МОП-транзистора и первым выводом конденсатора, второй вывод которого подсоединен к затвору n(р)-МОП-транзистора и к адресной шине, а катод второго диода соединен с областью стока n(р)-МОП-транзистора и разрядной шиной. 2 н. и 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к наноэлектронике, более конкретно к энергонезависимым электрически программируемым постоянным запоминающим устройствам (ЭСППЗУ).

Известны однотранзисторные ячейки памяти для запоминающих устройств (ЗУ). Например: ячейка «Деннарда» [1] для динамической оперативной памяти (ДОЗУ), ячейка памяти "с плавающим затвором" FAMOS [2] для ЭСППЗУ, ячейка памяти на основе транзистора со структурой "кремний-оксид-нитрид-оксид-поликремний" (МНОП, КОНОП, SONOS) [3]. В этих ячейках подзатворная область (подложка) МОП-транзистора подсоединена к общей шине (земля), затвор к адресной шине, сток к разрядной шине, а исток к числовой шине.

В такой ячейке [1] сложно обеспечить энергонезависимость ЗУ и она имеет относительно большие размеры из-за необходимости иметь большую площадь информационной емкости. Ячейки [2, 3] не обеспечивают быстрое программирование ЭППЗУ из-за последовательного по времени способа их программирования.

Наиболее близкой по технической сущности к изобретению является ячейка памяти «Деннарда» [1]. На фиг.1а и 1б показаны соответственно электрическая схема и конструкция ячейки памяти. Она содержит n(p)-МОП-транзистор, сток которого подсоединен с разрядной шиной, затвор с адресной шиной, подзатворная область с общей шиной, а исток с первым выводом конденсатора, второй вывод которого соединен с общей шиной.

При этом конструкция ячейки памяти является функционально-интегрированной структурой, у которой информационная емкость образована областью истока n(p)-типа, областью пространственного заряда p-n-переход исток-подложка и самой подложкой n(p)-типа МОП-транзистора, область затвора образует адресную шину, а на области стока n(p)-типа расположен электрод (контакт) разрядной шины.

Такая ячейка памяти не обладает предельно малыми размерами из-за необходимости размещать информационную емкость, которую желательно иметь большей величины. Вторым недостатком является сложность технологической реализации энергонезависимого элемента на ее основе /для него требуется изготовление и размещение дополнительного конденсатора из сегнетодиэлектрика/.

Целью изобретения является повышение быстродействия, надежности и интеграции ЭСППЗУ.

Поставленная цель достигается тем, что электрическая схема ячейки памяти содержит дополнительно первый и второй диоды и числовую шину, при этом катод (анод) первого диода соединен с числовой шиной и истоком n(p)-МОП-транзистора, его анод соединен с анодом второго диода, с подзатворной областью n(p)-МОП-транзистора и первым выводом конденсатора, второй вывод которого подсоединен к затвору n(p)-МОП-транзистора и к адресной шине, а катод второго диода соединен с областью стока n(p)-МОП-транзистора и разрядной шиной.

С целью упрощения электрической схемы затвор n(p)-МОП-транзистора соединен с катодом (анодом) первого диода.

Конструкция ячейки памяти (как и прототип) является единой функционально-интегрированной структурой, которая содержит n(p)-МОП-транзистор с «плавающей» подзатворной областью, при этом его n(p)-область истока является одновременно областью n(p)-типа катода (анода) первого диода, а p(n) подзатворная область является областью p(n)-типа анода (катода) первого диода; n(p)-область стока является областью n(p) катода (анода) второго диода, а p(n) подзатворная область образует область p(n)-типа анода (катода) второго диода; конденсатор соответственно образован затвором, диэлектриком и подзатворной областью МОП-транзистора.

Программирование ячейки памяти происходит в два этапа

- на первом этапе осуществляют запись оперативной информации (т.е. логической единицы "лог 1") путем подачи на адресную шину высокого (низкого) нулевого потенциала, а на разрядную шину низкого (высокого) потенциала (+V') и заряжают конденсатор через второй диод, при этом «плавающая» подзатворная область МОП-транзистора (являющаяся первой обкладкой конденсатора) приобретает отрицательный заряд и потенциал по отношению к затвору, который является второй обкладкой конденсатора.

