Устройство для люминесцентной диагностики новообразований

Изобретение относится к медицинской технике, а именно к аппаратуре медицинского и фотобиологического назначения, предназначено для осуществления процесса люминесцентной диагностики рака на основе использования ряда редкоземельных металлокомплексов порфиринов и направлено на повышение чувствительности измерений интенсивности люминесценции в диапазоне спектра 900-1100 нм, что приводит к резкому снижению дозы вводимого в организм пациента препарата и исключает наличие какой-либо токсичности при проведении процедуры. Устройство содержит источник лазерного излучения, волоконно-оптический зонд, включающий световод доставки лазерного излучения к биоткани, входной конец которого через устройство ввода соединен с источником лазерного излучения, и приемную волоконно-оптическую систему для детектирования люминесценции, блок регистрации и обработки люминесцентного сигнала, первую систему линз, расположенную на входе этого блока, генератор импульсов, вторую система линз, расположенную на выходе приемной волоконно-оптической системы зонда, и интерференционные отражательные фильтры, расположенные между указанными системами линз. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к медицинской технике, а именно к аппаратуре медицинского и фотобиологического назначения, предназначенного для осуществления процесса люминесцентной диагностики (ЛД) рака на основе использования ряда редкоземельных металлокомплексов порфиринов (РЗМКП).

При люминесцентной диагностике в организм пациента вводят фотосенсибилизатор, который накапливается преимущественно в новообразованиях. При последующем облучении биотканей оптическим излучением, длина волны которого находится в максимуме полосы поглощения фотосенсибилизатора, происходит возбуждение его молекул. При этом часть энергии возбужденных молекул расходуется на флуоресценцию порфиринового лиганда, а другая часть идет на образование цитотоксичных агентов (синглетный кислород, свободные радикалы и т.д.) и на люминесценцию ионов металлов, введенных в порфириновую матрицу. Следует отметить, что цитотоксичные агенты крайне вредны при проведении процедуры люминесцентной диагностики рака. Их генерация ведет к повреждению как в злокачественных, так и здоровых тканях организма (прежде всего глаз и кожи) под действием даже обычного дневного света и вызывает ряд побочных нежелательных реакций.

Ионы редкоземельных металлов, введенные в матрицу порфиринов, резко снижают квантовый выход генерации синглетного кислорода. Это связано с тем, что люминесцентный уровень ряда ионов (иттербий, неодим) лежит ниже триплетного уровня органической части молекулы, но выше, чем у синглетного кислорода, поэтому энергия возбуждения порфириновой матрицы под влиянием внешнего светового излучения перехватывается ионом редкоземельного металла, тем самым существенно снижая сенсибилизированную порфирином генерацию синглетного кислорода, а следовательно, и фототоксичность всего комплекса [1]. Можно детерминировать, таким образом, препараты на основе РЗМКП (иттербиевые и неодимовые металлокомплексы порфиринов) как чисто диагностические нефототоксичные фотосенсибилизаторы, которые в диагностических концентрациях не создают токсичных концентраций синглетного кислорода и имеют при этом не менее высокие люминесцентные характеристики используемых в настоящее время «терапевтических» фотосенсибилизаторов при том же уровне туморотропности. Следует также отметить, что ионы иттербия и неодима люминесцируют в ближней ИК-области спектра (900-1100 нм), где очень низка фоновая люминесценция биотканей, вызванная наличием в ней эндогенных порфиринов. В результате существенно увеличивается соотношение сигнал/шум. На фиг.1 представлен спектр люминесценции образцов:

1. Yb - комплекс 5,10,15,20-тетра(1-N-(п-фторфенил)-3(о-хлорфенил)пиразол-4-ил)порфирина.

2. Уb-2,4-диметоксигематопорфирин IX.

Интенсивная и достаточно узкая полоса люминесценции на 980 нм сохраняется независимо от природы растворителя. Наблюдается также и целый ряд других, более слабых по интенсивности люминесцентных полос в спектральном диапазоне 900-1100 нм, которые также присущи иону иттербия.

В связи с тем что в настоящее время смертность от злокачественных новообразований стоит на втором месте после сердечно-сосудистых заболеваний, остро стоит вопрос о ранней люминесцентной диагностике рака. Предлагаемое изобретение направлено на выявление наиболее распространенных визуально и эндоскопически доступных нозологических форм злокачественных новообразований.

