Реактор газификации

Реактор газификации может быть использован для производства энергоносителей в виде горячей воды, пара и горючего синтез-газа для производства электроэнергии. Реактор газификации содержит котел 23 с крышкой 2, с двумя концентрично расположенными один в другом внутренними и внешними кожухами, выполненными в виде кольцевых теплообменных рубашек, газоход 35 между ними, лопастной ворошитель сырья 5, усеченный конус 11, зону первичной газификации 9 и регенерации газов 10, горелку 12. Реактор дополнительно снабжен системой нижнего ворошения 13, с лопастным ворошителем 14, расположенным в усеченном конусе 11, закрепленном в корпусе герметично, теплосъемными водяными стержнями 24, расположенными в газоходе 35, зоной синтеза метана 17, расположенной на входе в газоход 35. Сопло горелки 12 расположено в герметичной полости между стенками конуса 11 и его корпуса 32. Реактор снаружи покрыт теплоизоляционными материалами 33, а внутренняя поверхность зоны первичной газификации футерована термоизоляционными материалами. Изобретение позволяет повысить теплотворную способность вырабатываемого синтез-газа без увеличения габаритов установки. 1 з.п. ф-лы, 1 ил.

 

Реактор газификации относится к области энергетического машиностроения, а именно к способам и устройствам для производства энергоносителей в виде горячей воды, пара и горючего синтез-газа для производства электроэнергии.

Известен «Газогенератор» по патенту RU №2303050 от 29.06.2006, опубл. 20.07.2007, МПК C10J 3/20, F23B 99/00, который содержит камеру горения с зоной сушки и пирогенетического разложения, с зонами сгорания смол, регенерации и очистки генераторного газа, газоходы водяного котла, камеру парогенерации, камеру подогрева и подачи воздуха, при этом газогенератор дополнительно снабжен сепаратором-дымососом, охладителем-стабилизатором газа и камерой подогрева генераторного газа, которые присоединены последовательно между зоной отбора генераторного газа и камерой горения, камера парогенерации соединена с выходом зоны очистки генераторного газа, с входом зоны регенерации и через камеру подогрева атмосферного воздуха с камерой горения.

Но данное устройство не обеспечивает получение газа теплотворной способностью выше 1560 ккал.

Наиболее близким техническим решением является реактор газификации по патенту RU №2360949 «Способ получения синтез-газа и реактор газификации для его осуществления» от 04.08.2008, опубл. 10.07.2009, МПК C10J 3/32, C10J 3/40, C10J 3/68.

Реактор газификации, содержащий котел с двумя концентрично расположенными один в другом внутренним и внешним кожухами, выполненными в виде кольцевых теплообменных рубашек, с газоходом между ними, с лопастным ворошителем сырья и усеченным конусом, зоны первичной газификации и регенерации газов, горелку, колосниковой решеткой фурмы для подачи пара в зону регенерации, крышкой и установленным на ней реверсивным приводом и связанной с ним отсасывающей трубой с трубным разравнивателем, с закрепленным под ним лопастным ворошителем сырья и с установленными на свободном конце трубы фурмами для подачи паров воды из зоны скопления пара в зону первичной газификации сырья.

Но данное устройство обеспечивает двухстадийное получение газа теплотворной способностью не выше 1560 ккал, поскольку снижению калорийности газа способствует и горение излишне вырабатываемого синтез-газа в зоне горения первичной газификации, ввиду того, что в составе синтез-газа уже присутствует большое количество азота, а его горение в этой зоне обуславливает увеличение количества азота, сначала в первичной зоне газификации, а затем и в получаемом синтез-газе. К тому же, горение синтез-газа в первичной зоне поддерживает температуру горения 1500°С для того, чтобы в зоне регенерации поднять до максимально возможной температуры синтеза, в то же время, эта температура способствует началу образования NOx в синтезируемом газе, а при применении полученного газа в газопоршневых электростанциях либо в горелках отопительных систем, где температура горения превышает 1500°С, вырабатывается дополнительное NOx, что приводит к загрязнению окружающей среды.

Задачей предлагаемого технического решения является повышение теплотворной способности вырабатываемого синтез-газа, без увеличения габаритов установки.

