Способ извлечения железосодержащих компонентов из техногенного материала тонкого класса

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении сырья техногенного характера, золошлаковых отходов и различных объектов схожего состава, содержащего железо. Способ извлечения железосодержащих компонентов из техногенного материала тонкого класса включает мокрое магнитное разделение с добавлением в исходный материал магнетитовых частиц. При этом магнитное разделение ведут многостадийной сепарацией при увеличении поля магнитной индукции от 0,085 до 0,11 Тесла с добавлением магнетитовых частиц и полиакриламида. Магнетитовые частицы добавляют в количестве 0,5% к массе сухого материала класса крупности -0,4+0,2 мм и полиакриламида концентрации 1 г/т сухого материала. Техническим результатом является получение высокосортного железнорудного концентрата с содержанием железа более 60-80%. 1 ил., 2 табл.

 

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего магнитные компоненты.

Известен способ получения магнитных микросфер разных фракций из летучей золы тепловых станций, включающий первичную магнитную сепарацию золы с получением магнитного концентрата, очистку от немагнитных и слабомагнитных включений. Сухой магнитный концентрат классифицируют по размерам на ряд фракций определенного размера и подают пофракционно на вторичную магнитную сепарацию и конечный рассев каждой фракции [1].

Недостатками данного способа является низкий коэффициент извлечения магнетита тонкого класса.

Известен способ обогащения железосодержащих руд, включающего мокрое измельчение исходной руды в нескольких стадиях, мокрую магнитную сепарацию измельченных продуктов каждой стадии с получением отвальных хвостов и промпродуктов, которые направляют в следующую стадию измельчения, а также разделение по крупности промпродукта магнитной сепарации перед последней стадией измельчения с получением мелкого продукта, который направляют на магнитную сепарацию с получением первого концентрата и отвальных хвостов, и крупного продукта, который направляют на измельчение в последнюю стадию и далее направляют на последующую стадию магнитной сепарации с получением второго концентрата и отвальных хвостов [2].

Данный способ не обеспечивает эффективного разделения магнитной составляющей. Недостатками также являются то, что при реализации способа повышается качество лишь первого концентрата.

Наиболее близким к предлагаемому способу является способ мокрого магнитного обогащения слабомагнитных тонковкрапленных железных руд, заключающийся в магнитной гидросепарации измельченной исходной руды с добавлением сильномагнитных частиц через щелевые магнитные системы с пересечением частицами магнитных силовых линий для подмагничивания слабомагнитных частиц руды. В измельченной исходной руде поддерживают концентрацию сильномагнитных магнетитовых частиц, достаточную для флокуляции ими слабомагнитных частиц [3].

Недостатком этого способа является то, что описанный способ направлен на извлечение только слабомагнитных гематитовых руд.

Техническим результатом является повышение эффективности извлечения железосодержащих компонентов техногенных отходов, снижение затрат на предварительную обработку материала.

Технический результат достигается тем, что в способе извлечения железосодержащих компонентов из техногенного материала тонкого класса, заключающемся в мокром магнитном разделении с добавлением в исходную пробу магнетитовых частиц, процесс магнитного разделения включает многостадийную магнитную сепарацию при периодическом увеличении поля магнитной индукции от 0,085 до 0,11 Тесла с добавлением магнетитовых частиц в количестве 0,5% к массе сухого материала класса крупности -0,4+0,2 мм и полиакриламида концентрации 1 г/т сухого материала.

Совокупность новых существенных признаков позволяет решить новую техническую задачу по извлечению железосодержащих компонентов из техногенных отходов, а также труднообогатимых тонковкрапленных железных руд.

На фиг.1 - Схема извлечения железосодержащих компонентов из техногенных отходов с использованием процесса мокрой магнитной сепарации.

Реализация способа осуществлялась следующим образом.

Техногенный материал класса крупности -0,071 мм (99,41%), содержащий ценные компоненты (таблица 1), подвергался процессу магнитной сепарации для отделения магнитной фракции, содержащей железо и другие тяжелые металлы.

Таблица 1
Силикатный анализ исходного сырья
№ пробы Содержание определяемого компонента, %
SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O Потери при прокаливании
1 57,05 0,53 22,19 9,1 0,2 1,63 2,28 0,85 2,11 3,38
2 59,62 0,49 21,29 11,32 0,28 1,27 1,99 0,81 2,06 0,95
3 60,0 0,68 24,76 5,33 0,07 1,84 3,20 0,70 2,11 0,5
4 58,57 0,57 20,97 10,66 0,21 1,73 3,20 0,74 2,0 0,73
5 59,57 0.59 22,27 8,66 0,15 1,55 2,91 0,64 1,3 0,5

Процесс магнитного разделения осуществлялся в четыре серии. В первой сравнительной серии разделение осуществляли без добавления реагентов и вспомогательных веществ. Вторая серия сепарации проводилась с добавлением реагента - полиакриламида (ПАА) при аналогичной с первой серией силе магнитной индукции поля. Третья серия проходила с добавлением магнетитовых частиц класса -0,4+0,2 мм как центров флокуляции. Четвертая серия - комбинированная, с добавлением одновременно ПАА и магнетитовых частиц.

