Пирометр спектрального отношения

Изобретение относится к области контрольно-измерительной техники, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел методом спектрального отношения, и может быть использовано в любых отраслях промышленности для измерения температуры различных материалов и изделий. Пирометр спектрального отношения содержит объектив, фиксирующий изображение контролируемого тела на фотоприемник, перед которым установлен фильтр излучения, усилитель сигнала фотоприемника, микропроцессор с двумя аналого-цифровыми преобразователями, индикатор температуры и элемент питания. Дополнительно введен управляемый микропроцессором переключатель, один полюс которого подключен к элементу питания, а второй - ко входу усилителя, при этом общий полюс переключателя подключен к фотоприемнику. Технический результат заключается в обеспечении возможности упрощения конструкции пирометра спектрального отношения, а также обеспечении возможности повышения чувствительности пирометра спектрального отношения. 2 ил.

 

Изобретение относится к контрольно-измерительной технике, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел методом спектрального отношения, и может быть использовано в любых отраслях промышленности для измерения температуры различных материалов и изделий.

Известны пирометры, которые методом спектрального отношения измеряют температуру нагретого тела. Такие пирометры регистрируют тепловые потоки в двух различных участках спектра Δλ1 и Δλ2 излучения нагретого тела и по отношению электрических сигналов на выходах двух каналов (U11) и U22)) судят о температуре нагретых тел [Свет Д.Я. Оптические методы измерения истинных температур [Текст] / Д.Я.Свет - М.: Наука, 1982. - 296].

Разделение теплового потока на два канала измерения, регистрирующих излучение в разных спектральных диапазонах, возможно различными способами.

Известно устройство [патент РФ 570794, G01J 5/60, 30.08.77 г.], содержащее два однотипных приемника излучения, размещенных в термостате, оптическую систему, второй термостат, в который установлен один из приемников излучения, а его температура отличается от первого.

В данном устройстве применены два однотипных приемника излучения, а смещение спектральных характеристик приемников осуществляется за счет их термостатирования при разных температурах. Благодаря этому спектральная характеристика приемника, находящегося при более низкой температуре, смещена в длинноволновую область спектра, а приемника с более высокой температурой - в коротковолновую область.

Недостатками этого устройства является то, что поток излучения делится на два канала с помощью полупрозрачного сферического зеркала, что ослабляет регистрируемый поток и уменьшает чувствительность прибора в целом, кроме того, применение двух каналов, зеркала и термостатов усложняет конструкцию, а предел измерения низких температур зависит от температуры термостатирования приемников излучения.

Известно также устройство [патент РФ 2192624, G01J 5/60, 10.11.2002 г.], содержащее объектив, приемник излучения, два неподвижных отражающих зеркала, два светофильтра, конденсор, диафрагму, обтюратор - наклонное малогабаритное отражающее зеркало, закрепленное на валу малогабаритного быстроходного двигателя.

В данном устройстве применен один приемник излучения, а разнесение спектральных характеристик на два измерительных канала осуществляется с помощью двух светофильтров с различными спектральными характеристиками.

Недостатком этого устройства является наличие сложной оптической системы, содержащей подвижные части и два светофильтра, которые ослабляют поток излучения, что приводит к снижению чувствительности устройства и усложнению конструкции.

Наиболее близким к предлагаемому является устройство [патент РФ 2290614, G01J 5/60, 27.12.2006 г.], содержащее объектив, фокусирующий изображение контролируемого тела на два фотоприемника, перед каждым из которых установлен фильтр излучения, усилители сигналов каждого фотоприемника, аналого-цифровые преобразователи, микропроцессор и индикатор температуры.

При этом каждая пара: фильтр излучения и фотоприемник - установлена соосно оптической оси объектива, первый фотоприемник, чувствительный в области длин волн 600-1200 нм, выполнен в виде фильтра, пропускающего излучение с длиной волны более 800 нм, а второй фотоприемник расположен за первым так, что на него попадает излучение, прошедшее через первый фотоприемник, а перед первым фотоприемником установлен светофильтр, поглощающий излучение в видимой части спектра. Также имеется элемент питания.

В данном устройстве применены два фотоприемника, работающие в различных спектральных диапазонах.

Недостатком данного устройства является наличие двух фотоприемников, кроме того, один из них выполнен в виде фильтра, что ослабляет проходящий через него поток излучения и снижает чувствительность прибора.

Задачей предлагаемого изобретения является упрощение конструкции устройства и повышение чувствительности пирометра спектрального отношения (далее пирометра).