Задача решена за счет реактора газификации, содержащего котел с крышкой, с двумя концентрично расположенными один в другом внутренним и внешним кожухами, выполненными в виде кольцевых теплообменных рубашек, с газоходом между ними, с лопастным ворошителем сырья и усеченным конусом, зоны первичной газификации и регенерации газов, горелку, при этом реактор дополнительно снабжен системой нижнего ворошения, с лопастным ворошителем, расположенным в усеченном конусе, закрепленном в корпусе герметично; теплосъемными водяными стержнями, расположенными в газоходе; зоной синтеза метана, расположенной на входе в газоход; сопло горелки расположено в герметичной полости между стенками конуса и его корпуса; реактор снаружи покрыт теплоизоляционными материалами, а внутренняя поверхность зоны первичной газификации футерована термоизоляционными материалами; реактор дополнительно снабжен воздухозаборной трубой со счетчиком газа и управляемой задвижкой с электроприводом.

Снабжение реактора дополнительной системой нижнего ворошения, с лопастным ворошителем, расположенным в усеченном конусе, закрепленном в корпусе, расположение сопла горелки в полости между стенками конуса и его корпуса, способствует дополнительному равномерному прогреванию реагента в конусе, что увеличивает химический коэффициент выхода горючих газов, без увеличения габаритов самого реактора газификации.

Расположение в газоходе теплосъемных водяных стержней позволяет рационально использовать пространство водяного котла и увеличить площадь теплосъема, без увеличения габаритов самого реактора газификации.

Снабжение реактора дополнительно зоной синтеза метана, расположенной на входе в водяной котел газохода, позволяет повысить теплотворную способность синтез-газа в 1,5-2,5 раза, без увеличения габаритов самого реактора газификации.

Реактор газификации изображен на чертеже, где затвор 1 подачи топлива, крышка 2 реактора, датчики 3 верхнего уровня, датчики 4 нижнего уровня, система 5 верхнего ворошения, мотор-редуктор 6, фурмы 7, топливная камера 8, зона 9 первичной газификации, зона 10 регенерации, подогреваемый конус 11, горелка 12 с соплом, система 13 нижнего ворошения, лопастной ворошитель 14, колосниковая решетка 15, зона 16 синтеза метана, зона 17 синтеза метана, лопасти 18 сброса зольного остатка, мотор 19 редуктора, золоприемник 20, устройство 21 золовыводящее, паровой котел 22, водяной котел 23, водяные стержни 24 теплосъемные, камера 25 подачи пара, камера 26 подогрева воздуха и смешения его с паром, фурмы 27 подачи пара, воздухозаборная труба 28, счетчик 29 газа, задвижка 30 с электроприводом, датчики 31 уровня горячей воды, корпус 32 конуса, теплоизоляционный материал 33 «Корунд», синтез-газ 34 потребителю, газоход 35, горячая вода 36 потребителю, полая труба 37 системы верхнего ворошения.

Реактор газификации выполнен следующим образом.

Реактор содержит котел 23 с двумя концентрично расположенными один в другом внутренним и внешним кожухами, выполненными в виде кольцевых теплообменных рубашек, с газоходом 35 между ними, с лопастным ворошителем сырья 5 и усеченным конусом 11, зону первичной газификации 9 и зону 10 регенерации газов, горелку 12.

Реактор газификации снабжен верхней крышкой 2, с расположенным на ней затвором 1 подачи топлива, и мотор-редуктором 6, системой верхнего ворошения 5, расположенной под крышкой 2 в топливной камере 8.

К крышке прикреплены два дублирующих датчика 3 верхнего уровня топлива разновеликой длины, два дублирующих датчика 4 нижнего уровня топлива, также разновеликой длины.

В реакторе газификации под топливной камерой 8 расположены зоны горения, первичной газификации 9, зоны регенерации 10, расположенной в подогреваемом дымовыми газами от сопла горелки 12 конусе 11.

Фурмы 7 расположены по периметру зоны 9 первичной газификации и на полой трубе 37 системы 5 верхнего ворошения.

Реактор снабжен системой нижнего ворошения 13, содержащей лопастной ворошитель 14, расположенный в усеченном конусе 11, установленном герметично в своем корпусе 32, под конусом расположены колосниковая решетка 15 с мотор-редуктором 19 и лопастями сброса зольного остатка 18, золоприемник 20, золовыводящее устройство 21.

Зона 16 синтеза метана переходит в начале газохода 35 в дополнительную зону синтеза метана 17 и далее потребителю в виде синтез-газа 34.

