Способ получения монолитного кварцевого стекла

Изобретение относится к способу получения высокочистого и бездефектного кварцевого стекла по золь-гель технологии. Технический результат изобретения заключается в снижении температуры синтеза кварцевого стекла и уменьшении количества примесей в получаемом стекле. Получают золь гидролизом тетраэтилортосиликата раствором соляной кислоты. Вводят в золь предварительно полученный золь кремнезема с размером частиц менее 100 нм. На стадии гелеобразования вводят структурирующий агент, в качестве которого используют амиды органических кислот. Затем образовавшийся гель выдерживают в дисперсионной среде, а термообработку проводят при температуре 1000-1050°С. 4 з.п. ф-лы, 3 пр.

 

Изобретение относится к стекольной технике, а именно к способам получения высокочистого и бездефектного кварцевого стекла по золь-гель процессу, и может быть использован для производства изделий электронной и оптической, в частности лазерной, промышленности.

Известны золь-гель способы производства кварцевого стекла, разработанные в последние десятилетия и которые нашли широкое применение в современных технологиях (Е.Н.Подденежный, А.А.Бойко. Золь-гель синтез оптического кварцевого стекла. Гомель, 2002, 208 с.). Тем не менее, получение монолитных, не растрескивающихся при высушивании и спекании образцов представляет достаточно сложную технологическую задачу и требует учета большого числа факторов - состава исходной золь-гель системы, температуры синтеза, давления, скорости и продолжительности нагревания геля при высушивании и спекании, условий обработки гелей специальными газами и т.д. Поэтому любые попытки упростить и оптимизировать золь-гель синтез, уменьшить температуру и продолжительность процесса заслуживает самого пристального внимания.

Известны патенты (например, US 6698054 В2 или US 6860118 В2), основанные на одно- или двухстадийном золь-гель процессе с использованием тонкодисперсного распыленного порошка кремнезема. Указанный порошок гомогенизируют с деионизированной водой, а затем полученный золь подвергают гелеобразованию либо изменяя кислотность среды, либо вводя специальные гелеобразующие реагенты, например HF, NH4F, (NH4)2SiF6 и др. и, возможно, полимеры - во избежание растрескивания монолитных образцов. Высушивание полученного материала с последующим спеканием приводит к искомым образцам оптического кварцевого стекла. Общим недостатком известных способов является большой размер пор образующегося при гелеобразовании материала, что заставляет повышать температуру его спекания до 1400-1500°C (для получения прозрачного кварцевого стекла).

Известен способ получения монолитного кварцевого стекла, описанный в [Brinker С.J., Scherer G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. San Diego: Acad. Press, 1990. 908 p.], включающий использование алкоксидов кремния. К недостаткам способа можно отнести очень высокую степень усадки (более чем 60%) и весьма продолжительный период высушивания, обусловленный очень малым размером образующихся при этом пор. Попытки интенсификации процесса высушивания приводят к неминуемому растрескиванию образцов из-за высокого капиллярного давления, развивающегося при удалении дисперсионой среды из монолита.

Наиболее оптимальным представляется смешанный способ проведения золь-гель процесса, при котором трехмерная сетка кремнегеля образуется за счет гидролитической поликонденсации алкоксидов кремния, а вводимые на втором этапе золь-гель синтеза нанодисперсные частицы кремнезема обеспечивают возможность интенсификации процессов высушивания армированных ими монолитов. В качестве ближайшего аналога выбран способ получения оптического кварцевого стекла - А.с. 1749185 [1992 г.], при котором монолитное кварцевое стекло получают гидролизом тетраэтилортосиликата (ТЭОС) под действием водного раствора соляной кислоты, введением в золь-гель систему наполнителя - высокодисперсного кремнезема, гелированием системы посредством добавления аммиака (до рН 5-7), промывки образованного геля, высушивания и термообработки его до состояния кварцевого стекла.

