Способ пропитки обмоток электрических машин

Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. Сущность изобретения состоит в том, что обмотку и пропиточный состав разогревают до температуры пропитки и погружают одну из лобовых частей обмотки в пропиточный состав. После появления пропиточного состава на другой лобовой части обмотки извлекают обмотку из состава и сушат ее. При пропитке одну из лобовых частей обмотки, а также внешнюю и внутреннюю цилиндрические части магнитного сердечника обмотки герметизируют от внешней среды, для чего помещают их в защитные кожухи. Вторую негерметизированную лобовую часть обмотки погружают в сосуд с пропиточным составом и создают при помощи форвакуумного насоса над верхней непогруженной лобовой частью обмотки разряжение порядка 40-50 Торр. Развитием способа является то, что сосуд с пропиточным составом и погруженной в него лобовой частью обмотки герметизируют и нагнетают в указанный сосуд давление до 1,5-2 атм. Дальнейшим развитием способа является то, что после пропитки сосуд с пропиточным составом разгерметизируют, извлекают нижнюю лобовую погруженную часть обмотки, подключают к проводам обмотки греющий ток, поднимают температуру обмотки до (40-50)°С и поддерживают указанную температуру в обмотке в течение (15-20) мин, после чего форвакуумный насос отключают, разгерметизируют защитные кожухи, извлекают из них обмотку с магнитным сердечником и сушат при окончательной температуре, например 120°С, в течение 4-5 ч. Технический результат, достигаемый при использовании заявляемого способа, состоит в повышении производительности пропитки в 2,5-5 раз, в снижении энергозатрат на предварительную сушку в 4 раза и повышении коэффициент пропитки в 1,46-1,71 раза. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике и может быть использовано, например, в производстве статоров электрических машин.

Известен способ пропитки обмоток электрических машин, при котором обмотку и пропиточный состав разогревают до температуры пропитки, погружают одну из лобовых частей обмотки в пропиточный состав и после появления пропиточного состава на другой лобовой части обмотки извлекают обмотку из состава, поворачивают ее на 180° вокруг вертикальной оси и сушат ее в этом положении [1].

Недостатком указанного способа является низкое качество пропитки, что связано с тем, что капилляры в обмотке имеют разные диаметры, поэтому скорость проникновения в них пропиточного состава за счет капиллярных сил различна. Высота, на которую поднимается в каждом капилляре пропиточный состав, по той же причине также различна. Поэтому межвитковые полости обмотки пропитываются неравномерно. Общий коэффициент пропитки Кпр низок и не превышает величины 0,15. Низкий коэффициент пропитки не позволяет достаточно эффективно устранить дефекты в витковой изоляции, что снижает надежность электрических машин. Кроме того, процесс поднятия пропиточного состава происходит медленно, так как на пропиточный состав действуют две противоположно направленные силы: гравитационная, направленная вниз, и капиллярная, направленная вверх. Так как капиллярная сила относительно мала, то и процесс пропитки происходит медленно, что снижает производительность процесса пропитки.

Наиболее близким к заявляемому способу является способ пропитки обмоток электрических машин, описанный в работе [2]. Сущность способа-прототипа заключается в том, что обмотку и пропиточный состав разогревают до температуры пропитки, погружают одну из лобовых частей обмотки в пропиточный состав и после появления пропиточного состава на другой лобовой части обмотки извлекают обмотку из состава, поворачивают ее на 180° вокруг ее вертикальной оси и сушат ее в этом положении. Отличительной особенностью способа-прототипа является то, что погруженную в пропиточный состав лобовую часть обмотки устанавливают на токопроводящий элемент, а к непогруженной лобовой части обмотки подсоединяют электрод и создают между электродом и токопроводящим элементом разность потенциалов.