Процесс магнитного разделения включает многостадийную магнитную сепарацию при периодическом увеличении поля магнитной индукции от 0,085 до 0,11 Тесла с добавлением магнетитовых частиц в количестве 0,5% к массе сухого материала класса крупности -0,4+0,2 мм и полиакриламида концентрации 1 г/т сухого материала для увеличения степени извлечения магнитной фракции. Технологические показатели процесса сепарации приведены в таблице 2.

Таблица 2
Итоговая таблица продуктов обогащения магнитной фракции.
Продукты Выход фракции и содержание железа во фракциях серии
1 2 3 4
Выход, % Fe, % Выход, % Fe, % Выход, % Fe, % Выход, % Fe, %
Концентрат 1 (м/ф) 0,0093 58,2557 0,0592 67,2142 0,0715 73,6697 0,078 78,2219
Концентрат 2 (м/ф) 0,0396 67,0463 0,0278 66,0393 0,0087 73,2049 0,009 85,2742
Концентрат 3 (м/ф) 0,0366 66,4899 0,0214 63,8523 - - - -
Хвосты (нм/ф) 99,914 4,1464 99,892 3,8031 99,92 3,9545 99,913 3,3705

Реализация способа позволила достичь увеличения выхода магнитных компонентов в 8,4 раза при первом разделении. При совместном использовании ПАА и магнетитовых частиц интенсифицируется механизм гетерокоагуляции между магнетитовыми частицами класса -0,4+0,2 мм и тонкодисперсными шламами. За счет связывания тонкодисперсных шламов молекулами ПАА, а также образования «мягких» флоккул вокруг магнитных центров увеличивается скорость коагуляции. За счет возрастания напряженности на дополнительных частицах магнетита происходит повышение степени магнитной восприимчивости магнитных частиц исходного материала.

Все это повышает эффективность извлечения железа в концентрат на 16-26% по сравнению с известными способами.

Разработанные методы переработки могут использоваться на различных объектах схожего состава (труднообогатимые тонковкрапленные руды). Широкое использование способа обеспечит экономическую и экологическую эффективность за счет снижения техногенной нагрузки.

Источники информации

1. Патент №2407595 РФ. Способ получения магнитных микросфер разных фракций из летучей золы тепловых станций / Шаронова О.М., Аншиц А.Г., Акимочкина Г.В., Петров М.И.

2. Патент №2436636 РФ. Способ обогащения железосодержащих руд / Пелевин А.Е.

3. Патент №2123389 РФ. Способ мокрого магнитного обогащения слабомагнитных тонковкрапленных железных руд / Чумаков В.А., Бадагов В.Ф., Кузнецов В.Г., Челышкина В.В. и др.

Способ извлечения железосодержащих компонентов из техногенного материала тонкого класса, включающий мокрое магнитное разделение с добавлением в исходный материал магнетитовых частиц, отличающийся тем, что магнитное разделение ведут многостадийной сепарацией при увеличении поля магнитной индукции от 0,085 до 0,11 Тл с добавлением магнетитовых частиц в количестве 0,5% к массе сухого материала класса крупности -0,4+0,2 мм и полиакриламида концентрации 1 г/т сухого материала.



 

Похожие патенты:

Изобретение относится к устройствам для транспортировки и обогащения сыпучих магнитных материалов и может быть использовано в горнодобывающей, металлургической и других отраслях промышленности.

Изобретение относится к магнитному обогащению и может быть использовано для селективного разделения широкого класса минеральных смесей по их магнитным свойствам.
Изобретение относится к цветной металлургии, а именно к комплексной переработке красных шламов глиноземного производства. .

Изобретение относится к обогащению полезных ископаемых, в частности к мокрой магнитной сепарации. .

Изобретение относится к устройству для осаждения ферромагнитных частиц из суспензии. .

Изобретение относится к очистке технологических жидкостей, смазочно-охлаждающих жидкостей и может быть использовано на предприятиях металлургии и металлообрабатывающей промышленности, а также для очистки природных вод.