Поставленная задача достигается тем, что в пирометр, содержащий объектив, фокусирующий изображение контролируемого тела на фотоприемник, перед которым установлен фильтр излучения, усилитель сигнала фотоприемника, микропроцессор с двумя аналого-цифровыми преобразователями, индикатор температуры и элемент питания, согласно изобретению дополнительно введен управляемый микропроцессором переключатель, один полюс которого подключен к элементу питания, а второй - ко входу усилителя, при этом общий полюс переключателя подключен к фотоприемнику.

На Фиг.1 изображена функциональная схема пирометра спектрального отношения.

На Фиг.2 приведена электронно-функциональная схема конкретной реализации пирометра спектрального отношения.

Пирометр содержит объектив 1, фотодиодный приемник излучения 2, фильтр излучения 3, переключатель 4, усилитель 5, микропроцессор 6 с двумя встроенными аналого-цифровыми преобразователями, элемент питания 7 и индикатор температуры 8.

Пирометр спектрального отношения работает следующим образом. Объектив 1 строит изображение объекта измерения на приемнике излучения 2. Светофильтр 3 поглощает излучение в видимой части спектра. В первом цикле работы управляемый переключатель 4 по команде микропроцессора 6 переводится в положение «а» и подключает фотоприемник 2 к элементу питания 7, обеспечивая фотодиодный режим работы фотоприемника 2, подключенного к усилителю 4. Выходной сигнал усилителя 4 считывается первым входом микропроцессора 6. Во втором цикле работы по команде микропроцессора 6 переключатель 4 переводится в положение «б», обеспечивая тем самым фотогальванический режим короткого замыкания фотоприемника 2. При этом выходной сигнал фотоприемника 2 подается через усилитель 5 на микропроцессор 6 и считывается его вторым входом. После этого микропроцессор 6 производит вычисление отношения выходного сигнала фотоприемника, работающего в фотодиодном режиме работы с приложенным обратным напряжением к сигналу этого же фотоприемника, работающего в фотогальваническом режиме короткого замыкания, когда приложенное к фотоприемнику напряжение равно нулю. Сигнал с микропроцессора 6 поступает на индикатор температуры 8, к которому можно подключить электронный индикатор, компьютер или самописец.

В данном пирометре работа одного фотоприемника в двух спектральных диапазонах обеспечивается благодаря изменению спектральной чувствительности фотодиодов при переходе от фотодиодного режима работы к фотогальваническому в режиме короткого замыкания. Согласно физике работы p-n - перехода фотодиода, по данным [Ишанин Г.Г. Источники и приемники излучения: Учебное пособие для студентов оптических специальностей вузов [Текст] / Г.Г.Ишанин, Э.Д.Панков, А.Л.Андреев, Г.В.Польщиков - СПб.: Политехника, 1991 с.118-121] при увеличении обратного напряжения, приложенного к p-n-переходу, растут ширина области объемного заряда, высота потенциального барьера и увеличивается ширина p-n-перехода, что приводит к увеличению коэффициента собирания неосновных носителей заряда и, как следствие, к увеличению максимума спектральной чувствительности и ее сдвигу в длинноволновую область.

Предложенное подключение фотодиодного приемника излучения, позволяющее работать с одним фотоприемником в двух спектральных диапазонах, в сравнении с прототипом, позволяет повысить чувствительность прибора для измерения температуры нагретых поверхностей за счет устранения потерь на поглощение в фильтрах. Кроме того, благодаря исключению второго приемника излучения и усилителя второго канала достигается значительное упрощение конструкции пирометра спектрального отношения.

Рассмотрим конкретный пример реализации пирометра спектрального отношения (рис.2).

В качестве приемника излучения ФД используется кремниевый фотодиод ФД256. В качестве операционного усилителя D1 применен усилитель AD8552, в качестве микропроцессора МП - MSC121045. Ключи S1-S3 выполнены на микросхеме TC7MBL3125. В качестве клавиатуры К для управления режимами микропроцесса использована клавиатура типа СК-11.

В первом цикле работы управляемый переключатель S1 разомкнут, S2 - замкнут в положении «а», S3 - замкнут. Тем самым обеспечивается фотодиодный режим работы фотодиода ФД и режим повторителя напряжения усилителя D1. Во втором цикле работы по команде микропроцессора МП переключатель S1 замыкается, S2 переключается в положение «б», S3 размыкается, тем самым обеспечивается фотогальванический режим короткого замыкания фотодиода ФД. При этом усилитель D1 работает в режиме преобразования ток-напряжение. После этого микропроцессор МП производит вычисление отношения выходного сигнала фотоприемника, работающего в фотодиодном режиме работы с приложенным обратным напряжением к сигналу этого же фотоприемника, работающего в фотогальваническом режиме короткого замыкания, когда приложенное к фотоприемнику напряжение равно нулю.