Способ-прототип лишь частично устраняет недостатки указанного выше способа-аналога за счет того, что к капиллярной силе добавляется электрическая сила. Эта сила возникает за счет того, что под действием разности потенциалов между токопроводящим элементом, на который установлена погруженная лобовая часть обмотки, и электродом, установленным на непогруженную часть обмотки, на частички пропиточного состава начинает оказывать влияние электрическое поле, созданное этой разностью потенциалов. Частички пропиточного состава поляризуются и приобретают электростатический заряд. Приобретенный частичками электростатический заряд начинает взаимодействовать с электрическим полем, созданным разностью потенциалов. За счет этого возникает тянущая электрическая сила, направленная от погруженной лобовой части к непогруженной лобовой части. Эта сила складывается с капиллярными силами, действующими в обмотке, за счет чего процесс перемещения пропиточного состава по обмотке к непогруженной лобовой части ускоряется. Это приводит к значительному повышению производительности пропитки, более полному заполнению пропиточным составом пор и капилляров обмотки, что повышает ее качество.

Однако в способе-прототипе остаются по-прежнему те же недостатки, что и в способе аналоге, только эти недостатки несколько уменьшены. Коэффициент пропитки обмотки Кпр, достигнутый по способу-прототипу, не превышает величины 0,24, что свидетельствует о том, что 76% полостей обмотки не заполнены пропиточным составом. Процесс пропитки по способу-прототипу по-прежнему остается длительным и трудоемким.

Кроме того, для реализации способа-прототипа требуется прикладывать между электропроводящим элементом, на котором установлена погруженная часть обмотки, и электродом, установленным на непогруженную часть обмотки, высокое напряжение, что требует особых мер по технике безопасности.

Цель изобретения - повышение производительности путем скорости прохождения пропиточного состава по капиллярам обмотки, увеличения проникающей способности пропиточного состава вглубь обмотки, и повышение качества обмотки, за счет увеличения коэффициента пропитки и более эффективного устранения дефектных участков изоляции провода обмотки.

Указанная цель достигается тем, что в способе пропитки обмоток электрических машин, при котором обмотку и пропиточный состав разогревают до температуры пропитки, погружают одну из лобовых частей обмотки в пропиточный состав, например лак МЛ-92, после появления пропиточного состава на другой лобовой части обмотки извлекают обмотку из состава, дополнительно одну из лобовых частей обмотки, а также внешнюю и внутреннюю цилиндрические части магнитного сердечника обмотки герметизируют от внешней среды, для чего помещают их в защитные кожухи, вторую негерметизированную лобовую часть обмотки погружают в сосуд с пропиточным составом и создают при помощи форвакуумного насоса над верхней непогруженной лобовой частью обмотки разряжение порядка 40-50 Торр.

Дальнейшее развитие способа пропитки обмоток электрических машин пропиточным составом состоит в том, что сосуд с пропиточным составом и погруженную в пропиточный состав лобовую часть также герметизируют и нагнетают в указанный сосуд давление до 1,5-2 атм.

Дальнейшее развитие способа пропитки обмоток электрических машин состоит в том, что после пропитки сосуд с пропиточным составом разгерметизируют, извлекают из него нижнюю лобовую погруженную часть обмотки, подключают к выходным проводам обмотки греющий ток, поднимают температуру обмотки до (40÷50)°С и поддерживают указанную температуру в обмотке в течение (15÷20) мин, после чего форвакуумный насос отключают, разгерметизируют защитные кожухи, извлекают из них обмотку с магнитным сердечником и сушат при окончательной температуре, например 120°С, в течение (4÷5) ч.

На чертеже приведена технологическая схема пропитки обмотки, служащая для пояснения сущности изобретения. На чертеже введены следующие обозначения:

1 - лобовая часть, погруженная в пропиточный состав; 2 - пропиточный состав; 3 - сосуд для пропиточного состава; 4 - верхняя, непогруженная в пропиточный состав лобовая часть обмотки; 5 - магнитный сердечник обмотки; 6, 7, 8 - защитные кожухи обмотки; 9 - уплотнители; 10 - крепежные детали; 11 - патрубок для подсоединения форвакуумного насоса; 12 - патрубок для подсоединения компрессора; 13 - выходные провода обмотки.