В герметичную полость, образованную между стенками конуса 11 и его корпуса 32, подведено сопло горелки 12 для подогрева конуса 11 сгорающей газовоздушной смесью.

Водяной котел 23 с двумя концентрично расположенными один в другом внутренним и внешним кожухами, выполненными в виде кольцевых теплообменных рубашек, с газоходом 35 между ними, снабжен: воздухозаборной трубой 28 с расположенным на ней счетчиком газа 29 и автоматически управляемой задвижкой 30 с электроприводом; камерой 25 подачи пара, камерой 26 подогрева воздуха и смешения его с паром, для осуществления паровоздушного дутья через фурмы 7 в зону 9 первичной газификации; фурмами 27 подачи пара в зону 16 синтеза метана.

Водяной котел 23 снабжен дополнительными теплосъемными водяными стержнями 24, размещенными в газоходе 35, и датчиками уровня горячей воды 31.

Для осуществления теплоизоляции наружных поверхностей реактор газификации покрывается теплоизоляционным материалом «Корунд» 33 одним антикоррозионным теплоизоляционным слоем, вторым классическим теплоизоляционным слоем, где каждый 1 мм слоя заменяет 50 мм традиционного теплоизоляционного материала. Внутренняя поверхность первичной зоны газификации футерована термоизоляционными материалами, обеспечивающими теплостойкость до 1800°С.

Реактор газификации работает следующим образом.

Топливо для газификации подается через затвор 1 в топливную камеру и заполняет топливную камеру до срабатывания датчика верхнего уровня топлива 3.

Мотор-редуктор 6, вращающийся по заданному алгоритму, приводит в движение систему 5 верхнего ворошения, которая своими лопастями, от затвора 1 крышки 2 продвигает топливо через топливную камеру горения 8, со скоростью горения топлива.

Когда топливо опускается до датчика нижнего уровня топлива 4, датчик срабатывает и происходит досыпка топлива в топливную камеру, до тех пор, пока не сработает датчик верхнего уровня топлива 3. Топливо проходит через зоны сушки, предварительного подогрева, в зону 9 первичной газификации, куда через фурмы 7 подают паровоздушную смесь.

В свою очередь, атмосферный воздух, необходимый для проведения процесса газификации, подают через воздухозаборную трубу 28. Количество воздуха регулируется счетчиком газа 29, управляющим автоматически задвижкой 30 с электроприводом.

По воздухозаборной трубе 28 воздух поступает в камеру 26 подогрева воздуха и смешивается с паром, поступающим из камеры 25 подачи пара. В свою очередь пар, вырабатываемый в паровом котле 22 через фурмы подачи пара 27, подается в камеру 25 подачи пара. Пар в паровом котле 22 образуется при подаче в него горячей воды, вырабатываемой в водяном котле 23 и регламентируемой датчиком 31 уровня горячей воды.

Топливо, попадая в зону 9 первичной газификации, или иначе зону первичного горения, где окислителем выступает паровоздушная смесь, поступающая из фурм 7, и где в условиях недостатка кислорода, то есть не полного окисления углерода, протекает автотермическая реакция окисления водорода, серы и углерода, температурой, не превышающей 1450°С, что позволяет уменьшить образование оксидов азота.

Зона регенерации 10, находящаяся внутри конуса 11, подогревается дымовыми газами, образующимися при сгорании газовоздушной смеси, полученной из излишков вырабатываемого синтез-газа и сгоревшей в горелке 12, расположенной в полости, находящейся между стеной корпуса 32 и стенкой конуса 11.

Система 13 нижнего ворошения, с мотором-редуктором 19 и лопастным ворошителем 14, перемешивает находящийся в конусе 11 в зоне регенерации 10 газ с золой, откидывая их к подогреваемым стенкам конуса 11, что способствует образовавшейся золе через колосниковую решетку 15 падать на днище парового котла 22, где лопастями 18 она сбрасывается в золоприемник 20 и удаляется золовыводящим устройством 21.

В зоне 10 регенерации реакция протекает с поглощением тепла, в результате чего газ резко охлаждается до температуры 350-500°С, мгновенно проскакивая температуры восстановления токсинов.

