Способ оценки сопротивления коррозионной усталости сварных соединений

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач. Сущность: осуществляют определение параметров индивидуальной кривой усталости по единому степенному уравнению, описывающему зависимость числа циклов до разрушения от максимального напряжения цикла, для условий испытания на воздухе и в коррозионной среде, по разности которых оценивают сопротивление коррозионной усталости. Для определения параметров индивидуальной кривой усталости строят зависимость длины усталостной трещины от числа циклов нагружения, выделяют прямолинейный участок зависимости, по которому определяют число циклов нагружения, соответствующих условиям стабильного роста усталостной трещины. Технический результат: возможность проводить сравнительный анализ сварных соединений различного структурного состава на базе малообразцовых испытаний. 5 ил.

 

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач.

При эксплуатации сварных соединений в условиях одновременного воздействия коррозионных сред и циклических нагрузок на участках сварных соединений с пониженной пластичностью зарождаются коррозионно-усталостные трещины. Для сравнительной оценки влияния различных факторов (структурный состав различных зон сварных соединений, величина напряжений, частота нагружения, состав агрессивной среды) на сопротивление коррозионной усталости наиболее перспективными представляются методы малообразцовых испытаний.

Известен способ испытания материалов на усталость, заключающийся в том, что одну партию образцов материала нагружают от уровня напряжения выше предела выносливости материала при различных скоростях роста напряжений, одна из которых равна нулю, а другую - при одинаковых скоростях роста напряжений от уровня, не превышающего предел выносливости [патент РФ №2017115 от 30.07.1994 г.].

Недостатком известного способа является то, что форсированный способ нагружения при испытании не отражает всех особенностей реальной эксплуатации при коррозионно-усталостном нагружении.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ оценки сопротивления коррозионной усталости материалов, основанный на определении индивидуальных характеристик сопротивления коррозионной усталости путем построения кривых усталости по степенному уравнению

,

где σ и N - текущие напряжение и число циклов до разрушения;

m и С - параметры кривой усталости.

Сокращение общего времени испытания может быть достигнуто за счет уменьшения количества опытов при использовании прямолинейной зависимости между параметрами уравнения (1)

,

где a и b - коэффициенты, характеризующую конкретную среду [Олейник Н.В., Магденко А.Н., Скляр С.П. Сопротивление усталости материалов и деталей машин в коррозионных средах. - Киев: Наукова думка, 1987]. Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - определение параметров индивидуальной кривой усталости по степенному уравнению, описывающему зависимость числа циклов до разрушения от максимального напряжения цикла, для условий испытания на воздухе и в коррозионной среде, по разности которых оценивают сопротивление коррозионной усталости.

Недостатком известного способа, принятого за прототип, является ограниченность области применения только оценкой свойств основного металла.

Задачей изобретения является разработка способа оценки сопротивления коррозионной усталости сварных соединений, позволяющего проводить сравнительный анализ сварных соединений различного структурного состава на базе малообразцовых испытаний.

Поставленная задача была решена за счет того, что в известном способе оценки сопротивления коррозионной усталости сварных соединений, включающем определение параметров индивидуальной кривой усталости по единому степенному уравнению, описывающему зависимость числа циклов до разрушения от максимального напряжения цикла, для условий испытания на воздухе и в коррозионной среде, по разности которых оценивают сопротивление коррозионной усталости, для определения параметров индивидуальной кривой усталости строят зависимость длины усталостной трещины от числа циклов нагружения, выделяют прямолинейный участок зависимости, по которому определяют число циклов нагружения, соответствующих условиям стабильного роста усталостной трещины.

Признаки заявляемого технического решения, отличительные от прототипа, - для определения параметров индивидуальной кривой усталости строят зависимости длины усталостной трещины от числа циклов нагружения, выделяют прямолинейный участок зависимости, по которому определяют число циклов нагружения, соответствующих условиям стабильного роста усталостной трещины.