Произведенная запись оперативной информации в виде заряда в конденсаторе может сохраняться (аналогично, как в ячейке памяти-прототипе) достаточно долго и время его хранения определяется токами утечки p-n-переходов сток-истока МОП-транзистора, при этом величина разности потенциалов в конденсаторе образованным затвором подзатворным диэлектриком и подзатворной областью Vc не превышает величину потенциалов (Vnp) в подзатворной системе МОП транзистора, необходимую для программирования ячейки памяти, т.е. Vnp<Vnp.

На втором этапе на затвор МОП-транзистора подается дополнительный (высокий) потенциал (Vд), причем такой, что сумма потенциалов Vc и Vд превышает напряжение программирования ячейки памяти, т.е.

Vc+Vд>Vnp,

при этом происходит запись постоянной (энергонезависимой) информации в ячейку памяти.

В случае «записи» логического нуля «лог 0» конденсатор не заряжается отрицательным потенциалом, и записи информации в ячейку памяти при подаче дополнительного Vд напряжения не происходит.

Преимущество заявленной ячейки памяти по сравнению с аналогами и прототипом очевидно из конструкций матриц ЭППЗУ, которые представлены на фиг.2 и 3, при этом интеграция памяти ЭППЗУ, как это видно из чертежей, достигает теоретического предела.

Быстродействие традиционного ЭППЗУ по сравнению с ДОЗУ достаточно медленное и определяется длительностью процесса последовательного по времени программирования ячеек памяти ЭППЗУ.

Предлагаемая ячейка памяти решает эту проблему за счет того, что вначале на первом этапе в ячейке памяти записывается оперативная информация в виде зарядов в емкостях затворов соответствующих МОП-транзисторов, как в ДОЗУ, относительно быстро.

На втором этапе подается кратковременно (1-2 миллисекунды) дополнительное напряжение (или проводят облучение ионизирующим излучением), в результате чего программируются все ячейки памяти ЭППЗУ одновременно. Таким образом, время программирования ЭППЗУ сокращается с десятков минут до нескольких миллисекунд.

Электрическая схема ячейки памяти (см. фиг.2а)

Она содержит n(p)-МОП-транзистор Т1, исток которого соединен с катодом (анодом) первого диода D1, числовой шиной Z, анод (катод) первого диода соединен с анодом (катодом) второго диода D2 подзатворной областью МОП-транзистора Т1 и первым выводом конденсатора C, второй вывод которого соединен с затвором n(p)-МОП-транзистора Т1 и адресной шиной X, катод (анод) второго диода D2 соединен со стоком n(p)-МОП-транзистора и разрядной шиной Y.

С целью упрощения электрической схемы затвор МОП транзистора соединен с областью стока (см. фиг.2б).

Конструкция и топология ячейки памяти (см. рис.3а, б)

Она состоит из подложки - 1, на поверхности которой расположен слой диэлектрика - 2, на поверхности которого расположена область стока - 3, образующая числовую шину, область истока - 4, образующая разрядную шину, подзатворная область - 5, на поверхности которой расположен подзатворный диэлектрик - 6, на поверхности которого расположен затвор - 7, образующий адресную шину, на поверхности областей стока, истока, затвора расположен изолирующий диэлектрик - 8, а на области истока - 4 расположен электрод разрядной шины - 9.

С целью упрощения конструкции ячейки памяти затвор 7 МОП транзистора образует электрический контакт с областью стока - 3 (см. фиг.4а, 4б).

Ячейка памяти работает следующим образом.

В решетке записи оперативной информации «лог 1» при поступлении положительного потенциала на адресную шину х, нулевого - на разрядную шину у происходит разрядка информационного конденсатора С через диод D2, при этом на «плавающей» подзатворной области МОП-транзистора формируется отрицательный потенциал (заряд) по отношению к затвору, который может хранится достаточно долго в режиме хранения оперативной информации, т.е. при нулевом потенциале на затворе (адресной шины X) и положительном потенциале на стоке разрядной шины Y. Время хранения информации заряда в конденсаторе определяется токами утечки диодов, т.е. сток-истоковых p-n-переходов МОП-транзистора, и обычно составляет сотни миллисекунд (как в обычном ДОЗУ на основе ячейки памяти «Деннарда», взятой за прототип).