Сущность изобретения заключается в следующем. Лобовую часть 4 и внутреннюю и наружную цилиндрические части магнитного сердечника 5 заключают в защитные кожухи 6, 7, 8 и герметизируют при помощи уплотнений 9. Нижнюю лобовую часть 1 погружают в сосуд 3 с пропиточным составом 2. Обмотку и состав 2 предварительно подогревают до температуры пропитки, которая зависит от вида используемого лака. Например, для пропиточного лака МЛ-92 она составляет (85÷90)°С. Этот разогрев обмотки и пропиточного состава осуществляют для того, чтобы снизить вязкость пропиточного состава и улучшить его проникновение в капилляры, находящиеся между проводами обмотки. К патрубку 11 защитного кожуха 7 подключают форвакуумный насос и создают над верхней лобовой частью разряжение (40÷50) Торр. Выбор указанного диапазона разряжений обусловлен следующими факторами. Для создания разряжения менее 40 Торр требуется достаточно высокая надежность герметизации защитных кожухов и непогруженной лобовой части обмотки и, кроме того, требуется использование более дорогого и более высокопроизводительного форвакуумного насоса. Разряжение более 50 Торр ухудшает проникновение пропиточного состава в полости обмотки, что происходит из-за невысокого перепада давлений между погруженной и непогруженной лобовыми частями обмотки. При создании над непогруженной лобовой частью 4 обмотки разряжения (40÷50) Торр между лобовой частью 1, погруженной в пропиточный состав, возникает перепад давлений, и пропиточный состав 2 через капилляры обмотки через лобовую часть 1 устремляется к лобовой части 4 обмотки. Так как возникшая сила за счет перепада давлений между погруженной и непогруженной лобовыми частями обмотки существенно превышает капиллярную силу и, кроме того, складывается с ней, то под действием этих двух сил пропиточный состав начинает ускоренно подниматься от погруженной лобовой части обмотки к непогруженной, заполняя все капилляры обмотки. Ускорить процесс заполнения пор и капилляров обмотки пропиточным составом можно, если дополнительно герметизировать нижнюю погруженную в пропиточный состав лобовую часть обмотки, и сосуд 3 с пропиточным составом также герметизировать и через патрубок 12 при помощи компрессора нагнетать в указанный сосуд 3 через патрубок 12 давление. Для более интенсивного проникновения пропиточного состава в обмотку достаточно повысить давление в сосуде 3 до (1,5÷2) атм. Этот диапазон выбран потому, что для создания давления выше 2 атм потребуется высокая степень герметизации сосуда 3 и изготавливать сосуд с более прочными стенками. При давлении ниже 1,5 атмосфер эффект проникновения пропиточного состава в полости и капилляры обмотки не будет существенно отличаться от проникновения указанного состава в обмотку при обычном атмосферном давлении. В процессе пропитки обмотки пропиточный состав и сама обмотка охлаждается практически до комнатной температуры. И поэтому обмотку после ее разгерметизации и извлечения из пропиточного состава вновь нужно разогревать и сушить. Обычно при использовании пропиточных составов с растворителями, например лака МЛ-92, сушку осуществляют в два этапа. На первом этапе обмотку разогревают до температуры, близкой к температуре кипения растворителя. Например, обмотку, пропитанную лаком МЛ-92, температура кипения растворителя которой свыше 100°С, разогревают до 90°С и выдерживают при такой температуре (45÷50) мин. Создание такой температуры и достаточно длительного времени выдержки обмотки при такой температуре необходимо для того, чтобы удалить растворитель из обмотки. После удаления растворителя из обмотки приступают ко второму этапу сушки обмотки. Для осуществления указанного второго этапа сушки обмотки обмотку разогревают до более высоких температур, при которых происходит наиболее оптимальная запечка пропиточного состава. Например, для пропиточного лака МЛ-92 эта температура равняется 120°С. Если на втором этапе сушки поднять температуру выше оптимальной, то в пропиточном составе, находящемся в обмотке, начнут возникать пузырьки, трещины, прогары и другие дефекты. Подавать же такую температуру, оптимальную для второго этапа сушки, тоже нельзя, так как из-за вскипания растворителя образуются многочисленные дефекты в изоляции обмотки и она будет отбракована. Второй этап сушки при оптимальной температуре, обычно длится (5÷6) часов.

