Взрывной способ трансформации магнитного потока

Изобретение относится к области электротехники и энергетики, касается получения электромагнитной энергии с помощью взрывчатых веществ (ВВ) и может быть использовано при разработке устройств для создания сильных магнитных полей и токов, для исследования в области физики плазмы, твердого тела, сильноточных разрядов в газах. Предлагаемый способ включает операции введения магнитного потока, захвата магнитного потока в момент времени, соответствующий началу деформации первичного контура, деформации первичного контура токопровода с помощью энергии ВВ, сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур. Во вторичном контуре во время деформации первичного контура дополнительно возбуждают поток взаимоиндукции, направленный встречно первоначально введенному потоку. При этом, согласно настоящему изобретению, операцию введения магнитного потока осуществляют во вторичный контур при разомкнутом первичном, а в момент времени, соответствующий началу деформации первичного контура, первичный контур замыкают и захватывают введенный во вторичный контур магнитный поток, при этом предварительно обеспечивают индуктивную связь зоны трансформации и рабочей зоны, в момент времени, соответствующий окончанию деформации рабочей зоны, производят диссипацию магнитного потока в материале токопровода в рабочей зоне, возбуждают ЭДС и ток в цепи нагрузки благодаря индуктивной связи рабочей области и зоны трансформации, увеличивая тем самым передачу энергии. Технический результат, достигаемый при использовании данного изобретения, состоит в значительном увеличении коэффициента передачи энергии из первичного контура в нагрузку вторичного контура при одновременном уменьшении габаритов устройства для реализации данного способа, а также в повышении его экономичности. 1 ил.

 

Изобретение относится к энергетике, преимущественно к получению электромагнитной энергии с помощью взрывчатых веществ (ВВ), и может быть использовано при разработке устройств для создания сильных магнитных полей и токов, для исследования в области физики плазмы, твердого тела, сильноточных разрядов в газах и т.д.

Известны способы трансформации магнитного потока, см. например А.С.Кравченко, Р.З.Людаев, А.И.Павловский и др. Питание индуктивных и омических нагрузок магнитокумулятивного генератора с помощью трансформатора. // ПМТФ, 1981, №5 с.116-121 [1], В.К.Чернышев, В.А.Давыдов, В.Е.Ванеев. Исследование процесса магнитной кумуляции в системе с перехватом магнитного потока. // Сверхсильные магнитные поля: Тр. III Междунар. конф. по генерации мегагаусных магнитных полей и родственным экспериментам. Физика. Техника. Применение. - М.: Наука, 1984. с.278 [2], E.I.Bichenkov, V.S.Prokopiev and A.M.Trubachev Magnetic flux transformation in inductively coupled systems using magnetic cumulation. // Megagauss fields and pulsed power systems., edited by V.M.Titov and G.A.Shvetsov, Nova Science Publishers, New York. 1990. pp.601-606 [3], С.Випф. Обратимая передача энергии между индуктивностями. // Накопление и коммутация энергии больших плотностей. - М.: Мир, 1979. с.421 [4] и др. Так, например, в [1-3] используют для реализации деформацию рабочей области с помощью взрыва. Такая деформация осуществляется с помощью токопровода из проводящего материала. Магнитный поток в рабочей области не может за время работы проникнуть через материал токопровода, т.е. тем самым обеспечивается возможность осуществления операций захвата и перемещения магнитного потока из рабочей области в нагрузку. Однако в реальности при работе магнитный поток не только вытесняется в нагрузку, но и проникает в материал токопровода. Особенно это становится заметным в конце работы. Поэтому значительная часть магнитного потока находится в нагрузке, а часть - в материале токопровода. Следует заметить, что величина магнитного потока в материале токопровода будет определяться величиной магнитного поля в конце работы. Так для спиральных конструкций магнитное поле в зоне контакта токопровода и рабочей индуктивности составляет 100 Тл (1 Мгс), а для коаксиальных - 200-300 Тл (2-3 Мгс). Поэтому после окончания деформации рабочей области магнитный поток в материале токопровода теряется безвозвратно.

В качестве прототипа выбран наиболее близкий к заявляемому и известный из а.с. СССР №1550594 (1989 г.) [5] взрывной способ трансформации магнитного потока, содержащий операции введения магнитного потока в первичный контур, деформации первичного контура с помощью энергии ВВ, сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур.