Таким образом, реализация в устройстве переключения режимов работы фотодиода с фотодиодного в гальванический режим короткого замыкания (приложенное к фотодиоду напряжение равно нулю) обеспечивает разные диапазоны спектральной чувствительности фотодиода, что позволяет использовать вычисление отношения сигналов реакции фотодиода в различных спектрах, поступающих на микропроцессор, для реализации пирометра спектрального отношения. Кроме того, исключение второго фотоприемника и второго канала усиления значительно упрощает конструкцию пирометра, а повышение чувствительности обеспечивается за счет исключения ослабления проходящего потока излучения в полупрозрачном фильтре-фотоприемнике.

Пирометр спектрального отношения, содержащий объектив, фокусирующий изображение контролируемого тела на фотоприемник, перед которым установлен фильтр излучения, усилитель сигнала фотоприемника, микропроцессор с аналого-цифровыми преобразователями, индикатор температуры и элемент питания, отличающийся тем, что в пирометр дополнительно введен управляемый микропроцессором переключатель, один полюс которого подключен к элементу питания, а второй - ко входу усилителя, при этом общий полюс переключателя подключен к фотоприемнику.



 

Похожие патенты:

Изобретение относится к способу детектирования интенсивности излучения, в частности, газообразной смеси продуктов реакции при помощи фотокамер. .

Изобретение относится к области измерительной техники. .

Изобретение относится к области тепловых измерений. .
Изобретение относится к измерительной технике. .

Изобретение относится к области дистанционного измерения температуры движущегося объекта. .

Изобретение относится к детектированию температуры образца делящегося материала, разогреваемого реакторным облучением, и может быть использовано в ядерной физике, атомной энергетике, в частности в системах контроля и обеспечения безопасности ядерных реакторов.

Изобретение относится к области пирометрии и радиометрии. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к области термометрии и может быть использовано для определения температуры водосодержащей среды, а именно пульсирующей крови внутри тела

Датчик с фильтровальным устройством, на выходе которого установлено детекторное устройство, и аналитическим устройством, соединенным с детекторным устройством. Причем фильтровальное устройство имеет первый контрольный фильтр и второй контрольный фильтр, и оба фильтра имеют первую контрольную полосу и вторую контрольную полосу соответственно. При этом измеренные значения плотности интенсивности первой контрольной полосы и второй контрольной полосы служат для оценки температуры излучающего источника. Причем первый и второй контрольные фильтры образуют контрольную систему, а их контрольные полосы образуют систему контрольных полос, распределенных по обе стороны предварительной полосы. Технический результат - повышение точности измерений. 8 з.п. ф-лы, 13 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического определения концентрации металла в руде. Согласно заявленному способу перед проведением контроля содержания металла в руде по конвейеру пропускают руду без примесей металла. Нагревают площадным источником теплового излучения, ширина которого превышает ширину конвейера. Через время τзад после окончания нагрева измеряют среднее значение температуры по нагретой поверхности руды без содержания металла Т1ср. На основании проведенных измерений формируют градуировочную кривую. Далее на конвейер непрерывно подают руду, содержащую металл, и нагревают. Через время τзад измеряют на каждом кадре i среднее значение температуры Tcpi. Определяют величину Tcpi-T1ср на основании градуировочной кривой. Используя величину (Tcpi-T1ср), определяют процентное содержание металла в руде. Также предложено устройство для реализации указанного способа. Технический результат - повышение достоверности определения содержания металла в руде. 2 н. и 4 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для бесконтактного определения коэффициента температуропроводности твердых тел содержит плоский оптический нагреватель и тепловизор, подключенные к компьютеру, оптически непрозрачную маску для формирования пространственного поля нагрева. Устройство также дополнительно содержит оптический объектив, предназначенный для фокусирования теплового излучения плоского оптического нагревателя и оптически непрозрачную шторку, позволяющую открывать и закрывать тепловое излучение плоского оптического нагревателя в определенные моменты времени. Технический результат - повышение точности бесконтактного определения коэффициента температуропроводности твердых тел. 1 ил.
Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний. Температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек. Одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Технический результат - повышение точности получаемых данных.