Далее, газ, выходя из зоны регенерации 10, попадает в зону 16, обусловленную технологическими параметрами, температурой газа на данном участке, скоростью газа, дополнительным паровым дутьем, где газ резко теряет скорость, до скорости витания частиц размером менее 50 микрон, так как попадает в зону расширения. С потерей скорости температура газа также падает. Недостаток водорода, необходимый для синтеза, подается через паровые фурмы 27 от парового котла 22, в виде пара.

Далее газ, проходя через зону 17, где его температура достигает температуры синтеза метана, а пары воды, образовавшиеся в зоне 16, в свою очередь способствуют поставке водорода для протекания реакции, одновременно очищается от механических примесей.

Тепло, выделяющееся в реакции получения метана, отбирается паровым котлом 22, в который подается часть, нагретой до 90°С в водяном котле 23, воды.

Полученный синтез-газ 34 протягивается на выход, через газоход 35, отдавая тепло кольцевым теплообменным рубашкам водяного котла 23 и теплосъемным водяным стержням 24, позволяющим значительно увеличить площадь теплообмена и, за счет размещения в газоходе 35, сократить размеры реактора газификации. В газоходе 35 газ охлаждается до температуры начала конденсации смол и далее подается на очистку от смоловодяного конденсата.

Полученная из кольцевых теплообменных рубашек водяного котла 23 и теплосъемных водяных стержней 24 горячая вода распределяется следующим образом, часть подается в паровой котел, где догревается до 114,7°С, а основная часть идет на нужды потребителя.

Техническим эффектом является повышение теплотворной способности вырабатываемого синтез-газа, без увеличения габаритов установки, за счет снабжения реактора дополнительно системой нижнего ворошения, с лопастным ворошителем, расположенным в усеченном конусе, закрепленном герметично в корпусе; теплосъемными водяными стержнями, расположенными в газоходе; зоной синтеза метана, расположенной на входе в газоход, расположения сопла горелки в герметичной полости между стенками конуса и его корпуса, а также выполнения наружного покрытия реактора теплоизоляционными материалами, и футеровки внутренней поверхности зоны первичной газификации термоизоляционными материалами.

1. Реактор газификации, содержащий котел с крышкой, с двумя концентрично расположенными один в другом внутренним и внешним кожухами, выполненными в виде кольцевых теплообменных рубашек, с газоходом между ними, с лопастным ворошителем сырья и усеченным конусом, зоны первичной газификации и регенерации газов, горелку, отличающийся тем, что реактор дополнительно снабжен системой нижнего ворошения с лопастным ворошителем, расположенным в усеченном конусе, закрепленном в корпусе герметично, теплосъемными водяными стержнями, расположенными в газоходе, зоной синтеза метана, расположенной на входе в газоход, сопло горелки расположено в герметичной полости между стенками конуса и его корпуса, реактор снаружи покрыт теплоизоляционными материалами, а внутренняя поверхность зоны первичной газификации футерована термоизоляционными материалами.

2. Реактор газификации по п.1, отличающийся тем, что он дополнительно снабжен воздухозаборной трубой со счетчиком газа и управляемой задвижкой с электроприводом.



 

Похожие патенты:

Изобретение относится к области энергетики, лесной и лесоперерабатывающей промышленности, сельскому хозяйству и может быть использовано при производстве газообразного топлива из органических отходов.

Изобретение относится к топливной энергетике и может быть использовано для питания двигателей внутреннего сгорания, для газификации и теплоснабжения в промышленности, сельском хозяйстве, для автономных поселений.

Изобретение относится к способу получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2). .

Изобретение относится к способу получения ацетилена путем плазмохимического пиролиза смеси измельченного твердого сырья с фракцией менее 100 мкм с водяным паром в импульсном электроразрядном плазмотроне.

Изобретение относится к устройствам для получения древесного угля путем обжигания дерева без доступа воздуха. .

Изобретение относится к области металлургии, энергетики и химической промышленности, в частности для получения энергетического или технологического газа, не содержащего конденсируемых продуктов газификации твердого топлива.

Изобретение относится к газогенераторным установкам для получения генераторного газа из дешевых видов твердого топлива с последующим сжиганием газа в системе отопления жилых и производственных помещений.

Изобретение относится к автономным источникам энергии, работающим на возобновляемых видах топлива. .