Известно спектральное устройство для контроля и мониторинга процесса фотодинамической терапии и сопровождающей диагностики [2].

Данное устройство рассчитано на работу с терапевтическими фотосенсибилизаторами типа Фотосенс, Фотодитазин, Фотогем, Аласенс и т.д., которые флуоресцируют в основном в видимом диапазоне спектра (600-700 нм). Получаемый с их помощью диагностический контрастный индекс, который определяется отношением интенсивности флуоресценции (ИФ) в опухоли к ИФ в других органах и тканях биообъекта (мышцы, печень, кожа, почки и т.д.), существенно снижен из-за маскирующего эффекта фоновой аутолюминесценции (500-700 нм). Другим недостатком данного устройства является низкая чувствительность в диапазоне 900-1100 нм. Устройство в принципе не позволяет детектировать интегральную интенсивность люминесценции во всем спектральном диапазоне 900-1100 нм от биообъектов с введенной дозой препарата на уровне 10-100 мкг/кг веса биообъекта. К тому же имеют место и потери полезного сигнала на многочисленных оптических узлах и элементах устройства. Отметим также относительно низкую чувствительность приемного устройства в виде фотодиодной линейки по сравнению с существенно более чувствительным прибором, каким является фотоэлектронный умножитель (ФЭУ).

Наиболее близким к предлагаемому изобретению по технической сущности является устройство [3], где в качестве блока регистрации и обработки люминесцентного сигнала использован монохроматор, который выделяет интенсивные и характерные для ионов иттербия узкие линии люминесценции в ближней ИК-области спектра (900-1110 нм). Передачу возбуждающего излучения от источника лазерного излучения, модулированного генератором импульсов, и сбор полезного люминесцентного сигнала от биоткани обеспечивает волоконно-оптический зонд, включающий световод доставки лазерного излучения к биоткани и приемную волоконно-оптическую систему для детектирования люминесценции, выполненную в виде одного световода. Входной конец световода доставки лазерного излучения соединен через устройство ввода с источником лазерного излучения, а выходной конец приемной волоконно-оптической системы для детектирования люминесценции подведен к системе линз, расположенной на входе блока регистрации и обработки люминесцентного сигнала. Указанный блок состоит из ФЭУ с высоковольтным блоком питания, синхронного детектора-усилителя для усиления сигнала и уменьшения шумовых потерь, а также аналого-цифрового преобразователя (АЦП) и компьютера.

К недостаткам устройства, изложенного в [3], следует отнести невозможность детектирования интегральной интенсивности люминесценции (ИЛ) в диапазоне 900-1100 нм. Измерялись лишь интегральная интенсивность в области самой яркой, но одной линии спектра (980 нм), и люминесцентный диагностический контрастный индекс соответствующих органов и биотканей оценивался по площадям под кривыми люминесценции в окрестности этой длины волны. Наблюдались и потери полезного сигнала на оптических узлах монохроматора. Конструкция же двухволоконного зонда не обеспечивает эффективный сбор полезного сигнала со всей облученной площади биоткани. Все эти негативные факторы приводят к резкому снижению чувствительности измерений в диапазоне 900-1100 нм, в связи с чем приходится увеличивать дозу вводимого в организм препарата до 50 мг/кг веса биообъекта, что обуславливает возникновение вредных для здоровья побочных эффектов, а также повышает стоимость диагностических процедур. Отметим также громоздкость устройства из-за наличия в нем монохроматора, невозможность работы его в передвижных медицинских лабораториях, а также низкую производительность при проведении процедур люминесцентной диагностики рака.

Технической задачей изобретения является создание спектрального устройства для ранней люминесцентной диагностики новообразований на основе использования РЗМКП, включая иттербиевые металлокомплексы порфиринов, являющихся чисто диагностическими нефототоксичными фотосенсибилизаторами.

Техническим результатом изобретения является повышение чувствительности измерений интенсивности люминесценции в диапазоне спектра 900-1100 нм, что приводит к резкому снижению дозы вводимого в организм пациента препарата вплоть до 0,01 мг/кг веса, что исключает наличие какой-либо токсичности при проведении процедуры ЛД рака, уменьшение габаритов и веса устройства, использование его в передвижных медицинских лабораториях при диспансеризации населения в удаленных объектах, повышение производительности процедуры ЛД, снижение стоимости диагностических процедур.