В качестве прототипа выбран наиболее близкий к заявляемому и известный из а.с. СССР №1550594 (1989 г.) [5] взрывной способ трансформации магнитного потока, содержащий операции введения магнитного потока в первичный контур, деформации первичного контура с помощью энергии ВВ, сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур. При этом операцию ввода магнитного потока в первичный контур производят при разомкнутом вторичном контуре. В момент времени, соответствующий началу деформации первичного контура, вторичный контур замыкают и захватывают введенный в первичный контур магнитный поток. Во вторичном контуре во время деформации первичного контура дополнительно возбуждают поток взаимоиндукции, направленный встречно первоначально введенному потоку.

Таким образом, известный взрывной способ трансформации магнитного потока содержит операции введения магнитного потока, захвата магнитного потока в момент времени, соответствующий началу деформации первичного контура токопроводом с помощью энергии ВВ, сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур. При этом во вторичном контуре во время деформации первичного дополнительно возбуждают поток взаимоиндукции, направленный встречно первоначально введенному потоку.

Недостатком известного способа является недостаточно высокий коэффициент передачи энергии.

Задачей, на решение которой направлено изобретение, является повышение коэффициента передачи энергии.

Для решения поставленной задачи сущность заявляемого изобретения состоит в том, что, в отличие от известного способа трансформации магнитного потока, содержащего операции введения магнитного потока, захвата магнитного потока в момент времени, соответствующий началу деформации первичного контура, деформации первичного контура токопроводом с помощью энергии ВВ, сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур, при этом во вторичном контуре во время деформации первичного контура дополнительно возбуждают поток взаимоиндукции, направленный встречно первоначально введенному потоку, согласно изобретению, операцию введения магнитного потока осуществляют во вторичный контур при разомкнутом первичном, а в момент времени, соответствующий началу деформации первичного контура, первичный контур замыкают и захватывают введенный во вторичный контур магнитный поток. При этом предварительно обеспечивают индуктивную связь зоны трансформации и рабочей зоны. В момент времени, соответствующий окончанию деформации рабочей зоны, производят диссипацию магнитного потока в материале токопровода в рабочей зоне, благодаря (из-за) индуктивной связи рабочей области и зоны трансформации возбуждают дополнительно ЭДС и ток в цепи нагрузки, увеличивая тем самым передачу энергии из первичного контура во вторичный.

Технический результат, который может быть получен в результате использования изобретения, заключается в повышении коэффициента передачи энергии.

Изобретение поясняется чертежом.

На фиг.1 приведена принципиальная схема, поясняющая заявляемый способ. Здесь первичный контур образован из индуктивностей L1 и L2, a вторичный из индуктивностей L31, L32 и L4. Индуктивности L1, L2, L3 (при этом L3=L31+L32) образуют зону деформации. Индуктивности L2 и L32 образуют зону трансформации. При этом L1, L31, L32 включены согласно, а L2 с L1, L31, L32 - встречно. Ключ K в первичном контуре в момент запитки вторичного контура разомкнут.

Схема, приведенная на чертеже, работает следующим образом.

Во вторичном контуре (см. фиг.1), состоящем из индуктивности L3 (L3=L31+L32) и индуктивности нагрузки L4, причем (L3>>L4), создают начальный магнитный поток Ф20. Первичный контур, образованный индуктивностями L1 и L2, в момент запитки вторичного контура разомкнут. Индуктивности L1 и L2 включены встречно друг с другом и имеют магнитную связь с L3 вторичного контура, при этом L1 и L31 включены согласно, а L2 и L32 - встречно. Индуктивности L1, L2 и L3 образуют зону деформации. Индуктивности L2 и L32 образуют зону трансформации. Нагрузка L4 находится вне зоны деформации. Далее в момент времени, соответствующий началу деформации L1, L2 и L3, замыкают ключ K в первичном контуре, захватывают магнитный поток от вторичного контура. С первичным контуром оказывается связанным поток Ф10. Далее с помощью энергии взрыва деформируют рабочую зону, образованную из L1, L2, L3 при помощи токопровода. Величины L1, L31 при этом стремятся к нулю (L1→0, L31→0), а величины L2 и L32 стремятся к некоторой конечной величине L2→L2f и L32→L32f. Коэффициент связи между L2f и L32f делают (обеспечивают) максимально возможным, так, чтобы выполнялось соотношение L4>>L32f. В момент времени, соответствующий концу изменения L1 (L1=0), в L4 будет перемещен магнитный поток, равный Ф2023f, где Ф23f - магнитный поток взаимной индукции между L2f и L32f при L1=0. Далее, поскольку при деформации и перемещении магнитного потока в L4 происходит проникновение магнитного поля в материал токопровода, осуществляющего деформацию зоны из L1, L2, L3, то к моменту L1=0 в материале токопровода оказывается связанным магнитный поток, равный ФΔ=BfΔS, где Bf - магнитное поле в материале токопровода, a ΔS - площадь поперечного сечения материала токопровода в конце деформации. Так как время диффузии магнитного потока из материала токопровода много меньше времени диффузии магнитного потока из цепи нагрузки (L4+L32f) и сохраняется индуктивная связь L32f с рабочей зоной, то спустя некоторое время, сравнимое со временем деформации, в L4 (L4>>L32f) окажется магнитный поток, равный Ф2023fΔN3, где N3 - число витков в L32f при L1=0.

