Способ получения керамического композиционного материала

Изобретение относится к производству строительных материалов и предназначено для изготовления керамических композиционных материалов широкой номенклатуры. Технический результат способа изготовления керамического композиционного материала заключается в существенном повышении его эксплуатационных характеристик, а именно прочности при изгибе. Достигается это тем, что в качестве кремнеземистого компонента используют полевошпатокварцевые и слюдистокварцевые песчаники, которые измельчают с последующим выделением фракции -1+06 и -0,2+0,125 и смешивают в соотношении 2:1, перемешивают с минерализатором в виде криолита и матричным материалом химического состава, масс.%: 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O и размерами зерен менее 0,042 мм, приготовленным из бентонита и стеклобоя в соотношении 1:3, при следующем соотношении компонентов сырьевой смеси, масс.%: полевошпатокварцевый или слюдистокварцевый песчаник 52-56; криолит 2-4, матричный материал 42-44. 4 табл.

 

Изобретение относится к производству строительных материалов и предназначено для изготовления керамических композиционных материалов широкой номенклатуры.

Известно керамическое стеновое изделие и способ его изготовления, включающий приготовление сырьевой смеси путем измельчения кварцевого песка, смешения с кальцийсодержащим компонентом и увлажнения, прессование заготовок, сушку и обжиг с изотермической выдержкой, отличающийся тем, что кварцевый песок измельчают до удельной поверхности 2000-7000 см2/г, увлажнение проводят раствором едкого натра и жидкого стекла с удельным весом 1,3-1,35 г/см3, при этом сырьевая смесь содержит, масс.%:

кварцевый песок 70-85
оксид кальция 5-10
едкий натр 5-10
жидкое стекло с удельным весом 1,3-1,35 г/см3 5-10,

а изотермическую выдержку проводят при 850-1000°С в течение 2-4 ч (Пат. РФ №2064910, МПК С04В 35/00, С04В 35/14 от 13.05.1994, опубл. 10.08.1996 г.). Недостатком известной массы является относительно невысокая прочность при изгибе в заявляемом диапазоне соотношений компонентов сырьевой смеси (от 25 до 70 МПа).

Наиболее близким к заявляемому является керамическое стеновое изделие и способ его изготовления (Пат. РФ №2135431, МПК С04В 35/14 от 01.12.1998, опубл. 27.08.1999 г.).

Сущность способа изготовления керамических изделий, преимущественно кирпича облицовочного, плиток широкого использования и тротуарных плит, включает приготовление сырьевой смеси путем измельчения кварцевого песка и перемешивание компонентов сырьевой смеси, содержащей кварцевый песок, вяжущее вещество и наполнитель, увлажнение смеси, прессование заготовок при давлении 7-15 МПа, сушку при 250-300°С и обжиг при 900-1000°С, отличающегося тем, что перед измельчением к части кварцевого песка добавляют вяжущее вещество - известково-натриевый полевой шпат, или доусенит, или нефелин в сочетании с боратом или галогенидом натрия при их соотношении от 0,5:1,5 до 1:1, проводят совместное измельчение кварцевого песка и вяжущего вещества до удельной поверхности 4000-7000 см2/г при следующем соотношении компонентов сырьевой смеси, масс.%:

молотый кварцевый песок 30-60
вяжущее вещество 5-10
наполнитель 3-15
немолотый кварцевый песок остальное

При этом прочность керамического изделия при сжатии достигнута в пределах 69-111 МПа, а прочность при изгибе - 23-42 МПа.

Однако данные физико-механических показателей керамического изделия, полученного по наиболее близкому к заявляемому способу, свидетельствуют о недостаточной прочности при изгибе керамической облицовочной плитки (23-42 МПа). Кроме того, недостатком является необходимость высокой степени измельчения кварцевого песка - 4000-7000 см2/г, что ориентировочно соответствует размеру частиц соответственно 25-13 мкм. Достижение высокой степени измельчения сопряжено со значительным увеличением длительности процесса помола и соответственно с ростом энергозатрат на измельчение.

Задачей предлагаемого способа изготовления керамического композиционного материала является существенное повышение его эксплуатационных характеристик, а именно прочности при изгибе.

В этом состоит новый технический результат, находящийся в причинно-следственной связи с существенными признаками изобретения.