Технический результат достигается тем, что в устройство для люминесцентной диагностики новообразований на основе редкоземельных металлокомплексов порфиринов, содержащее источник лазерного излучения, волоконно-оптический зонд, включающий световод доставки лазерного излучения к биоткани, входной конец которого через устройство ввода соединен с источником лазерного излучения, и приемную волоконно-оптическую систему для детектирования люминесценции, блок регистрации и обработки люминесцентного сигнала, первую систему линз, расположенную на входе этого блока, и генератор импульсов, один выход которого подключен к управляющему входу источника лазерного излучения, а второй - к управляющему входу блока регистрации и обработки сигнала, дополнительно введены вторая система линз, расположенная на выходе приемной волоконно-оптической системы зонда, и интерференционные отражательные фильтры, расположенные между указанными системами линз таким образом, что каждый последующий фильтр размещен на пути оптического излучения, отраженного от предыдущего фильтра, при этом с обратной стороны каждого фильтра расположен светопоглощающий экран, обеспечивающий работу фильтра только на отражение. Устройство содержит по меньшей мере 4 интерференционных отражательных фильтра и каждый интерференционный отражательный фильтр имеет коэффициент отражения менее 10% в спектральном диапазоне 350-900 нм и более 90% в диапазоне 900-1100 нм. Интерференционные отражательные фильтры расположенны под углом 45 градусов к падающему на них оптическому излучению люминесценции. Перед волоконно-оптическим зондом дополнительно введен пропускающий фильтр, у которого соотношение между значением коэффициента пропускания на длине волны излучения лазера и значениями коэффициентов пропускания на длинах волн, превышающих длину волны излучения лазера на 20 нм и более, составляет не менее 30. Таким образом, общий коэффициент пропускания фонового излучения через интерференционные отражательные фильтры на длинах волн, меньших, чем 900 нм, составляет менее 10-4%.

С целью повышения чувствительности волоконно-оптического зонда его конструкция включает световод доставки лазерного излучения состава SiO2+F/ SiO2 со стандартной числовой апертурой 0,20-0,22 и приемную волоконно-оптическую систему для детектирования люминесценции, состоящую из не менее чем 12 штук световодов того же состава в тонком металлическом покрытии, но с повышенной числовой апертурой 0,33 и выше.

Данный тип световодов производится методом СВЧ-плазмохимического осаждения тонких слоев кварцевого стекла при пониженном давлении (PCVD-метод) [4]. Чисто кварцевая сердцевина световодов исключает появление нежелательных центров окраски при прохождении по световодам различного излучения, как это происходит, например, с допированной германием сердцевиной световода. В качестве блока регистрации и обработки люминесцентного сигнала, помимо ФЭУ и синхронного детектора-усилителя, использован аналого-цифровой преобразователь и компьютер с соответствующим программным обеспечением. Источник лазерного излучения работает на длинах волн 405 или 530 нм, что соответствует максимумам основных полос поглощения иттербиевых металлокомплексов порфиринов. Перед волоконно-оптическим зондом дополнительно вводится пропускающий фильтр, у которого соотношение между значением коэффициента пропускания на длине волны излучения лазера и значениями коэффициентов пропускания на длинах волн, превышающих длину волны излучения лазера на 20 нм и более, составляет не менее 30.

На фиг.2 представлено предлагаемое устройство. Устройство содержит источник лазерного излучения 1, пропускающий фильтр 2, устройство 3 ввода лазерного излучения в световод доставки лазерного излучения 5 к биоткани 8, приемную волоконно-оптическую систему 6 волоконно-оптического зонда 7 для детектирования люминесценции, первую 13 и вторую 4 систему линз, генератор импульсов 9, блок интерференционных отражательных фильтров 11, включающий фильтры 10 и светопоглощающие экраны 12, блок регистрации и обработки люминесцентного сигнала 14, в котором помимо ФЭУ и синхронного детектора-усилителя использован АЦП и компьютер с соответствующим программным обеспечением.