Магнитный поток Ф2023f+N3ФΔ больше магнитного потока в L4 до деформации. Поэтому результатом диффузии магнитного потока из материала токопровода и наличия индуктивной связи L32f с зоной деформации является дополнительное увеличение тока во вторичном контуре, что обеспечивает также и увеличение передаваемой во вторичный контур энергии.

Применение изобретения позволит значительно увеличить коэффициент передачи энергии из первичного контура в нагрузку вторичного. Кроме того, использование изобретения позволит уменьшить габариты устройства для реализации взрывного способа трансформации магнитного потока и его экономичность.

Литература

1. А.С.Кравченко, Р.З.Людаев, А.И.Павловский и др. Питание индуктивных и омических нагрузок магнитокумулятивного генератора с помощью трансформатора. // ПМТФ, 1981, №5 с.116-121.

2. В.К.Чернышев, В.А.Давыдов, В.Е.Ванеев Исследование процесса магнитной кумуляции в системе с перехватом магнитного потока. // Сверхсильные магнитные поля: Тр. III Междунар. конф. по генерации мегагаусных магнитных полей и родственным экспериментам. Физика. Техника. Применение. - М.: Наука, 1984. с.278.

3. E.I.Bichenkov, V.S.Prokopiev and A.M.Trubachev. Magnetic flux transformation in inductively coupled systems using magnetic cumulation. // Megagauss fields and pulsed power systems., edited by V.M.Titov and G.A.Shvetsov, Nova Science Publishers, New York. 1990. pp.601-606.

4. С.Випф Обратимая передача энергии между индуктивностями. // Накопление и коммутация энергии больших плотностей. - М.: Мир, 1979.с.421.

5. Е.И.Биченков, B.C.Прокопьев, A.M.Трубачев. Взрывной способ трансформации магнитного потока а.с. СССР №1550594, 1989 г.

Взрывной способ трансформации магнитного потока, содержащий операции введения магнитного потока, захвата магнитного потока в момент времени, соответствующий началу деформации первичного контура, деформации первичного контура токопровода с помощью энергии взрывчатого вещества (ВВ), сжатия и перемещения магнитного потока в первичном контуре из рабочей части в нагрузочную и одновременной трансформации магнитного потока во вторичный контур, при этом во вторичном контуре во время деформации первичного контура дополнительно возбуждают поток взаимоиндукции, направленный встречно первоначально введенному потоку, отличающийся тем, что операцию введения магнитного потока осуществляют во вторичный контур при разомкнутом первичном, а в момент времени, соответствующий началу деформации первичного контура, первичный контур замыкают и захватывают введенный во вторичный контур магнитный поток, при этом предварительно обеспечивают индуктивную связь зоны трансформации и рабочей зоны, в момент времени, соответствующий окончанию деформации рабочей зоны, производят диссипацию магнитного потока в материале токопровода в рабочей зоне, возбуждают ЭДС и ток в цепи нагрузки из-за индуктивной связи рабочей области и зоны трансформации, увеличивая тем самым передачу энергии.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для промышленного получения электроэнергии, а также в технологиях индукционного нагрева вещества.

Изобретение относится к электротехнике, к электромеханическому преобразованию электрической энергии в механическую и может найти широкое применение в промышленности, транспорте, бытовой технике.

Изобретение относится к области использования энергии взрыва для получения мощного импульса тока, сильных магнитных полей, может служить источником плазмы высокой температуры, изобретение можно отнести к магнитокумулятивным генераторам и к взрывным магнитогидродинамическим генераторам.

Изобретение относится к области электротехники и физики магнетизма и предназначено для исследования доменной структуры ферромагнитных материалов. .

Изобретение относится к области электротехники, в частности к устройствам для получения (генерации) мощных электрических импульсов высокого напряжения, и может быть использовано в различных плазменных импульсных установках и устройствах получения сильных магнитных полей.