Существенным признаком изобретения является то, что в качестве кремнеземистого компонента используют полевошпатокварцевые и слюдистокварцевые песчаники, которые измельчают с последующим выделением фракции -1+06 и -0,2+0,125 и смешивают в соотношении 2:1, перемешивают с минерализатором в виде криолита и матричным материалом химического состава, масс.%: 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O и размерами зерен менее 0,042 мм, приготовленным из бентонита и стеклобоя в соотношении 1:3, при следующем соотношении компонентов сырьевой смеси, масс.%:

полевошпатокварцевый
или слюдистокварцевый песчаник 52-56
криолит 2-4
матричный материал 42-44

Полевошпатокварцевые и слюдистокварцевые песчаники состоят из обломочного (53,8±7,8%) и регенерационного (8,7±2,3%) кварца, полевых шпатов (7,5±4,3%), обломков пород (6,7±4,1%), слюдисто-глинистых минералов (19,4±7,4%) с включением акцессорных минералов (апатита, циркона, турмалина, граната, редких обуглившихся растительных остатков). Полевошпатокварцевые и слюдистокварцевые песчаники отличаются от кварцевого песка наличием в составе цементирующего материала, скрепляющего зерна кварца в сплошную плотную массу с раковистым изломом. Образование полевошпатокварцевых и слюдистокварцевых песчаников связано с уплотнением и цементацией слюдисто-глинистыми минералами, что определяет их как достаточно прочную горную породу.

Высокие значения прочности при сжатии (до 120 МПа) и статического модуля упругости (2,5·104 МПа) предопределяют возможность использования полевошпатокварцевых и слюдистокварцевых песчаников в качестве высокопрочного кварцевого каркаса (наполнителя) в структуре керамического композиционного материала в сочетании с матричным материалом на основе, высокопластичного бентонита и стеклобоя. Для совершенствования кристаллической структуры матрицы на стадии спекания в состав композиционного материала введен криолит, играющий роль минерализатора образования полезных кристаллических фаз в структуре матричного материала, существенно повышающих эксплуатационные свойства материалов.

Способ изготовления керамического композиционного материала реализуется следующим образом. Полевошпатокварцевые и слюдистокварцевые песчаники подвергаются помолу в шаровых мельницах тонкого помола, последующему разделению на фракции -1+0,6 мм и -0,2+0,125 мм, смешиванию фракций в барабанном смесителе в соотношении 2:1 при общем содержании кремнеземистого компонента 52-56 масс.%. Далее в барабанный смеситель подается минерализатор в виде криолита (2-4 масс.%) и матричный материал химического состава, масс.%: 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O в количестве 42-44 масс.%, как предварительно измельченная до размера зерен менее 0,042 мм смесь бентонита и стеклобоя в соотношении 1:3.

Смесь прессуется при удельном давлении прессования 30-35 МПа, подвергается скоростному обжигу при максимальной температуре 1000°С. Физико-технические свойства композиционного керамического материала при различных соотношениях фракций -1+0,6 мм и -0,2+0,125 мм полевошпатокварцевых и слюдистокварцевых песчаников, при различном химическом составе матричного материала в зависимости от соотношения бентонита и стеклобоя в керамической массе, при оптимальном содержании матричного материала 43 масс.% и содержании криолита 3 масс.% представлены в табл.1.

Анализ данных таблицы 1 свидетельствует об оптимальных значениях следующих технологических параметров получения керамического композиционного материала:

- соотношение фракций полевошпатокварцевых и слюдистокварцевых песчаников -1+0,6 мм и -0,2+0,125 мм, в масс. долях - 2:1;

- химический состав матричного материала - 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6 CaO, 9 Na1O, обеспечиваемый соотношением бентонита к стеклобою 1:3.

При этих параметрах обеспечивается максимальная прочность при изгибе.

Физико-технические свойства композиционного керамического материала при соотношении фракций -1+0,6 мм и -0,2+0,125 мм полевошпатокварцевых и слюдистокварцевых песчаников в оптимальных пределах 2:1, при оптимальном химическом составе матричного материала, обеспеченном оптимальным соотношением бентонита и стеклобоя 1:3, при содержании криолита 3 масс.% и при различном массовом содержании матричного материала представлены в табл.2.