Предлагаемое устройство работает следующим образом. Выходящее из источника лазерного излучения 1 излучение, модулированное генератором импульсов 9 с частотой 1 кГц (для оптимизации соотношения сигнал/шум), проходит через пропускающий фильтр 2 и вводится посредством устройства 3 ввода лазерного излучения в световод доставки лазерного излучения 5 к биоткани 8 волоконно-оптического зонда 7. Благодаря фильтру 2 из него выходит и вводится в световод 5 волоконно-оптического зонда 7 излучение только основной лазерной линии. Другие составляющие излучения лазера, таким образом, не попадают на исследуемую биоткань 8, вследствие чего не искажаются форма спектра и его количественные характеристики. При облучении биоткани 8 с введенным в нее ранее препаратом на основе иттербиевого металлокомплекса порфирина посредством волоконно-оптического зонда 7 полезный сигнал люминесценции собирается со слизистой поверхности биоткани 8 приемной волоконно-оптической системой 6 для детектирования люминесценции и далее фокусируется второй системой линз 4 на первом интерференционном отражательном фильтре 10 блока диэлектрических интерференционных отражательных фильтров 11. Первый фильтр 10 расположен под углом 45 градусов к люминесцентному излучению, а сразу за фильтром 10 на его обратной стороне располагается светопоглощающий экран 12, обеспечивающий работу фильтров 10 только на отражение. За счет нанесенного специального тонкопленочного покрытия со слоями на основе системы HfO2-SiO2 обеспечивается коэффициент отражения сигнала от фильтров 10 в спектральном диапазоне 350-900 нм менее 10%. Полезный же сигнал люминесценции от иона иттербия в диапазоне 900-1100 нм отражается практически целиком и попадает вместе с сильно уменьшенным фоновым сигналом 350-900 нм на следующий интерференционный отражательный фильтр, где происходит аналогичный процесс. В результате после отражения от второго фильтра фоновый сигнал уменьшится еще более чем в 10 раз и т.д. После последнего четвертого фильтра 10 фоновый сигнал будет иметь интенсивность примерно на 4 порядка меньше, чем на входе у первого фильтра. Полезный же сигнал люминесценции после всех отражений уменьшается незначительно. Далее сигнал фокусируется первой системой линз 13 на вход блока регистрации и обработки люминесцентного сигнала 14, где полезный сигнал люминесценции регистрируется, усиливается, преобразуется в электрический аналоговый и далее в цифровой.

В заявке описывается спектральное устройство для ранней люминесцентной диагностики рака на основе использования иттербиевых металлокомплексов порфиринов, включающее источник лазерного излучения с регулируемой оптической мощностью на дистальном конце волоконно-оптического зонда до 20 мВт; генератор импульсов, обеспечивающий лазеру импульсный режим работы с частотой 1 кГц; волоконно-оптический зонд, у которого световод доставки лазерного излучения к биоткани состава SiO2+F/SiO2 со стандартной числовой апертурой 0,20-0,22 связан через стандартный коннектор с источником лазерного излучения, а приемная волоконно-оптическая система общим числом световодов не менее 12 штук (того же состава, но с повышенной числовой апертурой вплоть до 0,30 и выше) служит для детектирования люминесценции; система линз, собирающая люминесценцию от биообъекта и передающая ее на блок интерференционных отражательных фильтров, выполненных на основе тонкопленочных слоев системы HfO2-SiO2. Данный блок пропускает полезный сигнал в диапазоне 900-1100 нм и практически устраняет попадание на ФЭУ возбуждающего излучения, а также фоновой аутолюминесценции от различных биотканей, образующейся в основном в зеленом и красном диапазоне спектра. Регистрируемая блоком регистрации и обработки люминесцентного сигнала интегральная световая интенсивность люминесценции соответствует числу квантов излучения в диапазоне спектра 900-1100 нм.

Заявляемое устройство в связи с отсутствием в его структурной схеме стационарно устанавливаемого монохроматора обеспечивает повышение сбора полезного сигнала, что ведет к существенному увеличению чувствительности. При этом достигается еще одна цель изобретения: резкое снижение дозы вводимого в организм препарата с 10-50 мг/кг веса до 0,01 мг/кг. Уменьшаются также габариты и вес устройства, которое может быть использовано в передвижных медицинских лабораториях для диагностики различных групп населения, включая удаленные объекты. К тому же заявляемое устройство позволяет достаточно быстро проводить люминесцентную диагностику рака и снижает стоимость диагностических процедур.

ЛИТЕРАТУРА

1. Румянцева В.Д., Миронов А.Ф., Щамхалов К.С., Сухин Г.М., Шилов И.П., Маркушев В.М., Кузьмина З.В., Полянская Н.И., Иванов А.В. Иттербиевые комплексы порфиринов - перспективные маркеры для люминесцентной диагностики опухолей в ИК-диапазоне. - Лазерная медицина. - 2010. - Т.14. - Вып.1. - С.20-25.