Изобретение относится к электротехнике, к электромеханическому преобразованию электрической энергии в механическую и может быть использовано в промышленности, транспорте, бытовой технике и других областях человеческой деятельности.

Изобретение относится к высоковольтной импульсной технике, а именно к технике создания и применения сильных импульсных магнитных полей, и может применяться для изоляции электродов при передаче электромагнитной энергии от мощного источника тока к плазменной или динамической нагрузке.

Изобретение относится к области электротехники, а более конкретно - к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с периодическим перепадом температур, например дневных и ночных, либо в полете искусственного спутника Земли на орбите при вхождении в тень планеты и выходе из нее
Данное изобретение представляет собой способ получения и запасения электрической энергии постоянного тока. Технический результат - обеспечение питания технических средств с малым электропотреблением от прикосновения к телу человека. Для этого предлагается способ получения и накопления электрической энергии постоянного тока от тела человека, который представляет собой результат действий, при которых две пластины, одна из которых медная, другая - алюминиевая, электрически соединяют с различными обкладками (выводами) конденсатора и приводят в соприкосновение с телом человека.

Изобретение относится к электротехнике, к преобразователям энергии, работающим на основе применения пьезокерамических материалов. Технический результат состоит в обеспечении непрерывной выработки электрической энергии. В заявленном пьезоэлектрическом генераторе деформация пьезоэлектрических элементов возникает вследствие эффекта Казимира при модуляции расстояния между металлическими пластинами, закрепленными на роторе и пьезоэлементах статора. Генератор является открытой системой, в которой возможно извлечение полезной электроэнергии. Конструкция генератора отличается простотой и может быть выполнена на основе стандартных коммерческих деталей и компонентов. 5 ил.

Изобретение относится к электротехнике и предназначено для преобразования тепловой энергии окружающей среды в механическую энергию вращения кольца. В прозрачную цилиндрическую вакуумную колбу помещено вращающееся кольцо с осью вращения, край которого размещен в зазорах постоянных магнитов подковообразной формы, эквидистантно расположенных вокруг него. На колбе закреплены элементы магнитного подвеса вращающегося кольца, ротор первичного раскручивания оси вращения и съемный узел, создающий вращающееся магнитное поле. Кольцо выполнено из смеси парамагнитного и диамагнитного вещества с такими концентрациями x1 и x2 этих ингредиентов, что выполнены условия x1X1-x2|X2|→0, x1+x2=1, где X1 и Х2 - магнитные восприимчивости соответственно парамагнитного и диамагнитного веществ смеси, в течение времени пребывания любого дифференциального объема смеси dv=Sdx, где S - поперечное сечение кольца, охваченного магнитным зазором, dx - дифференциальный слой кольца вдоль направления движения смеси в магнитном зазоре по оси х, равного Δt=L/ωR, где L - длина магнитного зазора вдоль оси х, ω - угловая скорость вращения кольца (диска), R - радиус кольца (диска), а также условие, что постоянная магнитной вязкости парамагнитного вещества т1 в пять и более раз меньше постоянной магнитной вязкости диамагнитного вещества т2. 3 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике и может найти применение в изделиях различных отраслей техники. Технический результат состоит в исключении подвижных частей. Электрический генератор содержит П-образный магнитопровод, включающий в себя два сердечника и связывающее их ярмо, обмотки на сердечниках, источник н.с. в виде постоянного магнита или электромагнита, установленный одним полюсом на ярмо между сердечниками, и переключатель магнитного потока, развиваемого источником н.с., на один или другой сердечник с обмотками. Генератор снабжен дополнительным ярмом, установленным на второй полюс источника н.с. и замыкающим полюса сердечников магнитопровода, и выполненным, как и первый, цельным или составным. Переключатель магнитного потока, развиваемого источником н.с., выполнен в виде двух разомкнутых магнитопроводов, например С-образной формы, с обмоткой на каждом из них, размещенных по разные стороны от источника н.с и охватывающих одно или оба упомянутых ярма с двух противоположных сторон, или в виде двух замкнутых магнитопроводов с обмоткой на каждом из них, размещенных по разные стороны от источника н.с. в зазорах между дополнительным ярмом и полюсами сердечников П-образного магнитопровода или в зазорах между составными частями одного или обоих ярм. 10 ил.