Изобретение относится к очистке технологических жидкостей на предприятиях металлургии и металлообрабатывающей промышленности, а также для очистки природных вод и касается устройства для очистки жидкости от магнитных частиц.
Изобретение относится к способам переработки сидеритовых руд, содержащих большие количества оксида магния (свыше 9 мас.%), и предназначено для одновременного получения двух продуктов - железорудного концентрата с высоким содержанием железа и оксида магния высокой чистоты.

Изобретение относится к магнитному обогащению и может быть использовано для сухой магнитной сепарации слабомагнитных руд. .
Изобретение относится к области гидрометаллургии, может найти широкое применение в металлургической промышленности. .

Изобретение относится к области разделения твердых частиц по плотности и может быть использовано в горнодобывающей, обогатительной, химической и других областях промышленности, в частности для эффективного отделения пустой породы, ценных минералов и металлов из рудного минерального сырья
Изобретение относится к способам, которые реализуют роботу обогатительного оборудования, предназначенного для переработки техногенно образованного магнитовосприимчивого сырья, гранулометрический состав которого представлен мелкими, мелкодисперсными и пылевидными фракциями

Изобретение относится к устройствам для разделения твердых частиц по плотности и может быть использовано в горнодобывающей, химической и других областях промышленности, в частности для эффективного отделения пустой породы из рудного минерального сырья

Изобретение относится к области обогащения карбонатной минеральной основы посредством удаления нежелательных примесей. Способ обогащения карбонатной минеральной основы магнитной сепарацией, включающий: (а) одновременное или последовательное перемешивание множества магнитных микрочастиц и реагента формулы I или формулы II; (I) R1R2R3 М; (II) R1R2R3R4 М+X-, где М представляет собой N или Р, Х представляет собой анионный противоион, и R1, R2, R3 и R4 независимым образом выбран из Н или органического остатка, содержащего от 1 до примерно 50 атомов углерода, или где по меньшей мере две из групп R1, R2, R3 и R4 образуют кольцевую структуру, содержащую до 50 атомов углерода включительно, причем по меньшей мере одна из групп R1, R2, R3 и R4 является органическим остатком, содержащим от 1 до примерно 50 атомов углерода, или по меньшей мере две из групп R1, R2, R3 и R4 совместно образуют кольцевую структуру, содержащую до 50 атомов углерода включительно; причем реагент формулы I или формулы II является соединением, выбранным из группы, состоящей из соединений вторичного амина, соединений третичного амина, соединений гетероциклического амина, соединений вторичного аммония, соединений третичного аммония, соединений четвертичного аммония, гетероциклических аммониевых соединений, фосфониевых соединений и их комбинаций; с минеральной основой, содержащей карбонат, с образованием смеси; и (b) приложение магнитного поля к смеси, чтобы тем самым отделить ценный минерал от малоценного минерала и обогатить карбонатную минеральную основу. Изобретение позволяет повысить эффективность способа обогащения карбонатной руды. 23 з.п. ф-лы, 5 табл.

Изобретение относится к области магнитной сепарации магнитсодержащих продуктов и может быть использовано в горнорудной и металлургической промышленности. Способ магнитной сепарации включает подачу исходной пульпы в зону воздействия неоднородного магнитного поля, извлечение магнитных зерен из движущейся пульпы в магнитный продукт и удаление немагнитных зерен и воды в немагнитный продукт. Пульпу под действием гравитационных и гидродинамических сил расслаивают по высоте на тонкозернистый и грубозернистый слои, при этом в магнитный продукт извлекают мелкие магнитные зерна из верхнего тонкозернистого слоя пульпы, а крупные магнитные зерна из нижнего грубозернистого слоя пульпы, находящиеся в зоне слабого магнитного поля, не извлекают и удаляют в немагнитный продукт. Изобретение позволяет повысить качество концентрата. 2 н. и 1 з.п. ф-лы, 2 табл., 2 ил.
Изобретение относится к области магнитного обогащения и может быть использовано для разделения исходных руд и продуктов гравитационного обогащения в магнитных жидкостях по плотности. Способ разделения материалов включает сепарацию материалов с выделением немагнитной и магнитной фракций, подачу немагнитной фракции и магнитной жидкости в зону разделения магнитожидкостного сепаратора, разделение материала в псевдоутяжеленной магнитной жидкости с выделением продуктов разделения, содержащих магнитную жидкость. Выделение магнитной жидкости из продуктов разделения, обработку выделенной жидкости в неоднородном магнитном поле и возвращение ее в магнитожидкостной сепаратор. Выделение магнитной жидкости из продуктов разделения осуществляют в центробежном поле, при этом выделенную жидкость подвергают вибрационному воздействию в неоднородном магнитном поле, величина произведения напряженности на градиент напряженности которого равна и более величины произведения напряженности на градиент напряженности магнитного поля магнитожидкостного сепаратора. Изобретение позволяет повысить эффективность разделения и однородность магнитной жидкости. 2 з.п. ф-лы.