2. Лощенов В.Б., Меерович Г.А., Стратонников А.А. Спектральное устройство для контроля и мониторинга процесса фотодинамической терапии. - Патент РФ №2169590, МПК A61N 5/06.

3. Миронов А.Ф., Румянцева В.Д., Сапронова Е.В., Чиссов В.И., Сухин Г.М., Пономарев Г.М., Гайдук М.И., Мененков В.Д., Григорьянц В.В. Способ исследования малигнизации тканей у экспериментальных животных. - Авт.свид. №1621720, МПК G01N 33/52.

4. Блинов Л.М., Герасименко А.П., Гуляев Ю.В. Способ изготовления заготовок волоконных световодов, устройство для его осуществления и заготовка, изготовленная этим способом. - Патент РФ №2363668, МПК С03В 37/018.

1. Устройство для люминесцентной диагностики новообразований, содержащее источник лазерного излучения, волоконно-оптический зонд, включающий световод доставки лазерного излучения к биоткани, входной конец которого через устройство ввода соединен с источником лазерного излучения, и приемную волоконно-оптическую систему для детектирования люминесценции, блок регистрации и обработки люминесцентного сигнала, первую систему линз, расположенную на входе этого блока, и генератор импульсов, один выход которого подключен к управляющему входу источника лазерного излучения, а второй - к управляющему входу блока регистрации и обработки сигнала, отличающееся тем, что в него дополнительно введены вторая система линз, расположенная на выходе приемной волоконно-оптической системы зонда, и интерференционные отражательные фильтры, расположенные между указанными системами линз таким образом, что каждый последующий фильтр размещен на пути оптического излучения, отраженного от предыдущего фильтра, при этом с обратной стороны каждого фильтра расположен светопоглощающий экран.

2. Устройство по п.1, отличающееся тем, что оно содержит, по меньшей мере, 4 интерференционных отражательных фильтра.

3. Устройство по п.1, отличающееся тем, что каждый интерференционный отражательный фильтр имеет коэффициент отражения менее 10% в спектральном диапазоне 350-900 нм и более 90% в диапазоне 900-1100 нм.

4. Устройство по п.1, отличающееся тем, что интерференционные отражательные фильтры расположены под углом 45° к падающему на них оптическому излучению.

5. Устройство по п.1, отличающееся тем, что перед волоконно-оптическим зондом дополнительно введен пропускающий фильтр, у которого соотношение между значением коэффициента пропускания на длине волны излучения лазера и значениями коэффициентов пропускания на длинах волн, превышающих длину волны излучения лазера на 20 нм и более, составляет не менее 30.

6. Устройство по п.1, отличающееся тем, что световод доставки лазерного излучения имеет состав SiO2+F/SiO2 и числовую апертуру 0,20-0,22.

7. Устройство по п.1, отличающееся тем, что приемная волоконно-оптическая система для детектирования люминесценции содержит не менее 12 световодов состава SiO2+F/SiO2 с металлическим покрытием и числовой апертурой 0,33 и выше.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к рентгеновским аппаратам, и может быть использовано для визуального контроля облучаемой рентгеновским аппаратом зоны на теле пациента.
Изобретение относится к медицине, радиобиологии и может найти применение при лечении злокачественных опухолей. .

Изобретение относится к области неразрушающего контроля объектов с помощью рентгеновского излучения. .

Изобретение относится к медицине, в частности к медицинской диагностике, и может быть использовано для получения контрастных изображений тканей в оптической когерентной томографии.

Изобретение относится к области медицины, а именно к области систем и способов управления положением медицинских систем лучевой терапии относительно аппликатора. .

Изобретение относится к медицинской технике, а именно к травматолого-ортопедическим устройствам, и предназначено для рентгенодиагностики разрыва боковых связок коленного сустава.

Изобретение относится к медицинской технике, а именно к устройствам для лучевой диагностики, и может быть использовано для томографических исследований головы. .

Изобретение относится к медицинской технике, а именно к оптической аппаратуре для проведения флуоресцентной диагностики и фототерапии патологических новообразований.

Изобретение относится к технической физике, в частности к исследованиям внутренней структуры объектов оптическими средствами, и может быть использовано в медицинской диагностике состояния отдельных органов и систем человека in vivo, а также в технической диагностике, например, для контроля технологических процессов.