В основе предлагаемого изобретения лежит метод испытания на усталостный изгиб, при котором в процессе нагружения строят зависимости длины усталостной трещины от числа циклов нагружения; по зависимости определяют размеры участка стабильного роста усталостной трещины и число циклов, соответствующих распространению трещины в пределах этого участка; далее аппроксимируют зависимость числа циклов от напряжений по степенному уравнению.

Сущность изобретения иллюстрируется чертежами, на которых изображены:

на фиг.1 - зависимости длины усталостной трещины от числа циклов нагружения;

на фиг.2 - участки стабильного роста усталостной трещины зависимостей длины усталостной трещины от числа циклов нагружения, соответствующих различным условиям нагружения;

на фиг.3 - аппроксимация линейной зависимости ;

на фиг.4 - построение индивидуальной кривой усталости на воздухе;

на фиг.5 - индивидуальные кривые усталости, соответствующие испытанию на воздухе (1) и в 3% водном растворе солей NaCl+MgCl (2).

Построение зависимости длины усталостной трещины от числа циклов нагружения - ключевой этап в определении параметров индивидуальной кривой усталости, позволяющий выделить характерные участки усталостного излома, поскольку одни участки образуются стабильно под действием нормальных напряжений, и число циклов, соответствующих распространению трещины в пределах этого участка, подходит для обработки по уравнению (1), а другие - распространяются нестабильно, в условиях сложнонапряженного состояния.

Алгоритм зависимости длины усталостной трещины от числа циклов нагружения и обработки ее характерных участков иллюстрируется изображениями, представленными на фиг.1-2. В процессе нагружения образца фиксируется зависимость длины растущей трещины от числа циклов нагружения (фиг.1), на ней выделяется участок прямолинейной зависимости длины трещины от числа циклов нагружения (фиг.2), данные этого участка используют для построения индивидуальной кривой усталости.

Алгоритм построения индивидуальной кривой усталости и оценка сопротивления коррозионной усталости иллюстрируется изображениями, представленными на фиг.3-5. Сначала результаты опытов аппроксимируют прямолинейной зависимостью (фиг.3)

и определяют значения коэффициентов k, b. Далее через коэффициенты уравнения (3) выражают параметры индивидуальной кривой усталости

и строят индивидуальную кривую усталости (фиг.4). По представленному алгоритму строят индивидуальные кривые усталости на воздухе и в коррозионной среде, по разности параметров которых оценивают сопротивление коррозионной усталости (фиг.5).

Способ оценки сопротивления коррозионной усталости сварных соединений, включающий определение параметров индивидуальной кривой усталости по единому степенному уравнению, описывающему зависимость числа циклов до разрушения от максимального напряжения цикла, для условий испытания на воздухе и в коррозионной среде, по разности которых оценивают сопротивление коррозионной усталости, отличающийся тем, что для определения параметров индивидуальной кривой усталости строят зависимость длины усталостной трещины от числа циклов нагружения, выделяют прямолинейный участок зависимости, по которому определяют число циклов нагружения, соответствующих условиям стабильного роста усталостной трещины.



 

Похожие патенты:

Изобретение относится к системе мониторинга коррозионных процессов на стальных подземных и подводных сооружениях, находящихся под слоем бетона, для определения опасности коррозии стали и контроля эффективности электрохимической защиты.

Изобретение относится к области химии урана, а именно к коррозионным исследованиям металлического урана в герметичных контейнерах, и может быть использовано для определения скорости коррозии урана в газообразных средах различного химического состава в различных условиях (различных по температуре и давлению газовой среды) с целью прогнозирования коррозионного состояния урановых деталей в условиях их реального использования или хранения.

Изобретение относится к текстильному материаловедению и предназначено для оценки устойчивости прочностных свойств материалов, эксплуатируемых на открытом воздухе и подверженных действию светопогодных факторов, по показателю поступившей в зону расположения образцов энергии суммарной, прямой и рассеянной/солнечной радиации, снижающей разрывную нагрузку материала на 35% от исходной.