Указанный способ - ближайший аналог нашего изобретения - имеет ряд существенных недостатков. Во-первых, введение в золь-гель систему аммиака приводит к очень быстрому (несколько минут) образованию геля. Образующаяся при этом трехмерная кремнеземная сетка плохо структурирована и не однородна, что существенно уменьшает процент годных изделий после термообработки из-за их растрескивания. Во-вторых, размеры частиц вводимого кремнезема, хотя и высокодисперсного, имеет микроразмеры, поэтому для образования прозрачных образцов необходимо их нагревание до 1250-1300°C.

Задачей настоящего изобретения является разработка способа получения по золь-гель технологии оптически прозрачного кварцевого стекла при температурах не выше 1000-1050°C. Снижение температуры синтеза на 200-250°C актуально не только в виду экономии энергии, но и с точки зрения чистоты получаемого стекла за счет уменьшения летучести примесей, загрязняющих получаемые монолиты.

Поставленная задача решается тем, что к гидролизату ТЭОСа, полученного взаимодействием последнего с водным раствором соляной кислоты, дополнительно вводят в отличие от ближайшего аналога, вместо аммиака амиды органических кислот, например формамид, диметилформамид, диметилацетамид:

Введенная в золь-гель систему соляная кислота постепенно реагирует с указанными амидами, при этом образуются слабые органические кислоты - уксусная или муравьиная. Кислотность гидролизата равномерно уменьшается, что промотирует процесс гелеобразования и структурирования золь-гель системы. Использование золей кремнезема с размером частиц, например, менее 100 нм позволяет повысить однородность структуры монолитного геля, уменьшить размер пор и понизить температуру (на 200-250°C по сравнению с ближайшим аналогом) его спекания в прозрачное кварцевое стекло и, как следствие, уменьшить количество примесей, образующихся в заготовках за счет летучести материалов, из которых изготовлены стенки печи, тигли и т.д.

Техническим результатом предлагаемого изобретения является достижение основных характеристик кварцевого стекла (плотность 2,18-2,19 г/см3 и оптическая прозрачность на длине волны 200 нм) при нагреве до температуры 1000-1050°C, снижение затрат энергии и повышение чистоты полученного материала.

Кроме того, после завершения процесса гелеобразования образовавшийся гель высушивают в течение 12-120 часов при температуре 60-80°C, а полученную заготовку кварцевого стекла выдерживают при температуре 1000-1050°C в течение 30-60 минут. При этом исходные компоненты вводят в следующем соотношении: тетраэтилортосиликат - 1 моль, вода - 5-15 моль, соляная кислота - 0,03-0,15 моль, структурирующий агент - 0,05-0,15 моль, золь кремнезема - 0,8-1,2 моль.

Ниже приведены конкретные примеры реализации заявляемого способа.

Пример 1.

К 208 г (1 моль) ТЭОС добавляют 108 г (6 моль) воды и 4,93 г (0,05 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 5 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 2,25 г (0,05 моль) структурирующего агента - формамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 30 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO2) золя кремнезема. После этого результирующий золь разливают в 10 полипропиленовых форм и проводят гелеобразование при температуре 70°C в течение 2 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 60-70°C в течение 120 часов. Высушенные гели подвергают термообработке до 1000°C, выдерживая при 1000°C в течение 30 минут. В результате получены 10 цилиндрических образцов прозрачного кварцевого стекла без трещин, пузырей и вздутий.

Пример 2.

К 208 г (1 моль) ТЭОС добавляют 90 г (5 моль) воды и 9,86 г (0,1 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 10 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 7,3 г (0,1 моль) структурирующего агента - диметилформамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 40 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO2) золя кремнезема. После этого коллоидную систему разливают в 10 тефлоновых банок и проводят гелеобразование при температуре 60°C в течение 3 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 75-80°C в течение 120 часов. Высушенные гели подвергают термообработке до 1050°C, выдерживая при 1050°C в течение 60 минут. В результате получены 10 таблеток прозрачного кварцевого стекла без трещин, пузырей и вздутий.

Пример 3.