Изобретение относится к электротехнике, к производству электрической энергии. Технический результат заключается в повышении кпд путем использования энергии электромагнитов постоянного тока. Магнитный генератор содержит немагнитный корпус, в котором неподвижно установлены и равномерно распределены по окружности сердечники рабочих обмоток статора и ротор из немагнитного материала. Сердечники рабочей обмотки статора состоят из Н-образного магнитопровода и установленых на его торцах двух неподвижных электромагнитов постоянного тока, а подвижные электромагниты постоянного тока закреплены на роторе. Полюса электромагнитов постоянного тока ротора ориентированы поочередно одноименно и разноименно к указанным полюсам электромагнитов постоянного тока Н-образного магнитопровода. При сближении при вращении ротора, по меньшей мере одного электромагнита постоянного тока ротора, ориентированного разнополярно, с одним электромагнитом постоянного тока Н-образного магнитопровода рабочей обмотки статора, магнитный поток между их полюсами замыкается, а индуктирование эдс на рабочей обмотке статора обеспечивается двумя другими электромагнитами постоянного тока ротора и статора, ориентированных однополярно. Одновременное взаимодействие электромагнитов постоянного тока ротора и статора, сориентированных однополярно и разнополярно, создает эффект магнитной балансировки. 5 ил.

Взрывомагнитный генератор содержит деформируемую спираль, состоящую из двух соосных, расположенных друг над другом и индуктивно связанных частей. Нижняя спираль является полностью деформируемой и образует рабочую полость генератора, а верхняя спираль образует частично деформируемую зону трансформации магнитного потока из рабочей полости генератора в индуктивную нагрузку. Все заходы нижней спирали включены согласно относительно друг друга. Заходы с четными и нечетными номерами верхней спирали включены встречно друг с другом. При этом верхняя спираль образует двухслойную структуру из четного числа элементов со встречными магнитными потоками по всем направлениям. Нечетные заходы нижней спирали и нечетные заходы верхней спирали соединены последовательно и согласно друг с другом. Четные же заходы нижней спирали и четные заходы верхней спирали соединены между собой и индуктивной нагрузкой последовательно. При этом нижняя спираль с четными заходами и верхняя спираль с четными заходами включены встречно друг с другом. Технический результат - повышение коэффициента преобразования энергии взрывчатого вещества в электромагнитную энергию, а также уменьшение габаритов устройства. 3 ил.

Изобретение относится к физике, к прямому преобразованию энергии излучения радиоактивных изотопов и отходов ядерных реакторов в механическую энергию вращения и может быть использовано в качестве силового привода различных механизмов. Технический результат состоит в повышении эффективности охлаждения и упрощении эксплуатации путем и исключения необходимости в динамической балансировке и осуществления теплопередачи и нагрузки за пределами действия радиации. Радиационно-магнитный двигатель содержит радиационно-защитный статор с постоянным магнитом, средства отвода тепла охлаждающей жидкостью. Система изменения магнитных свойств ротора выполнена в виде двух полуцилиндров на общей оси, один из которых прозрачен для радиоактивного излучения от источника, расположенного в центре полуцилиндров, а другой является его экраном. Ферромагнитный ротор из радиационно-чувствительного материала выполнен в виде неподвижного трубчатого змеевика, плотно сопряженного с внутренней поверхностью статора и заполненного охлаждающей магнитной жидкостью в виде суспензии радиационно-чувствительных частиц редкоземельных ферромагнетиков и радиационно-стойкого жидкого теплоносителя, который непосредственно сообщается с закрытым гидроприводом, включающим гидроаккумулятор, радиатор охлаждения и лопастную турбину либо объемный гидродвигатель, кинематически связанные с полезной механической нагрузкой. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, к системам генерации энергии. Технический результат состоит в повышении эффективности и экологической безопасности. Система содержит пусковую трубу и генератор, соединенный с пусковой трубой. Генератор использует многофазные материалы (МРМ) и сжатый воздух для преобразования кинетической энергии многофазного материала в электрическую энергию. 4 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике и может быть использовано для генерирования электроэнергии. Технический результат состоит в повышении выходной электроэнергии. Дисперсные структуры, использующие передачу заряда посредством газа и предназначенные для использования в электрических генераторах, содержат множество частиц, содержащих пустоты между первой и второй противоположными поверхностями упомянутых частиц. По меньшей мере, часть упомянутых противоположных поверхностей модифицируют таким образом, что способность передавать заряд упомянутых первых противоположных поверхностей отличается от способности передавать заряд упомянутых вторых противоположных поверхностей. 5 н. и 18 з.п. ф-лы, 12 ил., 11 табл.
Наверх