Изобретение относится к системе контроля эффективности электрохимической защиты подземных трубопроводов, находящихся под катодной поляризацией. .

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций.

Изобретение относится к системе контроля эффективности электрохимической защиты заглубленных, полузаглубленных (емкости) в грунт, под слоем бетона, а также морских стальных сооружений, находящихся под катодной защитой.

Изобретение относится к области защиты от коррозии и может быть использовано для контроля процесса коррозионной защиты и автоматической коррекции величины защитного потенциала по длине трубопровода для его эффективной защиты.

Изобретение относится к технике коррозионного мониторинга подземных трубопроводов, в частности к биметаллическим датчикам контактной коррозии, и может быть использовано в газовой, нефтяной и смежных отраслях промышленности.

Изобретение относится к устройствам для измерения коррозии, в частности к устройствам для измерения коррозии в трубопроводах, и может найти применение в различных областях техники.

Изобретение относится к способу прогнозирования фотостабильности коллоидных полупроводниковых квантовых точек со структурой ядро-оболочка в кислородсодержащей среде, включающий измерение кинетик фотолюминесцентного сигнала квантовых точек для тестируемой и эталонной партий, определение для указанных партий значений параметра, характеризующего скорость спада фотолюминесцентного сигнала во времени.

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды

Способ управления является способом управления кондиционером воздуха, чтобы переводить состояние в замкнутом пространстве в предварительно определенное целевое состояние. Способ управления включает в себя этапы, на которых: устанавливают целевое значение для управления физической величиной; измеряют физическую величину в различных положениях в замкнутом пространстве и вычисляют скользящее среднее измеренных значений физической величины, измеренных в каждом из различных положений. Причем управляют кондиционером воздуха таким образом, что среднее значение между максимальным значением и минимальным значением множества вычисленных скользящих средних значений является целевым значением. Технический результат заключается в возможности точного контроля заданной температуры в замкнутом пространстве. 4 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к испытательной технике, предназначенной для определения влияния агрессивных сред на коррозионные свойства материалов и может быть использовано при разработке мероприятий по антикоррозионной защите оборудования в нефтяной, газовой, нефтехимической и других отраслях промышленности. Установка включает рабочий вал с приводом вращательного движения, герметичный контейнер, закрепленный на валу и частично заполненный коррозионной жидкостью, исследуемый образец, установленный в полости контейнера с помощью средств крепления, и трубки для подвода и отвода испытательного газа, снабженные регулирующими элементами. При этом герметичный контейнер выполнен в форме полого тора, в полости которого образец расположен вдоль меридиональных линий тора. Уровень коррозионной жидкости в герметичном контейнере установлен ниже внутренней образующей тора. Корпус герметичного контейнера и средства крепления образца изготовлены из диэлектрического материала или покрыты диэлектрическим материалом. Образец представлен в виде одного или нескольких проволочных элементов. Техническим результатом является повышение точности коррозионных испытаний. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии, конкретнее к контролю коррозионной стойкости против локальной коррозии стальных изделий, предназначенных для эксплуатации в агрессивных средах. Способ заключается в том, что от изделий отбирают пробы, изготавливают образцы с полированной поверхностью, поверхность образцов обрабатывают в растворе 3-10% ионов роданида в течение 3-5 часов при pH 8,0-9,0, затем проводят количественный анализ пораженных и непораженных коррозией участков посредством компьютерных функций программы обработки графических изображений, а о коррозионной стойкости изделий судят по доле поврежденной поверхности. Достигается повышение информативности и достоверности оценки. 1 з.п. ф-лы, 2 табл., 4 ил.