К 208 г (1 моль) ТЭОС добавляют 180 г (10 моль) воды и 14,79 г (0,15 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 5 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 13,05 г (0,15 моль) структурирующего агента - диметилацетамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 30 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO2) золя кремнезема. После этого результирующий золь разливают в 10 полипропиленовых форм и проводят гелеобразование при температуре 70°C в течение 2 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 65-70°C в течение 108 часов. Высушенные гели подвергают термообработке до 1050°C, выдерживая при 1050°C в течение 30 минут. В результате получены 10 цилиндрических образцов прозрачного кварцевого стекла без трещин, пузырей и вздутий.

1. Способ получения кварцевого стекла, включающий образование золя гидролизом тетраэтилортосиликата раствором соляной кислоты, введение в золь наполнителя, образование геля, его высушивание и термообработку заготовки для получения кварцевого стекла, отличающийся тем, что на стадии гелеобразования вводят структурирующий агент, в качестве которого используют амиды органических кислот, в качестве наполнителя в золь вводят предварительно полученный золь кремнезема с размером частиц менее 100 нм, затем образовавшийся гель выдерживают в дисперсионной среде, а термообработку проводят нагревая до температуры 1000-1050°C.

2. Способ получения кварцевого стекла по п.1, отличающийся тем, что в качестве структурирующего агента используют амиды муравьиной или уксусной кислот.

3. Способ получения кварцевого стекла по п.1, отличающийся тем, что образовавшийся гель высушивают в течение 12-120 ч при температуре 60-80°C.

4. Способ получения кварцевого стекла по п.1, отличающийся тем, что полученную заготовку кварцевого стекла выдерживают при температуре 1000-1050°C в течение 30-60 мин.

5. Способ получения кварцевого стекла по п.1, отличающийся тем, что исходные компоненты вводят в следующем соотношении, моль:

тетраэтилортосиликат 1
вода 5-15
соляная кислота 0,03-0,15
структурирующий агент 0,05-0,15
золь кремнезема 0,8-1,2



 

Похожие патенты:

Изобретение относится к материалу на основе кремниевого золя, а также его применению для изготовления биологически рассасывающихся и биологически расщепляющихся силикагелевых материалов с улучшенными свойствами.

Изобретение относится к получению стеклянных монолитов золь-гель процессом. .

Изобретение относится к жаростойким волокнам, полученным золь-гельным методом, которые могут быть использованы в качестве термоизолирующих материалов, например, в опорных конструкциях тел катализаторов для борьбы с загрязнением окружающей среды в автомобильной системе каталитического дожигания выхлопных газов и фильтров для твердых частиц в отработанных газах двигателя.
Изобретение относится к улучшенному способу получения изделий из стекла, включающему: стадию получения геля необходимого материала с помощью так называемой методики золь-гель, стадию сушки полученного геля путем нагревания под давлением в присутствии инертной жидкости и при критическом давлении и температуре растворителя, находящегося в порах геля, и завершающую стадию термической обработки для получения изделия из стекла.

Изобретение относится к получению кварцевого стекла для применения его в оптике и других отраслях. .
Изобретение относится к области получения стекла по золь-гель технологии. .

Изобретение относится к области квантовой электроники, а именно к способу приготовления золь-гельного стекла, активированного красителем, которое может быть использовано для лазеров на красителе в твердой матрице.

Изобретение относится к области технологии стекла, а именно к изделиям из стекла, используемым в лазерном термоядерном синтезе для диагностических исследований. .

Изобретение относится к области получения материалов, пригодных для формирования температуроустойчивых газонепроницаемых покрытий для защиты конструкционных материалов, используемых в машиностроении и автомобилестроении.
Изобретение относится к области гетерогенного катализа. .

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов. .

Изобретение относится к области приборостроения, преимущественно к измерительной технике. .
Изобретение относится к области химии. .

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. .

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).

Изобретение относится к области аналитической химии вторичных аминов, может быть использовано при анализе газовых и жидких сред, содержащих диэтиламин. .

Изобретение относится к области электрогидро- и газодинамики, в частности к созданию высокоэффективных электроконвективных теплообменников. .

Изобретение относится к области нанотехнологии и биотехнологии. .

Изобретение относится к нанотехнологии
Наверх