Способ получения пентафторида ниобия и/или тантала



C01G1/06 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2482064:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к области материаловедения и металлургии, а именно к способам получения пентафторидов ниобия или тантала. Способ включает взаимодействие металлических ниобия или тантала с фторирующим агентом, в качестве которого используют фторид меди в соотношении не более 4 моль фторида меди на 1 моль металлического ниобия или тантала, нагрев реактора до 500°С и термическую или вакуумную отгонку образующихся пентафторидов ниобия или тантала. Технический результат заключается в разработке технологии получения пентафторида ниобия или тантала, не требующего сложного аппаратурного оформления и использования химически активных и сильнодействующих ядовитых веществ. 3 пр.

 

Изобретение относится к области химической технологии и может быть использовано для получения каталитически активных пентафторида ниобия или тантала.

Известен способ получения безводных пентафторидов ниобия и тантала взаимодействием оксидов или оксигалогенидов ниобия и тантала с фтористым водородом в количестве не менее 5 молей на моль исходного вещества и дегидратирующим агентом (фосгеном, тионилхлоридом или сульфурилхлоридом) при температуре 50-200°С [Пат. РФ №2089505].

Недостатками данного способа является использование коррозионно-активного фтористого водорода и сильнодействующих ядовитых веществ (фосген).

Известен способ получения безводных пентафторидов ниобия и тантала взаимодействием петахлорида ниобия и тантала с фтористым водородом [Химия и технология редких и рассеянных элементов. Ч.III. Под. ред К.А.Большакова. Учеб. пособие для вузов. М., «Высш. Школа». 1976. стр.44 и 56].

Недостатками данного способа является использование коррозионно-активного фтористого водорода и предварительно синтезированного пентахлорида ниобия и тантала.

Известен способ получения пентафторидов ниобия и тантала [Химия и технология редких и рассеянных цементов. Ч.III. Под. ред. К.А.Большакова. Учеб. пособие для вузов. М., «Высш. Школа». 1976 стр.44 и 56], выбранный в качестве прототипа, заключается в взаимодействии элементов фтора с металлическим ниобием пли танталом при температуре 300°С.

Недостатком этого способа является использование элементного флора, что требует специального оборудования для уменьшения коррозии, вызываемой фтором, приводящим к тому, что пенафториды ниобия или тантала, полученные этим способом, являются очень дорогими.

Задачей настоящего изобретения является создание дешевого и надежною способа получения пентафторида ниобия или тантала из металлического ниобия или тантала.

Поставленная задача достигается тем, что в качестве фторирующего агента используется фторид меди(II) CuF2. Способ получения включает в себя стадии смешения исходного ниобия или тантала с фторидом меди, инициирование реакции нагревом реактора до 500°С и вакуумной или термической отгонкой образующихся пентафторидов ниобия иди тантала. Процесс протекает согласно реакциям:

Количество фторида меди, используемого для реакции с металлическим ниобием или танталом, должно быть не более 4 моль фторида меди на 1 моль металла согласно уравнениям (1; 2) для образования пентафторида ниобия или тантала. Использование большего количества фторида меди может приводить к образованию фторниобатов и фтортанталатов меди (CuNbF6, CuNbF7, CuTaF6, CuTaF7), в результате чего снижается выход пентафторидов ниобия или тантала и увеличивается количество побочных продуктов, вследствие чего увеличивается себестоимость пентафторидов ниобия или тантала.

Пример 1

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 11,81 г (116,3 ммоль) с металлическим порошком ниобия в количестве 2.7 г (20.0 ммоль) в соотношении Nb:CuF2=1:4. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции пентафторид ниобия возгоняется и поступает на улавливание в объемный десублиматор, где происходит его конденсация. Выход пентафторида ниобия составил 4,5 г, что соответствует 83% от теоретического (5.46 г).

Пример 2

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 8.0 г (87.3 ммоль) с металлическим порошком ниобия в количестве 2,7 (29,0 ммоль) в соотношении Nb:CuF2=1:3. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции петафторид ниобия возгоняется и поступает на улавливание в объемный десублиматор. где происходит его конденсация. Выход пентафторида ниобия составил 5,0 г, что соответствует 92% от теоретического выхода (5,46 г).

Пример 3

В цилиндрический реактор из нержавеющей стали, снабженный внешним обогревом, добавляют предварительно перемешанные фторид меди в количестве 6,4 г (63,0 ммоль) с металлическим порошком тантала в количестве 3.8 г (21,0 ммоль) в соотношении Ta:CuF2=1:3. Затем реактор снабжают объемным десублиматором и системой вакуумирования. Систему вакуумируют и нагревают реактор до 500°С для инициации реакции. Выделяющийся в результате реакции пентафторид тантала возгоняется и поступает на улавливание в объемный десублиматор, где происходит его конденсация. Выход пентафторида тантала составил 5,2 г, что соответствует 90% от теоретического выхода (5,8 г).

Применение данного способа позволяет сократить затраты на производство петафторида ниобия или тантала за счет использования более дешевого фторирующего агента, не требующего использования специфических реагентов и специализированного оборудования.

Способ получения пентафторида ниобия или тантала, включающий взаимодействие металлических ниобия или тантала с фторирующим агентом, отличающийся тем, что в качестве фторирующего агента используют фторид меди в соотношении не более 4 моль фторида меди на 1 моль металлического ниобия или тантала, осуществляют нагрев реактора до 500°С и термическую или вакуумную отгонку образующихся пентафторидов ниобия или тантала.



 

Похожие патенты:

Изобретение относится к способу получения гептафторотанталата калия и позволяет повысить чистоту конечного продукта. .
Изобретение относится к области химической технологии, а именно к области получения соединений электролитическим способом, конкретно к способам получения интеркаляционных соединений, содержащих чередующиеся монослои дихалькогенида металла и органического вещества.

Изобретение относится к способам очистки пентахлорида ниобия от примесей и может быть использовано в производстве чистых соединений ниобия и тантала. .

Изобретение относится к получению порошка оксида вентильного металла и может быть использовано для получения порошков вентильного металла или недооксидов вентильного металла с помощью восстановления.
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. .

Изобретение относится к области электротехники, в частности к порошку на основе монооксида ниобия, спеченному ниобиевому материалу, конденсатору, изготовленному с использованием порошка монооксида ниобия, и способам изготовления конденсатора.

Изобретение относится к способу и аппарату для получения металлооксидных материалов, включая гидраты оксидов металлов и/или оксиды металлов и катализаторы. .

Изобретение относится к получению сверхпроводящих материалов, находящихся в жидком состоянии, которые могут быть использованы в качестве модельных жидкостей при разработке сверхпроводников.

Изобретение относится к способу получения среднего дистиллята из углеводородсодержащих энергоносителей. .

Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии. .

Изобретение относится к разработке новых сульфидных соединений, которые могут быть использованы для нужд микроэлектроники, в частности к созданию материалов с анизотропией магнитосопротивления при комнатной температуре.
Наверх