Изобретение относится к объединенным генераторам синтез-газа. Генерирование синтез-газа может быть объединено в различных системах и способах. Для получения синтез-газа могут быть объединены реактор частичного окисления (РЧО) и установка каталитического реформинга с водяным паром конвекционно нагретого газа/углеводорода. В некоторых вариантах для получения синтез-газа могут быть объединены реактор частичного окисления (РЧО), установка каталитического реформинга с водяным паром конвекционно нагретого газа/углеводорода и паровой котел-утилизатор. Техническим результатом изобретения является создание объединенной системы генерирования синтез-газа. 14 з.п. ф-лы, 7 ил.

Изобретение относится к способу и установке для получения синтез-газа (S) из твердых частиц (C) углерода, причем указанные частицы (C) углерода получают посредством пиролиза, газификация частиц (C) углерода происходит в результате непрямого нагрева частиц (C) углерода в присутствии технологического газа (P) в том же самом пространстве реактора, где находятся частицы (C) углерода, при этом непрямой нагрев осуществляют с помощью теплового излучения от горелок (Br1-Brn), расположенных в реакторе (1), а синтез-газ (S), образовавшийся во время газификации, выпускают из указанного пространства. Установка содержит реактор, по меньшей мере, одну горелку (Br1-Brn), расположенную внутри реактора, устройства для подачи частиц углерода и технологического газа во внутреннее пространство реактора и средство выпуска образующегося синтез-газа (S), при этом, по меньшей мере, одна горелка (Br1-Brn) выполнена с возможностью обеспечения сгорания внутри труб радиационного нагрева и обеспечения теплового излучения от нее для непрямого нагрева частиц (C) углерода и технологического газа (P) внутри реактора. Обеспечивается повышение теплового КПД реактора газификации. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в химической, металлургической и энергетической областях. Слоевой газификатор непрерывного действия представляет собой аппарат шахтного типа на обратном дутье и состоит из топки с охлаждаемой колосниковой решеткой (1), питателя (2) непрерывной подачи топлива в топку и узла (3) отгрузки кокса и золы, который расположен в нижней части. Питатель (2) непрерывной подачи топлива в топку и узел (3) отгрузки кокса и золы выполнены в виде шнекового транспортера с герметизацией соответственно узла подачи и узла отгрузки. Колосниковая решетка (1) выполнена из труб, по которым протекает холодная жидкость, и установлена наклонно под углом естественного осыпания твердого топлива, с изгибом в нижней части в обратную сторону. В топке со стороны подачи через узел (5) воздуха установлена защитная сетка (4). В боковой части слоевой газификатор оснащен узлом для удаления газов (6). Слоевой газификатор установлен на оси (8) с возможностью отклонения от вертикальной оси в две стороны в пределах изменения угла наклона колосниковой решетки (1), с помощью поворотного механизма. Изобретение позволяет упростить конструкцию газификатора и повысить эффективность процесса газификации твёрдого топлива. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области термохимической переработки влажных органических субстратов и к области получения газообразного топлива. Установка для переработки влажных органических субстратов в газообразные энергоносители состоит из последовательно расположенных механического обезвоживающего устройства (7), газогенератора (1), мокрого скруббера (10) и энергогенерирующей установки (13). Между выходом скруббера (10) по жидкому потоку и устройством доочистки (9) расположен анаэробный биофильтр (8), выход которого по газу связан с энергогенерирующей установкой (13). Выход продуктов сгорания из энергогенерирующей установки (13) последовательно связан с сушилкой (5) и теплообменным аппаратом (17). Сушилка (5) установлена между выходом механического обезвоживающего устройства (7) по твёрдой фракции и швельшахтой (2) газогенератора (1). Теплообменный аппарат (17) установлен между аппаратом аэробного гидролиза (6) и дутьевым устройством (4) газогенератора (1). Вход по жидкому потоку анаэробного биофильтра (8) дополнительно связан с жидкостным выходом механического обезвоживающего устройства (7), перед которым размещён аппарат аэробного гидролиза (6). Выход аппарата аэробного гидролиза (6) по газу связан с топкой (3) газогенератора (1). На жидкостном входе скруббера (10) расположен многоходовой управляемый вентиль (14), который связан с жидкостным выходом механического обезвоживающего устройства (7). Управляющее устройство (15) многоходового управляемого вентиля (14) связано с выходом анаэробного биофильтра (8) по газу. Изобретение позволяет максимально полно использовать биоэнергетический потенциал промывных вод и исходного органического субстрата, а также снизить уровень техногенного загрязнения окружающей среды и повысить общий энергетический к.п.д. газогенераторных установок. 1 ил.