Состояние «лог 0» соответствует отсутствию записи в ячейку памяти информационного заряда в конденсатор, как в обычном ДОЗУ.

Таким образом, во все ячейки ЭППЗУ записывается оперативная информация в виде «лог 1» и «лог 0». При этом время записи оперативной памяти также соответствует времени ее записи в обычное ДОЗУ, т.е. ~10-9 с на ячейку. После записи оперативной информации в ячейке памяти ее фактически переводят в постоянную путем одновременного программирования всех МОП-транзисторов, например, подачей дополнительного напряжения на все затворы транзисторов.

При этом важно, что физический принцип программирования МОП-транзистора ячейки памяти ЭСППЗУ не имеет существенного значения. В ячейке памяти может быть использован, в частности, МНОП-транзистор, FAMOS-транзистор с «плавающим» затвором, МОП-транзистор, программируемый ионами водорода [4] и т.д.

Примеры реализации

Быстродействующая ЭСППЗУ на основе предлагаемой ячейки памяти может быть реализована, например, на основе традиционной К-МОП технологии кремний на изоляторе (КНИ) см. фиг.3, 4 или на монокремнии см. фиг.5.

Источники информации

1. Matsue S, Vamamoto Н, Kobayski K, et al / A 256 Kbit dynamia RAM IEEE, J. 1980. V sc-. 15. №5, p.872-874.

2. Al Fazio, Mark Bauer "Intel Strata Flesh тм Memory Tecnology Dievopment end Impmentation / "Intel Tecnology Gournal Q 4, 1997 1-13.

3. M.L.French end M.H.White "Scaling of miltidielectric nonvolatile Sonos Memory Structurec" Solid-State Elec., vol, 37, p.1913, 1995.

4. K.Vanheusden, W.L: Warren, R.A.B Devine, D.M.Fleetwood, J.R.Schwank et.al. Non-volatile memory device based on mobile protons in SiO2 thin films Nature |Vol 386| 10 April 1997.

1. Ячейка памяти, содержащая n(р)-МОП-транзистор, конденсатор, адресную разрядную шину, отличающаяся тем, что содержит дополнительно первый и второй диоды и числовую шину, при этом катод (анод) первого диода соединен с числовой шиной истоком n(р)-МОП-транзистора, его анод соединен с анодом второго диода, с подзатворной областью n(р)-МОП-транзистора и первым выводом конденсатора, второй вывод которого подсоединен к затвору n(р)-МОП-транзистора и к адресной шине, а катод второго диода соединен с областью стока n(р)-МОП-транзистора и разрядной шиной.

2. Ячейка памяти по п.1, затвор n(р)-МОП-транзистора соединен с катодом (анодом) первого диода.

3. Ячейка памяти по п.3, содержащая на подложке адресную и разрядную шину, n(р)-МОП-транзистор, состоящий из области стока, истока, затвора, диэлектрика и подзатворной области, образующую первый вывод (обкладку конденсатора), отличающаяся тем, что конструкция ячейки памяти (как и прототип) является единой функционально-интегрированной структурой, которая содержит n(р)-МОП-транзистор с «плавающей» подзатворной областью, при этом его n(р)-область истока является одновременно областью n(р)-типа катода (анода) первого диода, а р(n) подзатворная область является областью р(n)-типа анода (катода) первого диода; n(р)-область стока является областью n(р) катода (анода) второго диода, а р(n) подзатворная область образует область р(n)-типа анода (катода) второго диода; конденсатор соответственно образован затвором, диэлектриком и подзатворной областью МОП-транзистора.