Таблица 2
Соотношение фракций полевошпато-кварцевых и слюдистокварцевых песчаников -1+0,6 мм и -0,2+0,125 мм, в масс. долях Соотношение бентонита и стеклобоя Химический состав матрицы, масс.% Содержание матричного материала, масс.% Прочность при изгибе, МПа
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 41 97
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 42 105
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 120
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 44 112
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 45 101

Анализ данных таблицы 2 свидетельствует об оптимальных значениях содержания матричного материала в пределах 42-44 масс.%. Уменьшение или увеличение содержания матричного материала приводит к некоторому ухудшению прочности при изгибе.

Физико-технические свойства композиционного керамического материала при соотношении фракций -1+0,6 мм и -0,2+0,125 мм полевошпатокварцевых и слюдистокварцевых песчаников в оптимальных пределах 2:1, при оптимальном химическом составе матричного материала, обеспеченном оптимальным соотношением бентонита и стеклобоя 1:3, при оптимальном массовом содержании матричного материала 43 масс.%, при содержании криолита 3 масс.% и при различном размере частиц матричного материала представлены в табл.3.

Анализ данных таблицы 3 свидетельствует о целесообразности использования размера частиц матричного материала в 0,042 мм. Необходимо отметить, что дальнейшее увеличение степени дисперсности до величин 0,030 мм приводит к некоторому росту прочности при изгибе. Однако достижение данной степени измельчения сопряжено со значительными затратами на измельчение.

Физико-технические свойства композиционного керамического материала при соотношении фракций -1+0,6 мм и -0,2+0,125 мм полевошпатокварцевых и слюдистокварцевых песчаников в оптимальных пределах 2:1, при оптимальном химическом составе матричного материала, обеспеченном оптимальным соотношением бентонита и стеклобоя 1:3, при оптимальном массовом содержании матричного материала 43 масс.%, при оптимальном размере матричного материала в 0,042 мм и при различном содержании криолита, представлены в табл.4.

Анализ данных таблицы 4 свидетельствует о целесообразности введения в состав керамической массы криолита в пределах 2-4 масс.%.

Техническим результатом заявляемого способа является существенное повышение прочности при изгибе обожженных образцов керамических композиционных материалов.

Таблица 4
Соотношение фракций полевошпато-кварцевых и слюдисто-кварцевых песчаников -1+0,6 мм и -0,2+0,125 мм, в масс. долях Соотношение бентонита и стеклобоя, в масс. долях Химический состав матрицы, масс.% Содержание матричного материала, масс.% Размер частиц матричного материала, мм Содержание криолита, масс.% Прочность при изгибе, МПа
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 0,042 1 95
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 0,042 2 116
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 0,042 3 120
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 0,042 4 128
2:1 1:3 69,0 SiO2, 9,0 Al2O3, 2,0 Fe2O3, 6,0 CaO, 9,0 Na2O 43 0,042 5 91

Способ получения керамического композиционного материала, включающий приготовление сырьевой смеси путем измельчения наполнителя в виде кремнеземистого компонента, его перемешивание с минерализатором и матричным материалом, увлажнение смеси, прессование заготовок, сушку и обжиг, отличающийся тем, что в качестве кремнеземистого компонента используют полевошпатокварцевые и слюдистокварцевые песчаники, которые измельчают с последующим выделением фракции -1+0,6 и -0,2+0,125 и смешивают в соотношении 2:1, перемешивают с минерализатором в виде криолита и матричным материалом химического состава, мас.%: 69,0 SiOs, 9,0 Al2O3, 2,0 Fe2O3, 6 CaO, 9 Na2O и размерами зерен менее 0,042 мм, приготовленным из бентонита и стеклобоя в соотношении 1:3, при следующем соотношении компонентов сырьевой смеси, мас.%:

полевошпатокварцевый или слюдистокварцевый песчаник 52-56
криолит 2-4
матричный материал 42-44



 

Похожие патенты:

Изобретение относится к производству огнеупорных изделий для футеровки тепловых агрегатов. .

Изобретение относится к производству керамических строительных и дорожных материалов. .