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных источников излучения, другие предназначены для передачи излучения флуоресценции на средство, регистрирующее это излучение. Сапфировый зонд также имеет открытый канал для аспирации, соединенный с аспиратором посредством шланга. При этом взаимное расположение каналов обеспечивает возможность регистрации флуоресцентного излучения из зоны, совпадающей с зоной коагуляции и аспирации тканей. Торец рабочего конца может быть выполнен под прямым углом к оси зонда и/или иметь наклонные преломляющие грани. В другом открытом канале расположены металлические контакты, присоединенные к электрокоагулятору. При осуществлении способа измеряют флуоресценцию в малой окрестности сапфирового зонда. При превышении некоторого порогового значения флуоресценции проводят лазерную коагуляцию и/или электрокоагуляцию и аспирацию коагулированной и опухолевой ткани через тот же сапфировый зонд. Группа изобретений позволяет повысить точность определения границ опухоли при использовании флуоресцентной диагностики, сократить время, требуемое для полного удаления опухоли, и дает возможность удалить труднодоступные опухоли. 2 н. и 6 з.п. ф-лы, 8 ил., 1 пр.

Изобретение относится к области медицины и касается устройства для воздействия инфракрасным излучением на кожу человека. Устройство выполнено в виде магнитно-резонансного томографа, и содержит приемо-передающий канал, блок пространственной локализации, микропроцессорный контроллер и дисплей. Устройство также оснащено блоком локального воздействия, выполненным в виде манипулятора с ИК лазером, линзой и маркером для привязки луча лазера к системе координат исследуемой области. Технический результат заключается в повышении точности и мощности локального воздействия, а также в обеспечении возможности отслеживания происходящих изменений в ткани объекта. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области медицинской техники и касается устройства для флуоресцентной спектроскопии биологической ткани. Устройство содержит флуоресцентно-отражательный спектрометр, включающий осветительную и спектрометрическую системы, подключенные к Y-образному волоконно-оптическому щупу. Кроме того, устройство снабжено двумя каналами, один из которых предназначен для подачи жидкости на исследуемый орган для смыва крови и подключен к насосу, а другой канал, предназначенный для аспирации жидкости и крови с исследуемого органа, соединен с помпой. Оба канала и дистальный конец волоконно-оптического щупа помещены в наконечник, образуя волоконно-оптический зонд. Наконечник выполнен в виде металлического цилиндра с раструбом на конце, прилегающим к исследуемому органу. Технический результат заключается в повышении точности и стабильности результатов измерений, а также в обеспечении возможности проведения исследований сердца, находящегося в организме. 6 з.п. ф-лы, 5 ил.
Изобретение относится к медицине, а именно к инфракрасной диагностике, и может быть использовано для инфракрасной диагностики структуры щеки. Для этого методом инфракрасной термографии посредством тепловизора осуществляют регистрацию температуры щеки. В качестве тепловизора используют аппарат с функцией цветного инфракрасного изображения щеки на экране в зависимости от ее локальной температуры в диапазоне +26-+37°C. После этого в полость рта вводят питьевую воду при температуре +42°C на срок до 3-х минут. Объём вводимой питьевой воды определяют путем полного заполнения полости рта. После развития гипертермии щеки и при достижении максимальной разницы температуры в выбранной ее части сравнивают термограммы. При равномерной температуре щеки выдают заключение об однородности структуры щеки. В случае наличия участка с локальной гипо- или гипертермией конкретизируют его форму, размер и локализацию, анализируют данные и выдают заключение о форме, размере и месте локализации в щеке участка соответственно с низкой или высокой теплопроводностью. Способ обеспечивает диагностику структуры щеки при упрощении и повышении её безопасности и может быть использован в том числе у беременных женщин и у детей раннего возраста. 1 пр.
Изобретение относится к медицине, а именно к стоматологии и лучевой диагностике, и может быть использовано для диагностики дисфункции височно-нижнечелюстного мышечного и суставного комплекса. Для этого с помощью тепловизора с функцией цветного инфракрасного изображения объекта на экране в зависимости от его локальной температуры в диапазоне +26-+37°C осуществляют регистрацию инфракрасного излучения со всей площади челюстно-лицевой области лица поочередно с обеих его сторон. Исследование проводят в условиях помещения с температурой воздуха +25-+26°C. При этом регистрируют локальную температуру кожи методом инфракрасной термографии, осуществляемой до и после введения в полость рта очищенных от скорлупы орехов миндаля при комнатной температуре и непрерывного их жевания на протяжении 2-х минут. Орехи вводят последовательно в количестве и с интервалом, обеспечивающим их умеренно интенсивное жевание полным ртом. После жевания термографию производят повторно через каждые 1-2 минуты на протяжении 10 минут. В случае выявления локальной гипертермии термографию продолжают производить через каждые 3-4 минуты вплоть до восстановления температуры лица. Сравнивают термограммы друг с другом и при отсутствии изменений выдают заключение о высокой устойчивости височно-нижнечелюстного мышечного и суставного комплекса к жевательной нагрузке. При односторонней или двухсторонней симметричной локальной гипертермии продолжительностью до 15 минут выдают заключение об удовлетворительной устойчивости височно-нижнечелюстного мышечного и суставного комплекса к жевательной нагрузке. При их большей продолжительности либо при их асимметрии судят соответственно о двухсторонней либо об односторонней низкой устойчивости височно-нижнечелюстного мышечного и суставного комплекса к жевательной нагрузке и о наличии стоматологического заболевания. Способ обеспечивает безопасное, точное и бесконтактное локальное диагностическое лучевое исследование на фоне дозирования жевательной физической нагрузки и определения динамики локальной температуры исследуемой области кожи лица в зоне проекции больного участка после нее, позволяющее оценить его устойчивость к жевательной нагрузке в условиях, исключающих его необратимое повреждение и обеспечивающих верификацию наличия стоматологического заболевания, в том числе у беременных женщин с установленными стоматологическими конструкциями при неправильном прикусе. 1 пр.