4. Способ программирования ячейки памяти ЭППЗУ путем подачи электрических сигналов на затворную и сток-истоковые области МОП-транзистора, отличающийся тем, что программирование ячейки памяти происходит в два этапа:
на первом этапе осуществляют запись оперативной информации логической единицы лог "1" путем подачи на адресную шину высокого (низкого) нулевого потенциала, а на разрядную шину - низкого (высокого) потенциала Vc и заряжают конденсатор через второй диод, при этом «плавающая» подзатворная область МОП-транзистора (являющаяся первой обкладкой конденсатора) приобретает отрицательный (положительный) заряд (потенциал) по отношению к затвору, при этом величина разности потенциалов затвор-подложка Vc не превышает величину разности потенциалов на подзатворной системе транзистора Vпp, необходимую для программирования ячейки памяти, т.е. Vc<Vпp;
на втором этапе осуществляется фиксация оперативной информации лог "1" в энергонезависимую постоянную, для чего на затвор МОП-транзистора подается высокий (низкий) потенциал Vд, причем такой, что сумма разности потенциалов Vc и Vд соответствует напряжению программирования МОП-транзистора ячейки памяти, т.е. Vc+Vд=Vпp,
в случае записи (хранения) логического нуля лог "0" в ячейке памяти подачу электрических сигналов производят таким образом, что конденсатор не заряжается.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к средствам для определения концентрации анализируемого вещества. .

Изобретение относится к вычислительной технике, в частности к электрически перепрограммируемым постоянным запоминающим устройствам (ЭППЗУ), сохраняющим информацию при отключенном питании (флэш-память), и может быть использовано в устройствах памяти вычислительных машин, микропроцессорах, в различных портативных электронных устройствах, а также в различных электронных платежных средствах и документах.

Изобретение относится к вычислительной технике и может быть использовано при построении микропроцессоров и микроЭВМ в качестве постоянной памяти типа ПЛМ. .

Изобретение относится к вычислительной технике. .

Изобретение относится к вычислительной технике, а именно к электронной памяти. .

Изобретение относится к полупроводниковому устройству, которое включает в себя транзисторы одного типа электропроводности. .

Изобретение относится к вычислительной технике, а именно к псевдодвухпортовой памяти. .

Изобретение относится к области микро-наноэлектроники и может быть использовано при создании динамических запоминающих устройств, двухмерных управляющих матриц для жидкокристаллических дисплеев, скоростных и высокоточных сканеров, двухмерных сенсоров, линий задержки и т.д.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, отказоустойчивости и сбоеустойчивости оперативного запоминающего устройства (ОЗУ). Ячейка памяти статического ОЗУ содержит три последовательно соединенных КМОП инвертора, включенных между шиной питания и шиной земли; первый проходной ключ, состоящий из двух последовательно соединенных адресных транзисторов, затворы которых соединены с адресной шиной записи и адресной шиной выбора столбца; второй проходной ключ в виде адресного транзистора, затвор которого соединен с адресной шиной считывания; схему подтверждения записанных данных, состоящую из двух параллельно соединенных комплементарных проходных ключей, один из которых соединен с прямым и инверсным входами адресной шины записи, а другой - с прямым и инверсным входами адресной шины выбора столбца; причем вход первого КМОП инвертора соединен через первый проходной ключ с первой разрядной шиной, выход первого КМОП инвертора соединен с входом второго КМОП инвертора; выход второго КМОП инвертора соединен с входом третьего инвертора и через схему подтверждения записанных данных с входом первого КМОП инвертора; выход третьего КМОП инвертора соединен через второй проходной ключ со второй разрядной шиной. 1 з.п. ф-лы, 1 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении сбоеустойчивости к воздействию одиночных ядерных частиц без избыточного увеличения площади, занимаемой одной ячейкой памяти на кристалле в составе интегрального КМОП ОЗУ. Ячейка памяти комплементарной металл-оксид-полупроводниковой структуры ОЗУ состоит из пар NMOП и РМОП транзисторов, соединенных между собой, с шиной источника питания и линиями выборки и линиями данных и размещенных на кристалле интегральной микросхемы, причем транзисторы объединены в две группы, каждая из которых содержит одну пару NMOП и РМОП транзисторов с объединенными стоками, один NMOП транзистор и один РМОП транзистор, соединенные своими затворами с объединенными стоками этой пары, причем эти две группы транзисторов размещены на кристалле интегральной микросхемы одна от другой на расстоянии, равном или больше порогового расстояния, для исключения одновременного воздействия одиночной ядерной частицы на обе группы транзисторов с уровнем больше порогового. 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении отказоустойчивости относительно необратимых отказов транзисторов. Ячейка статической оперативной памяти содержит группу из четырех транзисторов n-МОП, включающую первый, второй, третий, четвертый триггеры, группу из четырех транзисторов p-МОП, включающую первый, второй, третий, четвертый триггеры, первый и второй передающие транзисторы записи бита, первый и второй передающие транзисторы записи инверсии бита, вход напряжения питания, вход «Ноль вольт», вход значения бита, вход значения инверсии бита, вход записи, выход данных, причем дополнительно введены вторая группа из четырех транзисторов n-МОП, вторая группа из четырех транзисторов p-МОП, третий и четвертый передающие транзисторы записи бита, третий и четвертый передающие транзисторы записи инверсии бита, второй инверсный выход данных. 5 ил., 1 табл.