Изобретение относится к наполнителям из наночастиц для применения в композитных материалах, включая стоматологические композитные материалы. .
Изобретение относится к технологии получения изделий из кварцевой керамики различного назначения с использованием отходов керамического производства. .
Изобретение относится к огнеупорным изделиям, имеющим улучшенные поверхностные свойства. .
Изобретение относится к технологии получения модифицированных керамических материалов на основе кварцевого стекла с повышенной высокотемпературной прочностью и может быть использовано для создания изделий различного назначения.

Изобретение относится к области огнеупоров и технической керамики и может быть использовано в производстве огнеупорных керамических изделий, в том числе технологических контейнеров, используемых при синтезе высокочистых материалов на основе пентаоксидов ниобия и тантала, а также для футеровки химических аппаратов, печей, конструкционных элементов.
Изобретение относится к производству керамических проппантов-расклинивателей, предназначенных для использования в нефтедобывающей промышленности в качестве расклинивающих агентов при добыче нефти методом гидравлического разрыва пласта - ГРП.

Изобретение относится к технологии комплексной переработки промышленных отходов, а именно к переработке лома огнеупорных материалов с целью получения сферических материалов, которые могут быть использованы в качестве проппантов, мелющих тел, носителей катализаторов, огнеупорных заполнителей и насыпных фильтров

Изобретение относится к изготовлению динасовых огнеупорных изделий для футеровки тепловых агрегатов. Техническим результатом изобретения является повышение прочности, снижение пористости и содержания остаточного кварца. Динасовый огнеупор получен из массы, содержащей кремнеземистый заполнитель, портландцемент и затворитель. Причем кремнеземистый заполнитель содержит кварцевое стекло фракции 5-0 мм, отмагниченный кварцит фракции менее 0,09 мм и песок кварцевый, а в качестве затворителя водный раствор полиметиленнафталинсульфоната натрия, при следующем соотношении компонентов, мас.%: портландцемент - 3-6; указанный затворитель (сверх 100%) - 7,5-8,5; отмагниченный кварцит фракции менее 0,09 мм - 20-40; песок кварцевый - 0,5-3,0; кварцевое стекло фракции 5-0 мм - остальное. 2 н.п. ф-лы, 1 табл.

Изобретение относится к теплоизоляционному материалу, содержащему осажденный диоксид кремния, и литым изделиям, содержащим теплоизоляционный материал. Техническим результатом изобретения является повышение теплопроводности изделий. Применение теплоизоляционного материала, содержащего от 30 до 95 мас.% осажденного диоксида кремния, имеющего модифицированную насыпную плотность от 10 до 50 г/л, и от 5 до 70 мас.% теплопоглощающего материала, в качестве рыхлого теплоизоляционного наполнителя, листов или блоков, или в вакуумных изоляционных системах. 8 з.п. ф-лы, 2 пр., 3 табл., 6 ил.
Изобретение относится к производству строительных материалов. Техническим результатом изобретения является повышение прочности изделий. Сырьевая смесь для изготовления силикатного кирпича включает кварцевый песок, молотую негашеную известь, волластонит и кремнегель, при следующем соотношении компонентов, мас. %: кварцевый песок - 79,5-89; молотая негашеная известь - 5-10; волластонит - 5-10; кремнегель - 0,5-1,0. 1 табл.

Изобретение относится к производству керамических изделий радиотехнического назначения, работающих в условиях воздействия высокотемпературных газовых потоков. Техническим результатом изобретения является снижение водопоглощения и повышение прочности и коэффициента черноты изделий. Способ получения кварцевой керамики с повышенной излучательной способностью включает приготовление водного шликера кварцевого стекла, введение в шликер добавки оксида хрома в количестве 0,5-2,0 %, формование заготовок методом водного шликерного литья в гипсовые формы, сушку заготовок и их обжиг при температурах 1100-1300°C. Причем после обжига заготовки пропитывают метилфенилспиросилоксаном с последующей полимеризацией. 1 табл.
Изобретение относится к области технологии силикатов и касается составов керамических масс для производства кирпича. Технический результат заключается в повышении морозостойкости кирпича. Керамическая масса для производства кирпича содержит следующие компоненты, мас.%: глина 70,3-76,7; молотые до прохождения через сетку №0,14 кварциты 17,0-21,0; мылонафт 0,3-0,7; бентонит 6,0-8,0. 1 табл.
Изобретение относится к составам огнеупорных масс, которые могут быть использованы для футеровки индукционных плавильных печей, используемых при производстве черных сплавов. Техническим результатом изобретения является повышение эрозионной стойкости футеровки и ее огнеупорности. Огнеупорная масса включает кристаллический кварцит, борную кислоту, электрокорунд белый фракции 0,315 мм и электрокорунд белый фракции 0,125 мм при следующем соотношении компонентов, мас. %: кристаллический кварцит - 93,43-96,07; борная кислота - 0,67-1,21; электрокорунд белый фракции 0,315 мм - 2,75-4,15; электрокорунд белый фракции 0,125 мм - 0,51-1,21. 1 табл.