Дальнейшее развитие заявляемого способа пропитки обмоток электрических машин заключается в том, что после пропитки сосуд с пропиточным составом разгерметизируют, извлекают нижнюю лобовую погруженную часть обмотки, подключают к проводам обмотки греющий ток, поднимают температуру обмотки до (40-50)°С и поддерживают указанную температуру в обмотке в течение (15-20) минут, после чего форвакуумный насос отключают, разгерметизируют защитные кожухи, извлекают из них обмотку с магнитным сердечником и сушат при окончательной температуре, например 120°С, в течение 4-5 ч. Сущность этого развития заключается в том, что температура вскипания любой жидкости тем ниже, чем ниже разряжение. Известно, что чем ниже величина разряжения, тем меньше температура вскипания жидкости. Например, при разряжении 10 Торр вода закипает при 18°С. При разряжении в 50 Торр, вода начинает кипеть при сравнительно низкой температуре, равной 30°С. Растворитель, поскольку его температура кипения на (20÷40)°С выше температуры кипения воды, при разряжении (40÷50) Торр, начинает кипеть при температуре (40÷50)°С. Получение разряжения в (40÷50) Торр достаточно просто осуществляется относительно дешевыми форвакуумными насосами и может быть получено без особо жестких требований к обеспечению герметичности защитных кожухов. Достаточно низкая температура кипения растворителя при давлении в (40÷50) Торр, возможность получения указанного разряжения более дешевыми форвакуумными насосами и исключение завышенных требований к герметичности к защитным кожухам указывают на нецелесообразность проводить первый этап сушки обмоток при температуре (90÷95)°С. Поэтому первый этап сушки требует подогреть обмотку двигателя только до (40÷50)°С, и поскольку при разряжении (40÷50) Торр при указанной выше температуре испаритель улетучивается из обмотки в несколько раз интенсивнее, чем при нормальном давлении и температуре, например 90°С, то первый этап сушки в заявляемом способе потребует в 4-5 раз меньше энергозатрат, чем при реализации способа-прототипа.

Пример конкретного выполнения. По предлагаемому способу пропитывались обмотки статоров электродвигателя МВТ-2. Пропитка двух обмоток осуществлялась лаком МЛ-92 по технологической схеме, приведенной на фиг.1. В обоих пропитываемых обмотках перед погружением лобовой части обмотки 1, обмотки и лак МЛ-92 были разогреты до температуры пропитки Ti=90°C. Пропиточный состав на лобовой части первой обмотки 4 появился через 2 мин после начала пропитки без создания дополнительного давления в сосуде 3 с пропиточным составом 2. Во второй обмотке, после герметизации сосуда 3 и создания в нем давления 1,5 атмосферы, пропиточный состав появлялся на лобовой части 4 обмотки через 1 минуту. Этот же состав после начала пропитки по способу-прототипу появлялся на лобовой части обмотки только через 5 мин после начала пропитки.