Изобретение относится к области энергетики и может быть использовано в устройствах для газификации твердого топлива. Установка газификации твердого топлива содержит корпус газификатора из двух частей, верхней в виде цилиндрической обечайки и нижней в виде полого усеченного конуса с кожухом. Пространство между внутренней поверхностью кожуха и внешней поверхностью корпуса заполнено проточной охлаждающей водой. В кожухе сверху и снизу выполнены отверстия для входного и выходного штуцеров подачи воды. На крышке газификатора в центре первого сквозного отверстия установлено устройство загрузки твердого топлива в виде вертикального патрубка. Устройство для подвода окислителя выполнено в виде последовательно соединенных дутьевого вентилятора, блока озонирования воздуха, состоящего из обечайки с фланцами и со сквозным отверстием для ввода электродов в виде двух плоских металлических пластин. Обечайка блока озонирования последовательно соединена с общим воздуховодом и параллельно с четырьмя воздуховодными ветвями. Внизу и вверху кожуха выполнены отверстия для входного и выходного штуцеров подачи воды. Устройство поджига твердого топлива установлено во втором сквозном отверстии обечайки газификатора и кожуха. Устройство формирования зоны горения твердого топлива выполнено из последовательно соединенных баллона горючего газа с запорно-регулирующей арматурой и манометром, газопровода, горелки. Горелка оснащена штуцером подвода сжатого воздуха. К нижней части корпуса газификатора при помощи фланцевого соединения установлен питатель с лопастным ротором на подшипниковых опорах и соединен через муфты с электродвигателем. На внешней поверхности корпуса питателя установлен кожух с двумя сквозными отверстиями со штуцерами подачи охлаждающей воды во внутреннее пространство между корпусом питателя и кожухом. Выходы вала лопастного ротора через сквозные отверстия оснащены сальниковыми уплотнениями. Нижняя часть питателя соединена при помощи фланцевого соединения с камерой вывода газа и выгрузки шлака. Камера отвода газа и шлака выполнена из трех частей, верхней и нижней в виде полых усеченных конусов и средней в виде полого цилиндра. Разгрузочное отверстие камеры соединено при помощи фланцевого соединения с устройством выгрузки шлака в виде шнекового дозатора с электродвигателем, кабелем, частотным преобразователем. Датчики температуры установлены под крышкой газификатора, под воздушными форсунками и паровыми форсунками под питателем в газоходе на выходе полого усеченного конуса и патрубка теплообменника, в разгрузочном отверстии устройства выгрузки шлака. Датчики контроля минимального и максимального уровня топлива установлены на крышке газификатора. Техническим результатом является повышение производительности и эффективности газификации твердого топлива в установке, повышение рабочего ресурса установки в 10-20 раз, снижение запыленности газа, обеспечение контроля работы установки. 15 ил.

Изобретение относится к области энергетики, металлургии и химической промышленности и может быть использовано для получения кокса и генераторного газа. Способ газификации твердого топлива включает загрузку топлива в реактор, газификацию топлива и удаление продуктов газификации. Причем газификацию топлива осуществляют в режиме разреженной газовой среды путем понижения давления относительно атмосферного за счет откачки генераторного газа на выходе реактора, а состав газовой среды формируют на входе реактора при атмосферном давлении путем добавления смеси газов, паров, аэрозолей. Устройство для осуществления способа включает реактор, узел загрузки топлива, узел удаления продуктов газификации и формирователь газовой среды. Формирователь газовой среды, состоящий из двух раздельных входов для приема воздуха при атмосферном давлении и для подачи смеси газов, паров, аэрозолей, соединен со входом реактора, а перед выходом реактора установлены вытяжное устройство и теплообменник для поддержания необходимой температуры и давления генераторного газа. Газификатор имеет простую конструкцию и повышенную эффективность в работе. 2 н.п. ф-лы, 1 ил.