Изобретение относится к керамической промышленности и может быть использовано при изготовлении изделий из кварцевой керамики методом водного шликерного литья в пористые формы. Предложен способ получения высокоплотного водного шликера на основе кварцевого стекла путем его помола в шаровой мельнице с корундовой футеровкой и алундовыми мелющими телами с последующей стабилизацией механическим перемешиванием. Загрузку исходного сырья производят в три этапа: сначала загружают 50-60% (по массе) расчетного количества кварцевого стекла и 100% расчетного количества мелющих тел и воды, при этом конечное соотношение стекло:мелющие тела:вода равно 1:2,8:0,15, затем производят помол до тонины с остатком на сите №0063 0,5-1,0%. На втором и третьем этапах последовательно добавляют по 20-25% от расчетного количества кварцевого стекла и осуществляют помол после каждой загрузки до тонины с остатком на сите №0,063 6-9%. Техническим результатом заявленного способа является повышение плотности шликера, снижение времени помола, повышение плотности отливок, снижение усадки и температуры спекания, увеличение плотности и прочности обожженного материала. 6 пр., 1 табл.
Изобретение относится к технологии получения кварцевой керамики с пониженной температурой обжига и может найти широкое применение для массового производства керамических изделий различного назначения. Предложенный способ включает приготовление водного шликера кварцевого стекла, введение в него бескислородных борсодержащих активаторов спекания, например, в виде порошка нитрида бора в количестве 0,3-0,5 вес.%, перемешивание в шаровой мельнице, формование изделий методом шликерного литья, сушку и обжиг в воздушной среде. Обжиг осуществляют в два этапа: сначала нагревают до температуры 800-1000°С и выдерживают в течение 1-3 ч для прогрева всего изделия и окисления борсодержащей добавки, затем температуру поднимают до 1150-1200°С и выдерживают в течение 1-3 ч для спекания материала до заданной пористости. Технический результат изобретения - снижение температуры обжига при получении прочных изделий, уменьшение вероятности образования кристобалита в процессе обжига материала, что позволяет использовать для производства изделий менее чистое, недефицитное сырье. 1 пр., 1 табл.
Изобретение относится к технологии получения изделий из керамических и волокнистых материалов на основе кварцевого стекла с улучшенными теплопрочностными, химическими и другими свойствами, которые найдут применение в ракетно-космической технике, металлургии. Способ получения изделий включает изготовление пористого изделия заданного размера и формы, нанесение на поверхность полностью или частично керамического огнеупорного покрытия из водной суспензии и упрочнение. Нанесение покрытия толщиной 0,5-5,0 мм осуществляют набором керамического слоя на поверхности изделия с открытой пористостью не менее 7% в течение 5-100 мин из суспензии на основе кварцевого стекла с модифицирующей огнеупорной добавкой в виде порошка окисных и (или) бескислородных материалов, например Si3N4, Si, SiB4, Cr,2O3, CoO, TiO2, ZrB2, SiC, общее количество которых не превышает 50% по твердой фазе. Водная суспензия имеет полидисперсный зерновой состав в пределах 0,5-500 мкм с содержанием частиц до 5 мкм 20-40%, частиц более 63 мкм 1-10%, влажность суспензии 15-18%, а упрочнение покрытия осуществляют автоклавной обработкой изделия в паровом автоклаве при объемном соотношении паров воды и аммиака 1:0,05-0,20, температуре 100-250°C, давлении 0,5-10,0 атм. Затем изделие сушат в воздушной среде при температуре 50-150°С. Техническим результатом изобретения является повышение прочности, теплофизических и химических характеристик изделий. 1 табл., 3 пр.
Наверх