После пропитки обмотка, пропитанная по способу-прототипу, извлекалась из пропиточного состава, переворачивалась на 180° относительно вертикальной оси и сушилась в таком положении при T1=90°C в течение 45 мин и при Т2=120°С в течение 5 ч. Контроль пропитки по привесу обмотки, пропитанной по способу-прототипу, показал, что коэффициент пропитки был равен Кпр=0,24. После пропитки по заявляемому способу обе обмотки охладилась до (25÷30)°С. По предлагаемому способу лобовую часть 1 первой и второй пропитанных обмоток извлекали из пропиточного состава, подключали к выходным проводам обмоток греющий ток и доводили температуру обмоток до 40°С при разряжении в защитном кожухе над лобовой частью 4 обмотки, равном 50 Торр. Выдерживали при указанной пропитке обмотку в течение 20 мин. После этого защитные кожухи разгерметизировали, извлекали из них пропитанные по заявляемому способу обмотки и сушили их при Т2=120°С в течение 5 ч. Контроль по привесу пропитки обмоток, пропитанных по заявляемому способу, показал, что коэффициент пропитки у первой обмотки был равен 0,35, а у второй - 0,41.

Таким образом, заявляемый способ по сравнению со способом-прототипом позволил:

- повысить производительность пропитки в 2,5-5 раз;

- снизить энергозатраты на предварительную сушку в 4 раза;

- повысить коэффициент пропитки в 1,46-1,71 раза.

Источники информации

1. Рыжов A.M., Наумов С.А., Урусов З.А. Технология пропитки и сушки электрических машин малой мощности. М.: Информэлектро, 1990, с.44. Электротехническая промышленность. Серия 25. Технология электротехнического производства. Обзорная информация. Вып.20.

2. А.с №1820453 (СССР). Способ капиллярной пропитки обмоток электрических машин / Г.В.Смирнов. - Опубл. в Б.И., 07.06.93. Бюл. №21 (Прототип)

1. Способ пропитки обмоток электрических машин, при котором обмотку и пропиточный состав разогревают до температуры пропитки, погружают одну из лобовых частей обмотки в пропиточный состав, например лак МЛ-92, после появления пропиточного состава на другой лобовой части обмотки извлекают обмотку из состава, и сушат ее, отличающийся тем, что одну из лобовых частей обмотки, а также внешнюю и внутреннюю цилиндрические части магнитного сердечника обмотки герметизируют от внешней среды, для чего помещают их в защитные кожухи, вторую негерметизированную лобовую часть обмотки погружают в сосуд с пропиточным составом, и создают при помощи форвакуумного насоса над верхней непогруженной лобовой частью обмотки разряжение порядка 40-50 Торр.

2. Способ пропитки обмоток электрических машин по п.1, отличающийся тем, что сосуд с пропиточным составом и погруженную в него лобовую часть герметизируют, и нагнетают в указанный сосуд давление до 1,5-2 атм.

3. Способ пропитки обмоток электрических машин по п.1, отличающийся тем, что извлекают из пропиточного состава нижнюю лобовую часть обмотки, и производят сушку обмотки, для чего подключают к проводам обмотки греющий ток, поднимают температуру обмотки до 40-50°С, и поддерживают указанную температуру в обмотке в течение 15-20 мин, после чего форвакуумный насос отключают, разгерметизируют защитные кожухи, извлекают из них обмотку с магнитным сердечником и сушат при окончательной температуре, например 120°С, в течение 4-5 ч.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано при техническом обслуживании и ремонте электрических машин. .

Изобретение относится к электротехнике, к корабельному электромашиностроению, в частности к погружным электрическим машинам, работающим в морской воде. .

Изобретение относится к области электротехники, касается технологии пропитки изоляции обмоток электрических машин и электротехнических изделий и может быть использовано при изготовлении статоров электрических машин, трансформаторов, дросселей.

Изобретение относится к области электротехники, предназначено для контроля сопротивления изоляции обмоток электродвигателя и сушки его обмоток токами нулевой последовательности при снижении сопротивления ниже заданного уровня.

Изобретение относится к области электротехники и касается способа формирования изолированных проводников ротора, используемых в узле ротора вращающейся электрической машины, а также особенностей конструктивного выполнения модульного устройства для осуществления данного способа.

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин. .

Изобретение относится к области электротехники и может быть использовано для удаления обмоток статора или якоря любого электродвигателя, в том числе погружных электродвигателей, обмоточный провод которых пропитан лаковым составом.