Изобретение относится к газификаторам, а более конкретно к узлу охлаждающей камеры для газификатора. Газификатор (10) содержит камеру (14) сгорания, в которой обеспечивается сгорание горючего топлива для производства синтетического горючего газа, охлаждающую камеру (16), содержащую жидкий хладагент (32) и расположенную ниже по потоку от камеры (14) сгорания, погружную трубку (38), соединяющую камеру (14) сгорания с охлаждающей камерой (16) и выполненную с возможностью направления синтетического горючего газа из камеры (14) сгорания в охлаждающую камеру (16) с обеспечением его контакта с жидким хладагентом (32) и получения охлажденного синтетического горючего газа, отводящую трубку (46), окружающую погружную трубку (38) и ограничивающую между ними кольцевой проход (50), асимметричный или симметричный сепаратор (54) жидкости, расположенный вблизи выходного пути (52) охлаждающей камеры (16) и выполненный с возможностью удаления захваченного жидкого содержимого из охлажденного синтетического горючего газа, направляемого через кольцевой проход (50) к выходному пути (52), причем указанный асимметричный или симметричный сепаратор жидкости представляет собой дефлектор или многогранный или круглый сепаратор, при этом дефлектор содержит ребра, отверстия или комбинацию ребер и отверстий, а круглый сепаратор представляет собой круглый сепаратор конической формы. Изобретение обеспечивает улучшенный узел охлаждающей камеры как для применений резкого охлаждения, так и для скрубберных применений, выполненный с возможностью удаления захваченного жидкого содержимого по существу из эффлюента газа, создаваемого в газификаторе. 3 н. и 7 з.п. ф-лы, 17 ил.

Изобретение относится к химической и сельскохозяйственной промышленности, к области энергетики и может быть использовано для сушки сыпучего материала, например зерна, и получения кокса. Сущность изобретения заключается в том, что способ производства газообразного теплоносителя и сушки им сыпучего материала, преимущественно зерна, одновременно предусматривает получение кокса, используя уголь фракционного состава 10-50 мм, а температуру теплоносителя регулируют подачей воздуха на газификацию угля. Устройство для осуществления способа включает газогенераторную установку, выполненную из газификатора, калориферов, бака воды, циркуляционных насосов, бункера угля, теплообменника, газодувки, вентилятора и расходомера. Газификатор состоит из цилиндрического корпуса с крышкой, колосниковой решетки, водяной рубашки с подводом и сливом воды, люка, выгружного и продувочного патрубков, горловины с газовходным патрубком и предохранительного клапана. В устройство входят система загрузки угля, система подачи теплоносителя, система охлаждения газификатора и система охлаждения коксового остатка. Устройство может быть передвижным. Изобретение позволит обеспечить производство газообразного теплоносителя, сушку им сыпучего материала и получение кокса. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии, энергетики и химической промышленности при слоевой газификации твердого топлива с целью получения среднетемпературного кокса или энергетического и технологического газа, не содержащего конденсируемых продуктов. Устройство переработки твердого топлива состоит из верхнего, среднего и нижнего поясов, верхний пояс включает загрузочный люк, выпускной патрубок отвода газа, устройство розжига и гидрозатвор, средний пояс включает корпус с водяной рубашкой, выполненный в виде расширяющегося от верхнего пояса к нижнему усеченного конуса, образующая которого наклонена к вертикали под отрицательным углом α=-5…-10°, снабженный термоэлектрическими датчиками и электромагнитными двухтактными вибраторами, закрепленными на размещенных по окружности выступающих элементах верхнего фланца корпуса, нижний пояс включает корпус, выполненный в виде сужающегося от среднего пояса к выходу усеченного конуса, образующая которого наклонена к вертикали под углом β=15…20°, снабженный выгрузным узлом, колосниковой решеткой, термоэлектрическими датчиками, а также узлом для продувки угля воздухом или охлаждающим газом снизу вверх. Изобретение обеспечивает интенсификацию, повышение эффективности, производительности, качества готового продукта и снижение энергозатрат. 1 ил.

Изобретения могут быть использованы в химической промышленности. Способ деполимеризации пластмассовых отходов включает нагрев исходного твердого материала и получение в резервуаре или реакторе (311) с индукционным нагревателем (23) жидкой ванны легкоплавких металлов или металлических сплавов. Исходный твердый материал дозированно подают подающим устройством (11) в жидкую ванну легкоплавких металлов или металлических сплавов (3) с температурой от 50 °С до 550 °С. Изобретения позволяют проводить деполимеризацию пластмассовых отходов без их дополнительной обработки, без возникновения перегрева и отложений. 2 н. и 11 з.п. ф-лы, 2 ил., 1 пр.
Наверх