Изобретение относится к области вычислительной техники и может быть использовано в блоках статических КМОП ОЗУ. Техническим результатом является повышение надежности чтения данных из ячеек памяти при воздействии одиночной ядерной частицы в режиме, когда ячейка памяти на основе двух групп транзисторов временно находится в нестационарном состоянии. Устройство содержит выходную шину блока памяти, ячейки памяти, состоящие из двух групп транзисторов каждая, соединенных через проходные ключи с четырьмя битовыми линиями данных, и двух считывающих усилителей, первый и второй входы первого считывающего усилителя соединены с первой и второй битовыми линиями данных, первый и второй входы второго считывающего усилителя соединены с третьей и четвертой битовыми линиями данных, блок памяти снабжен первым и вторым дополнительными транзисторами и логическим элементом ИЛИ-НЕ, и имеет линию смещения с напряжением на ней больше порогового значения, при этом считывающие усилители имеют отражатели тока на парах транзисторов со структурой металл-оксид-полупроводник и каналом дырочной проводимости, причем входы логического элемента ИЛИ-НЕ соединены с выходами первого и второго считывающих усилителей, с которыми соединены, соответственно, стоки первого и второго дополнительных транзисторов, затворы которых соединены с линией смещения с напряжением на ней больше порогового значения, а выход элемента ИЛИ-НЕ соединен с выходной шиной блока памяти. 1 ил., 5 табл.

Группа изобретений относится к запоминающим устройствам. Техническим результатом является увеличение скорости передачи данных и полосы пропускания системной памяти. Устройство содержит по меньшей мере два канала передачи данных; по меньшей мере два чипа памяти, установленных один на другой в виде стека, причем чипы памяти включают в себя по меньшей мере два блока памяти и по меньшей мере участок первого канала передачи данных и участок второго канала передачи данных; и по меньшей мере первое и второе соединение "чип-чип", причем первое соединение "чип-чип" выполнено с возможностью соединения соответствующих участков первого канала передачи данных, входящих в первый и второй чипы памяти, для образования первого канала передачи данных, а второе соединение "чип-чип" выполнено с возможностью соединения соответствующих участков второго канала передачи данных, входящих в первый и второй чипы памяти, для образования второго канала передачи данных, причем каждый из образованных таким образом каналов передачи данных выполнен с возможностью выборочного соединения с первым и вторым блоками памяти, входящими в первый чип памяти, и с первым и вторым блоками памяти, входящими во второй чип памяти, причем каждый из блоков памяти, входящих в первый чип памяти, выполнен с возможностью предоставления данных в один канал из образованных каналов передачи данных, а каждый из блоков памяти, входящих во второй чип памяти, выполнен с возможностью предоставления данных в другой канал из образованных каналов передачи данных. 4 н. и 21 з.п. ф-лы, 10 ил.

Группа изобретений относится к вычислительной технике и может быть использована для обучения чтению контроллера памяти. Техническим результатом является повышение эффективности обучения чтению. Устройство содержит устройство сопряжения шины, по меньшей мере, с одним модулем памяти; логическую схему контроллера памяти, которая при работе выполнена с возможностью осуществления операций, причем операции включают в себя программирование модуля памяти для запуска режима обучения, в котором модуль памяти передает непрерывные битовые шаблоны по тракту боковой полосы устройства сопряжения шины; прием битовых шаблонов по устройству сопряжения шины; определение из принятых битовых шаблонов перехода значений в битовом шаблоне для определения окна данных между определенными переходами значений; и определение настройки для управления устройством фазовой интерполяции для выработки прошедших интерполяцию сигналов, используемых для выборки данных в пределах определенного окна данных. 3 н. и 17 з.п. ф-лы, 6 ил.
Наверх