Изобретение относится к электромашиностроению, в частности к производству и ремонту электрических машин, например обмоток тяговых электрических машин локомотивов.

Изобретение относится к области электротехники, в частности к электродвигателям, предназначенным для использования, например, в электроинструментах и содержащим якорь (ротор) с обмоткой, размещенной в пазах и покрытой формованным полимером.

Изобретение относится к области электротехники, а именно - к технологии изготовления вентильно-индукторных генераторов (ВИГ), и может быть использовано на транспорте, в промышленности, в ветро - и гидроэнергетике.
Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин и аппаратов. Технический результат - создание наиболее оптимального режима сушки изоляции, обеспечивающего ее надежность. Предложенный трехцикловой амплитудно-широтно-прерывный способ сушки изоляции электрических машин и аппаратов локомотивов включает принудительную продувку их воздушным потоком до нагрева и после нагрева, тепловой нагрев, контроль за рабочей температурой и состоянием изоляции. Отличие заключается в том, что сушку осуществляют циклами при высокой температуре. В первом цикле поверхностные слои изоляции сушат воздушным потоком, нагретым до предельно допустимой температуры для данного класса изоляции. Для класса изоляции В - 130°С, для F - 155°С, для Н - 180°С. Эта температура устанавливается в конце рабочего периода первого цикла и регулируется в осциллирующем режиме до конца рабочего периода третьего цикла. Такой режим обеспечивает удаление влаги из верхних слоев изоляции в первом цикле и из нижних слоев изоляции во втором и третьем циклах. В конце третьего цикла отключается электронагреватель 1 (см. фиг.1) и на полную мощность включается электродвигатель 4 привода вентилятора с целью полной нормализации изоляции. 2 ил.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей. Новым является то, что контроль качества пропитки осуществляют по коэффициенту пропитки, определяемому по измеренным значениям эквивалентной теплоемкости обмоток до и после пропитки. При этом эквивалентные теплоемкости каждой контролируемой обмотки определяют путем подвода к проводу непропитанной и пропитанной обмотки постоянного стабилизированного тока, в течение разных времен t1 и t2 соответственно и определения подведенной к проводу энергии и температуры провода обмоток, как в момент подвода к их проводу постоянного стабилизированного тока, так и по истечении времен t1 и t2. Времена t1 и t2 определяют из сравнения характеристик реальной непропитанной и пропитанной обмотки с идеализированной непропитанной и пропитанной обмоткой. Под идеализированной обмоткой понимают такую обмотку, теплопроводность компонентов которой является бесконечно большой, и обмотка идеально теплоизолирована от внешней среды и магнитного сердечника. В изобретении указывается, как определить упомянутые времена t1 и t2, в которые можно считать реальную обмотку идеальной. Используя времена t1 и t2 при контроле качества пропитки, можно предельно уменьшить методические погрешности. Технический результат - повышение точности и достоверности контроля качества пропитки. 4 ил., 8 табл.
Изобретение относится к способу изготовления изоляции обмоток электрических машин. Способ изготовления заключается в том, что вначале осуществляют пропитку стеклослюдоленты первым компаундом. Одновременно изготавливают второй компаунд на основе первого, в который дополнительно вводят марганцевый ускоритель полимеризации. Затем один или несколько слоев стеклослюдоленты накладывают на изделие, нагревают в печи до температуры 150-160°C. Далее изделие помещают в автоклав со вторым компаундом на 3-10 минут. После этого изделие извлекают из автоклава и помещают в печь, выдерживают 2-3 часа при температуре 160-180°C. Первый компаунд включает следующие компоненты при их соотношении в мас.%: 89,6-54,3 метакрилированной эпоксидной смолы, 10-45 диметакрилового эфира триэтиленгликоля, 0,2-0,3 перекисного инициатора полимеризации, 0,2-0,4 ингибитора полимеризации. Второй компаунд включает следующие компоненты при их соотношении в мас.%: 87,6-52,0 метакрилированной эпоксидной смолы, 10-44,9 диметакрилового эфира триэтиленгликоля, 1,0-1,2 перекисного инициатора полимеризации, 1,2-1,4 марганцевого ускорителя полимеризации, 0,2-0,5 ингибитора полимеризации. Изобретение позволяет повысить качество изоляции и точность получения заданных характеристик путем обеспечения глубокой и равномерной пропитки изоляции связующим, а также снизить энерго- и трудозатраты. 4 з.п. ф-лы.
Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и касается к способа изготовления обмоток электрических машин постоянного тока тягового электродвигателя. Технический результат, достигаемый при использовании данного изобретения, состоит в обеспечении повышенного усилия выпрессовки обмоток электрических машин класса нагревостойкости Н. Указанный технический результат достигается тем, что согласно предлагаемому способу изготовления обмоток электрической машины осуществляют нанесение на обмотку электроизоляционного материала, пропитанного нагревостойким связующим, монтаж обмотки на сердечник, разогрев и пропитку под вакуумом и давлением, причем основную изоляцию обмотки предварительно пропитывают полиэфиримидным компаундом класса нагревостойкости Н, а пропитку моноблока осуществляют эпоксидным компаундом класса нагревостойкости F с последующим отверждением. В частности, при осуществлении способа на полюсную катушку наносят слюдосодержащую ленту, пропитанную полиэфиримидным компаундом класса нагревостойкости Н, катушку надевают на полюс, предварительно изолированный электроизоляционным материалом. Моноблок разогревают до температуры, обеспечивающей миграцию компаунда внутрь изоляции, помещают в пропиточный автоклав и пропитывают компаундом класса нагревостойкости F под вакуумом и давлением. После стекания излишков компаунда моноблок помещают в термостат и отверждают при температуре, обеспечивающей одновременное отверждение компаунда в ленте и пропиточного компаунда в обмотке. Основная изоляция, подвергающаяся максимальным тепловым нагрузкам, соответствует классу нагревостойкости Н. Зазор между катушкой и полюсом пропитан компаундом класса нагревостойкости F, который обладает высокими механической прочностью, теплопроводностью и теплостойкостью вплоть до температуры класса нагревостойкости Н.