Изобретение относится к магнитному обогащению и может быть использовано для магнитной сепарации широкого класса пульп из минеральных смесей, а также в сухом виде. Электромагнитный сепаратор с бегущим магнитным полем включает вибростол с размещенными под ним токовыми обмотками, расположенными на магнитных полюсных наконечниках, питаемых трехфазным током с осями, направленными перпендикулярно сепарационному столу. Индуктор бегущего магнитного поля состоит из двух А и Б частей с возможностью изменения частоты питаемого тока и расстояния до сепарируемой поверхности с противоположным направлением движения магнитного поля в них, токовые катушки индуктора могут быть смещены параллельно друг другу в сторону движения пульпы и состоят из нескольких секций с возможностью отключения части из них. При этом в зависимости от выбранного шага смещения угол между А и Б частями индуктора может изменяться от 180 до 90 градусов. Загрузочное устройство для пульпы размещено в центре между частями индуктора. Изобретение позволяет повысить эффективность и производительность процесса магнитной сепарации. 1 з.п. ф-лы, 2 ил.

Изобретение относится к магнитному обогащению и может быть использовано для магнитной сепарации широкого класса пульп из минеральных смесей, а также в сухом виде. Электромагнитный сепаратор с бегущим магнитным полем включает вибростол с размещенными под ним токовыми обмотками, расположенными на магнитных полюсных наконечниках, питаемых трехфазным током с осями, направленными перпендикулярно сепарационному столу. Индуктор бегущего магнитного поля состоит из двух А и Б частей с возможностью изменения частоты питаемого тока и расстояния до сепарируемой поверхности с противоположным направлением движения магнитного поля в них, токовые катушки индуктора могут быть смещены параллельно друг другу в сторону движения пульпы и состоят из нескольких секций с возможностью отключения части из них. При этом в зависимости от выбранного шага смещения угол между А и Б частями индуктора может изменяться от 180 до 90 градусов. Загрузочное устройство для пульпы размещено в центре между частями индуктора. Изобретение позволяет повысить эффективность и производительность процесса магнитной сепарации. 1 з.п. ф-лы, 2 ил.
Изобретение относится к способу сепарации минеральных частиц, содержащих ценный компонент. Способ включает смешивание водной пульпы исходного сырья с дисперсией, содержащей коллоидные магнитные частицы, и обработку полученной смеси в магнитном поле для извлечения концентрата ценного компонента. При этом предварительно осуществляют стабилизацию дисперсии магнитных частиц обработкой в водной среде реагентами с обобщенной формулой A1-R-A2, где R - углеводородный радикал, выбранный из ряда С3-C18, группа А1 - СООН или CONOH, A2 - OH или СН(ОН), или обработкой в среде жидкого углеводорода реагентами с обобщенной формулой A1-R, где R - углеводородный радикал, выбранный из ряда С3-С18, группа А1 - СООН или CONOH. После стабилизации дисперсию обрабатывают функционализирующим реагентом и смешивают с пульпой исходного сырья. Извлечение концентрата ценного компонента и магнитных частиц осуществляют осаждением в гравитационном поле в виде магнитных флокул при напряженности поля в интервале 80-880 кА/м или на магнитных сепараторах в виде магнитных флокул при напряженности поля в интервале 32-800 кА/м. Технический результат заключается в повышении эффективности извлечения тонких минеральных частиц путем использования технологии омагничивания магнитным коллоидом с последующим выделением ценного компонента магнитными методами. 7 з.п. ф-лы, 5 табл., 5 пр.
Изобретение относится к горно-перерабатывающей промышленности, в частности к области обогащения железных руд для получения товарного железорудного концентрата, предназначенного для металлургической промышленности, и может быть использовано при обогащении некондиционной окисленной железной руды, которая добывается открытым и подземным способом. Способ включает дробление и измельчение рудного сырья, ее селективную флокуляцию, дешламацию и магнитную сепарацию песков дешламации с получением железорудного концентрата, при измельчении рудного сырья его обрабатывают диспергатором, содержащим силикатные соли, расход которых составляет 0,2-0,6 кг на тонну измельченной руды, при этом в качестве силикатных солей используют 1,0-1,5% массовой доли соли тяжелых металлов в виде хрома, меди или цинка, а селективную флокуляцию частиц измельченной руды выполняют в жидкой среде дешламатора при pH 7,0-10,5, что позволяет обеспечить эффективное разделение минеральной составляющей железорудного сырья с получением высококачественного концентрата и отвальных хвостов обогащения.
Наверх