Изобретение относится к области океанологии и может быть использовано для получения полей температуры океана в оперативном режиме. Заявлен способ оценки температуры поверхности океана по измерениям спутниковых микроволновых радиометров путем получения значений радиояркостных температур (Тя) по радиометрическим каналам и вычисления значения температуры поверхности океана (Ts) с использованием зависимости, учитывающей значение радиояркостных температур и коэффициентов настроенной Нейронной Сети. Используются четыре радиометрических канала, которые имеют следующие частоты и поляризационные режимы: υ1=6.9 ГГц горизонтальной поляризации, υ2=6.9 ГГц вертикальной поляризации, υ3=10.65 ГГц горизонтальной поляризации и υ4=10.65 ГГц вертикальной поляризации. Моделируется ослабление излучения слоем осадков до 30 мм/ч, что позволяет получать оценки температуры поверхности океана в широком диапазоне состояний океана и атмосферы для всего диапазона температур океана в условиях, включающих наличие мощной облачности и осадков до 30 мм/ч. Технический результат - повышение точности и достоверности получаемых данных.

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок обработки - микропроцессорный контроллер, блок памяти и блок визуализации, представляющие собой компьютер, тепловизор и устройство для определения температурных параметров окружающей среды, состоящее из двух пластин, выполненных из материалов с разными коэффициентами отражения и поглощения. Повышение точности измерения температурных значений объекта контроля достигается путем их корректировки в соответствии с измеренными температурными значениями окружающей среды, регистрируемыми двумя пластинами и принимаемыми как эталонные. Технический результат - повышение точности измерения температурных значений объекта контроля. 1 ил.

Изобретение относится к области термографии и может быть использовано при создании технологии тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости. Согласно заявленному способу осуществляют промер температурного поля с помощью тепловизора, получая тепловизионную термовидеограмму и находя последовательное изменение температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе. Выбирают сосуд с прозрачной для инфракрасного излучения стенкой, заполняют его жидкостью и осуществляют промер теплового потока в зоне пограничного с внутренней поверхностью стенки сосуда слоя. Причем предварительно проводят точную фокусировку макрообъектива на внутренней поверхности стенки сосуда. Затем по тепловизионной термовидеограмме определяют зависимость амплитуды пульсаций теплового потока от времени и с помощью прямого преобразования Фурье строят спектральные кривые пульсаций теплового потока в контрольных точках, по которым выделяют и сравнивают частоты изменения теплового потока. После определяют степенной закон и по результатам сравнения идентифицируют участки турбулентного спектра. Съемку цифрового тепловизионного фильма проводят с частотой кадров, как минимум вдвое превышающей измеряемую частоту пульсаций теплового потока. Технический результат - повышение точности и достоверности получаемых данных. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор, компьютер, поворотный привод, поворотное зеркало, изготовленное из плоского теплоизоляционного основания и двух полированных металлических пластин, например, из алюминия или меди, закрепленных по обе стороны от теплоизоляционного основания. В заявленном устройстве используется поворотное зеркало, которое в период нагрева объекта контроля устанавливается под углом наклона, равным +45°, между нормалью к поверхности поворотного зеркала и нормалью к поверхности объекта контроля и под углом наклона, равным -45°, в период регистрации температурного поля объекта контроля тепловизором, что обеспечивает максимально возможную плотность мощности нагрева и отсутствие геометрических искажений изображения объекта контроля. Технический результат - повышение точности получаемых данных. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий преобразователь температуры в виде сетки из нитей со специальным покрытием, а также тепловизионную камеру, имеющую в своем составе монитор. Преобразователь температуры содержит, по крайней мере, одну термопару, представляющую собой вплетенный в ячейку сетки нитевидный элемент, диаметр и цилиндрический спай которого совпадает с диаметром нитей сетки. Расстояние между нитями сетки составляет 50-1000 мкм, а толщина нитей сетки составляет 2-100 мкм. В качестве специального покрытия нитей сетки и термопары используется зечернение. Степень черноты поверхности нитей сетки и термопары ε составляет порядка 1. Для осуществления способа измерения температурного поля газового потока в каналах в качестве преобразователя температуры используют сетку из нитей со специальным покрытием, которую размещают перпендикулярно потоку измеряемой среды. Температуру определяют по температурному полю сетки, формируемому при прогреве или охлаждении нитей сетки. Преобразователь температуры размещают непосредственно на выходном срезе канала, или внутри канала, или перед каналом. Технический результат - повышение разрешающей способности и точности измерения температурного поля газового потока в каналах. 2 н.п. ф-лы, 2 ил.
Наверх