Изобретение относится к электромашиностроению и может быть использовано при изготовлении обмоток статоров электрических машин, трансформаторов, дросселей. Способ заключается в том, что пропиточный состав из емкости подают в виде вращающейся вдоль лобовых частей обмотки струи, при этом струю пропиточного состава заряжают электростатическим зарядом путем пропускания ее вдоль поверхности высоковольтного электрода, заземляют провод обмотки, а вращение струи осуществляют путем пропускания ее через индуктор, создающий вращающееся магнитное поле. Знак электростатического заряда струи периодически изменяют на противоположный, для чего на высоковольтный электрод подают инвертированные высоковольтные импульсы, длительность каждого из которых равняется периоду вращения струи вдоль лобовой части. Заявляемый способ позволяет повысить коэффициенты пропитки обмоток в 1,3-1,4 раза. 2 ил., 1 табл.

Изобретение относится к электротехнике и может быть использовано, например, в производстве статоров электрических машин. Способ пропитки многовитковой обмотки электрической машины заключается в подаче на лобовые части обмотки тонкой струи пропиточного состава из сопла на нагретую лобовую часть обмотки и во вращении струи вдоль лобовой части обмотки. Перед пропиткой в пропиточный состав добавляют мелкодисперсный ферромагнитный наполнитель, который предварительно дезинтегрируют. Смешивают пропиточный состав с измельченным ферромагнитным наполнителем, перемешивают полученную смесь и заливают ее в пропиточную установку. Перед пропиткой по обмоточным данным рассчитывают предельную массу пропиточной смеси mпр, которую можно разместить в полостях каждой из однотипных обмоток в процессе пропитки. Вводят в сопло электрод и подают на него потенциал, осуществляют процесс пропитки каждой из однотипных обмоток. В процессе пропитки частицы пропиточной смеси компаунда с мелкодисперсным ферромагнитным порошком электростатически заряжают, формируют струю. Осуществляют окончательное компаундирование проникшей в обмотку пропиточной смеси. Заявляемый способ позволяет в среднем в 1,55 раз повысит коэффициент пропитки обмоток и существенно повысить стабильность их значений от обмотки к обмотке. 2 ил., 1 табл.