Группа изобретений относится к медицинской технике, а именно к средствам электромагнитной томографии. Способ электромагнитной томографии частей тела живого человека с использованием носимого сканера в корпусе содержит установку носимого и переносного сканера таким образом, чтобы сканер облегал часть тела живого человека во время перемещения человека из одного места в другое, причем носимый и переносной сканер имеет полую конструкцию, стенки которой содержат множество «окошек» для электромагнитного излучения, определение информации о положении носимого корпуса сканера по отношению к внешней системе координат, создание электромагнитного поля, внешнего по отношению к носимому сканеру, которое проходит в носимый корпус сканера и выходит из него через окошки для электромагнитного излучения, независимо открывание или закрывание окошек для электромагнитного излучения для контроля, проходит ли через них электромагнитное излучение, при этом этап независимого открытия или закрытия «окошек» для электромагнитного излучения осуществляется с помощью соответствующего микрошлюза, которым оборудовано каждое «окошко», измерение электромагнитного поля после того, как оно было рассеяно/изменилось в результате влияния части тела живого человека, и создание электромагнитного томографического изображения на основании созданного и измеренного электромагнитного поля с использованием информации об установленном положении и включении информации о положении каждого из множества окошек для электромагнитного излучения. Второй вариант способа электромагнитной томографии содержит установку на живом челевеке носимого сканера, стенки которого содержат множество «окошек» для электромагнитного излучения, определение информации о положении носимого корпуса сканера по отношению к внешней раме, независимо открывание или закрывание окошек для электромагнитного излучения с помощью соответствующего микрошлюза, которым оборудовано каждое «окошко», для контроля, проходит ли через них электромагнитное излучение, создание электромагнитного поля, внешнего по отношению к носимому сканеру, которое проходит в носимый корпус сканера и выходит из него через одно или более окошек для электромагнитного излучения, измерение электромагнитного поля после того, как оно было рассеяно/изменилось в результате влияния части тела живого человека, и создание электромагнитного томографического изображения на основании созданного и измеренного электромагнитного поля с использованием информации об установленном положении и включении информации о положении каждого из множества окошек для электромагнитного излучения. Использование изобретений позволяет расширить ассортимент средств для электромагнитной томографии. 2 н. и 28 з.п. ф-лы, 14 ил.

Изобретение относится к ветеринарии, в частности к ветеринарной онкологии, и может быть использовано для флуоресцентной диагностики злокачественного новообразования. Для этого осуществляют комбинированное введение фотосенсибилизаторов. При накоплении их в злокачественном новообразовании проводят облучение излучением длиной волны, соответствующей длине волны поглощения фотосенсибилизаторов. Регистрируют и сравнивают интенсивность флуоресцентного излучения, получаемого от областей злокачественного новообразования и от здоровой ткани. При этом в качестве фотосенсибилизаторов в произвольной последовательности вводят внутривенно препараты Фотодитазин и Димегин. Дозу введения для Фотодитазина используют в диапазоне более 1,5 мг/кг и не более 2,5 мг/кг массы тела. Доза введения Димегина - в диапазоне 0,5-2,0 мг/кг массы тела. Время накопления выбирают более 90 минут. Доза излучения составляет 0,01-3 Дж при мощности излучения 50-100 мВт. Способ обеспечивает повышение точности, достоверности и оперативности диагностики новообразований, плохо накапливающих фотосенсибилизаторы, а также снижение энергозатрат при практическом отсутствии побочных эффектов. 8 з.п. ф-лы, 10 ил., 10 пр., 1 табл.