Изобретение относится к области исследования устойчивости металлов и сплавов к воздействию агрессивных сред и может быть использовано, в частности, для оценки надежности и долговечности сварных труб, предназначенных для строительства нефтегазопроводов. Согласно предлагаемому способу от изделия отбирают образец из области сварного соединения, изготавливают из образца поперечный шлиф, поверхность которого подготавливают травлением, и осуществляют измерение микротвердости по продольным линиям, расположенным по наружному шву, центру и внутреннему шву. Затем по каждой линии определяют средние значения микротвердости основного металла и металла в ЗТВ. Далее вычисляют разницу этих значений и среднюю величину разницы микротвердости основного металла и металла в ЗТВ, по которой оценивают стойкость сварного шва к коррозионному растрескиванию под напряжением. Техническим результатом является сокращение длительности и упрощение производимых операций для получения достоверной экспресс-оценки стойкости сварных изделий к коррозионному растрескиванию под напряжением. 1 табл.,1 ил.

Способ прогнозирования аварийного технического состояния трубопровода канализационной системы применяют в канализационной системе мегаполиса или крупного промышленного района и могут использовать для диагностики технического состояния водоочистных сооружений и трубопроводов со сточными водами. В зоне контролируемого участка трубопровода размещают, по меньшей мере, два датчика технического состояния. Затем периодически снимают показания с датчиков и сравнивают их значения с заданным пороговым значением. По результатам упомянутого сравнения судят о техническом состоянии данного участка трубопровода. В качестве датчика технического состояния применяют газоанализатор. Причем все датчики располагают на соответствующих торцах контролируемого участка трубопровода и связывают их с блоком управления и обработки информации, который предварительно располагают вне зоны контролируемого участка трубопровода. Таким образом образуют измерительный комплекс для контроля за развитием коррозии на внутренней поверхности трубопровода канализационной системы. Техническим результатом является упрощение процесса прогнозирования технического состояния всей внутренней поверхности участка трубопровода канализационной системы при обеспечении постоянного контроля за причинами возникновения и развитием коррозии на этой поверхности. 2 ил.

Изобретение относится к контролю протекания коррозионных процессов и может быть применено для определения степени опасности проникновения локальной коррозии, в частности питтинговой коррозии, в металлические конструкции (реакторы, теплообменники, емкости, трубопроводы и т.д.), контактирующие с электропроводными коррозионными средами. Устройство для контроля локальной коррозии, которое состоит из объектов воздействия коррозионной среды - металлических пластин, имеющих заранее меньшую и различную между собой толщину, чем стенка металлической конструкции, и изготовленных из того же материала, что и металлическая конструкция. При этом одна сторона каждой пластины обращена в сторону коррозионной среды, а другая путем известных способов электрически и механически присоединена к протектору тех же размеров, что и пластина, изготовленному из металла, имеющего более отрицательный потенциал коррозии в данной среде, чем металл пластины. Каждые пластина и протектор образуют датчики, которые электрически изолированы друг от друга, а протектор и от среды, антикоррозионным диэлектрическим покрытием, причем каждый датчик помещен в общий корпус из коррозионно-стойкого диэлектрического материала и имеет через блок переключателей и токоизмерительный прибор электрический контакт с металлической конструкцией. Техническим результатом изобретения является повышение надежности дистанционного диагностирования коррозионного состояния металлических конструкций, контактирующих с коррозионной средой, независимо от давления, температуры, движения среды и типа конструкции. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области силовой лазерной оптики и касается способа определения плотности дефектов поверхности оптической детали. Способ включает в себя облучение участков поверхности оптической детали пучком импульсного лазерного излучения с гауссовым распределением интенсивности, регистрацию разрушения поверхности, наиболее удаленного от точки максимальной интенсивности пучка лазерного излучения, определение соответствующего этому разрушению значения интенсивности пучка εi, определение зависимости плотности вероятности f(ε) разрушения поверхности оптической детали от интенсивности излучения и выбор наименьшего значения интенсивности пучка εimin. Плотность дефектов поверхности оптической детали D определяется по формуле: , где r0 - радиус пучка по уровню exp(-1) от максимальной интенсивности пучка излучения. Технический результат заключается в повышении точности и уменьшении трудоемкости измерений. 3 ил.
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.
Наверх