Изобретение относится к электротехнике, а именно к способу определения коэффициента пропитки обмоток электрических машин, соединенных в звезду с изолированной нейтралью. В способе определения коэффициента пропитки обмоток электрических машин, характеризующего степень заполнения пропиточным составом полостей обмотки, у каждой обмотки из данной партии измеряют электрические параметры до пропитки и после пропитки и сушки, в качестве электрических параметров выбраны емкости двух фаз обмотки, соединенной в звезду, которые поочередно измеряют до пропитки Сдп12, Сдп13, Сдп23 и после пропитки Спп12, Спп13, Спп23 относительно корпуса, после чего по результатам измерений определяют коэффициент пропитки каждых двух фаз Кпр12, Кпр13, Кпр23 по математической зависимости, после чего определяют коэффициенты пропитки каждой фазы обмотки по математическим зависимостям. Техническим результатом является возможность определять не только усредненный коэффициент пропитки, но и распределение пропиточного состава по фазам обмотки, что существенно повышает информативность и точность контроля. 2 табл., 3 ил.

Изобретение относится к области электротехники и электромашиностроения, в частности, к технологии электрических машин, например обмоток вращающихся электрических машин тягового подвижного состава. Способ пропитки изоляции лобовых частей обмоток вращающихся электрических машин состоит из трех последовательных этапов: 1) удаление влаги инфракрасным (ИК) нагревом из изоляции лобовой части перед пропиткой с предельно допустимой температурой для данного класса изоляции; 2) нанесение на лобовую часть пропиточной смеси при помощи автоматических распылителей высокого давления; 3) транспортировку пропиточной смеси вглубь изоляции обмотки при помощи коротковолновых и средневолновых импульсных керамических преобразователей ИК-излучения. При этом удаление влаги из изоляции лобовой части обмотки перед ее пропиткой и транспортировку пропиточной смеси вглубь изоляции обмотки осуществляют в спектрально-осциллирующих режимах энергоподвода с циклическим чередованием коротковолнового и средневолнового ИК-излучения. Технический результат - повышение качества процесса пропитки в несколько раз при одновременном сокращении времени пропитки в 7-10 раз и обеспечении 2- или 3-кратного эффекта от ресурсоэнергосбережения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано, например, в производстве статоров электрических машин. Согласно данному изобретению после разогрева обмотки перед пропиткой до заданной температуры подают в нее импульсы тока, амплитуда которых лежит в диапазоне (10-50)А, а длительность (0,5-10) с, при этом частота следования импульсов тока лежит в диапазоне (5-10) Гц. Одновременно с подачей упомянутых импульсов тока в обмотку подключают к магнитному сердечнику обмотки инфразвуковой излучатель. При этом изменяют частоту звуковых колебаний инфразвукового излучателя непрерывно и циклически в диапазоне частот от 0,5 кГц до 10 кГц и обратно. По завершении пропитки отключают от магнитного сердечника инфразвуковой генератор, отключают от обмотки источник импульсного тока, подключают к обмотке греющий постоянный или переменный ток, при помощи которого разогревают пропитанную обмотку до температуры полимеризации пропиточного состава, и сушат обмотку до полного отверждения в ней пропиточного состава. Технический результат, достигаемый при осуществлении данного способа, состоит в сокращении времени пропитки в 1,8 раза и в повышении коэффициента пропитки в 1,8 раза при одновременном снижении в три раза разброса коэффициентов пропитки от обмотки к обмотке. 2 ил.
Наверх