Группа изобретений относится к медицинской технике, а именно к средствам позиционирования источника рентгеновского излучения. Переносное ручное устройство планирования содержит первую конструкцию для представления центральной оси проецируемого рентгеновского излучения и вторую конструкцию для представления области поперечного сечения проецируемого рентгеновского излучения, причем первая конструкция выполнена с возможностью ручного позиционирования пользователем по отношению к исследуемому объекту, а вторая конструкция - с возможностью регулирования пользователем таким образом, что размер и пропорции области поперечного сечения являются регулируемыми по отношению к исследуемому объекту. Текущее пространственное положение первой конструкции и текущие размер и пропорции области поперечного сечения являются детектируемыми измерительным устройством, при этом вторая конструкция предоставлена в качестве проекционного блока, проецирующего элементы рамки, указывающие размер и пропорции области поперечного сечения, причем проекционный блок предоставлен на устройстве планирования. Рентгенографическая система, содержит источник рентгеновского излучения, детектор рентгеновского излучения, механизированную опору для перемещения источника рентгеновского излучения и/или детектора рентгеновского излучения, измерительное устройство и блок управления. Способ позиционирования источника рентгеновского излучения и/или детектора рентгеновского излучения осуществляется посредством системы. Использование изобретений позволяет усовершенствовать пользовательский интерфейс для облегчения рентгенографического позиционирования. 3 н. и 10 з.п. ф-лы, 8 ил.

Группа изобретений относится к медицинской технике, а именно к диагностическим магнитно-резонансным системам. Система для регулирования содержит устройство регулирования рентгеновской визуализации, которая содержит порт ввода для приема данных трехмерного изображения, полученных с помощью датчика при трехмерном наблюдении объекта, причем принятые таким образом данные трехмерного изображения содержат информацию о пространственной глубине, при этом данные трехмерного изображения описывают геометрическую форму объекта в трех измерениях, анализатор данных трехмерного изображения, выполненный с возможностью вычислять по принятым данным трехмерного изображения данные анатомических ориентиров объекта, причем вычисленные данные управления устройством визуализации включают в себя демаркационные данные, определяющие границу окна коллимирования устройства визуализации для области объекта, представляющей интерес, устанавливать из принятых данных трехмерного изображения данные положения анатомических ориентиров объекта, блок управления, причем функционирование устройства рентгеновской визуализации включает в себя операцию коллимирования для рентгеновского пучка, исходящего из рентгеновского источника. Система регулирования выполняется посредством работы устройства регулирования с использованием машиночитаемого носителя. Использование группы изобретений обеспечивает расширение арсенала средств для персональной и автоматической корректировки рентгеновской системы. 4 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к медицине, оториноларингологии, рентгенодиагностике, может быть использовано для определения положения электродной решетки кохлеарного имплантата в спиральном канале улитки. Способ включает размещение височной области головы пациента с установленным имплантатом между источником рентгеновского излучения и приемником рентгеновского изображения. В качестве источника рентгеновского излучения используют рентгеновскую трубку с массивной мишенью, вынесенной на торце длинной анодной трубы из вакуумного баллона рентгеновской трубки, или анодную трубу с прострельной торцевой мишенью. При этом анодную трубу с массивной мишенью вводят в ротовую полость пациента со стороны имплантата под углом около 45° к сагиттальной плоскости головы. Анодную трубу с прострельной торцевой мишенью вводят в ротовую полость пациента с противоположной по отношению к имплантату стороны головы под углом около 45° к сагиттальной плоскости. Приемник рентгеновского изображения располагают вплотную к той височной области головы, в которой установлен имплантат. Способ обеспечивает хорошую детальную визуализацию структур внутреннего уха при наименьшей радиационной нагрузке на пациента и персонал. 2 з.п. ф-лы, 1 табл.
Наверх