Способ термического упрочнения деталей из порошковых материалов на основе железа

Изобретение относится к порошковой металлургии, в частности к получению деталей из низколегированных порошковых материалов на основе железа с повышенными физико-механическими и эксплуатационными свойствами. Детали пропитывают маслом при температуре 80-90°С и закаливают путем нагрева в интервале температур 800-900°С в соляной ванне и последующего резкого охлаждения. После закалки проводят сушку горячим воздухом с температурой 100-120°С, причем закалку и сушку осуществляют дважды и последующий отпуск в соляной ванне при температуре 350°С. Обеспечивается повышение прочностных свойств. 1 ил., 1 табл.

 

Изобретение относится к области порошковой металлургии и может быть применено для получения деталей с повышенными физико-механическими и эксплуатационными свойствами, изготовляемых из низколегированных порошковых материалов на основе железа.

Известен способ термической обработки изделий из порошковых материалов с нагревом до температуры 750÷900°С (в соляной ванне) и последующем охлаждением в воде или масле и отпуске в интервале температур 200÷500°С (Термическая обработка спеченных материалов. Экспресс-информация. Серия 28. Выпуск №2, 1975 г.).

Недостатком способа является ограниченность технологических возможностей из-за проникновения солей в термообработанные образцы с высокой пористостью.

Наиболее близким к предложенному решению является способ термической обработки спеченных изделий [А.С. №598695, бюл. №11, 14.03.78], включающий нагрев под закалку в соляных ваннах, охлаждение, отпуск и отмывку, а перед нагревом под закалку изделия пропитывают органическим веществом.

Недостатком этого способа является то, что в процессе термической обработки механические свойства деталей получаются низкими из-за образования в результате обработки неоднородной структуры материала.

Техническим результатом предлагаемого изобретения является использование двойной закалки для повышения прочностных свойств деталей из порошковых материалов на основе железа.

Задача решается тем, что в способе термического упрочнения изделий из порошковых материалов на основе железа, включающем пропитку изделий маслом при температуре 80÷90°С, закалку путем нагрева в соляной ванне до температуры 800÷900°С и резкого охлаждения, сушку горячим воздухом с температурой 100÷120°С и отпуск при температуре 350°С, закалку и сушку осуществляют двукратно.

На чертеже представлен график термической обработки.

Способ осуществляют в следующей последовательности. Изделия пропитывают маслом при температуре 80÷90°С и нагревают в соляной ванне в расплаве солей 70% BaCl2+30% NaCl до температуры 800÷900°С с последующим резким охлаждением и сушкой при температуре 100÷120°С. Повторно нагревают в соляной ванне в расплаве солей 70% BaCl2+30% NaCl до температуры 800÷900°С с последующим резким охлаждением и сушкой при температуре 100÷120°С, а затем проводят отпуск при температуре 350°С.

Термическую обработку проводили в соответствии с графиком, приведенном на чертеже.

Данные по определению физико-механических свойств термообработанных материалов различного состава и пористости сведены в таблицу.

Для конкретного выполнения способа взяли материал СП 100-2 (пористость 15%), который после спекания имеет предел прочности на растяжение 250÷280 Н/мм2 и твердость 62÷68 единиц НВ. После однократной термической обработки (температура нагрева под закалку 850°С, охлаждение в воде и отпуск при температуре 350°С в течение 15 мин) по режиму 2 предел прочности на растяжение увеличился до 320÷360 Н/мм2, а твердость до 110÷130 единиц НВ. Двукратная закалка по режиму 12 позволила получить предел прочности на растяжение 410÷440 Н/мм2, а твердость 174÷193 единицы НВ. Двукратная закалка по режиму 14 материала СП 100 с пористостью 20% позволила получить предел прочности на растяжение 310÷330 Н/мм2 и твердость 93÷101 единиц НВ, что сопоставимо с результатами однократной закалки материала с пористостью 15%.

Таким образом, предлагаемый способ позволяет получать повышенные физико-механические свойства по сравнению традиционными (однократная закалка) методами термической обработки.

Использование предложенного способа по сравнению с прототипом позволяет значительно, в 1,7÷1,8 раза, увеличить предел прочности на растяжение и в 2,6÷2,8 раза твердость (режим 6) по отношению к исходным данным и соответственно в 1,5÷1,6 и 1,4÷1,5 раза по отношению к однократной закалке (режим 2).

Способ термического упрочнения изделий из порошковых материалов на основе железа, включающий пропитку изделий маслом при температуре 80-90°С, закалку путем нагрева в соляной ванне до температуры 800-900°С и резкого охлаждения, сушку горячим воздухом с температурой 100-120°С и отпуск при температуре 350°С, при этом закалку и сушку осуществляют двухкратно,



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов. .
Изобретение относится к порошковой металлургии, в частности термической обработке спеченных изделий с открытой пористостью в электролите. .

Изобретение относится к области термической обработки режущего инструмента. .

Изобретение относится к области упрочняющей обработки твердых сплавов инструментального назначения. .

Изобретение относится к обработке металлов давлением и предназначено для получения круглых в плане изделий с мелкозернистой структурой. .
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. .

Изобретение относится к порошковой металлургии, в частности к изготовлению спеченных постоянных магнитов системы РЗМ-Fe-B. .
Изобретение относится к области порошковой металлургии, а именно к способам изготовления поршневых колец. .

Изобретение относится к способу переработки отходов магнитов, преимущественно на основе железа-бора-редкоземельного элемента, в котором ранее спеченные магниты были уже использованы или отбракованы в процессе производства.

Изобретение относится к атомной технике, в частности к способу изготовления поглощающих сердечников с регулируемой поглощающей способностью из материала, поглощающего нейтроны, и предназначенных для применения в поглощающих элементах системы управления и защиты ядерных энергетических реакторов.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут. Спеченный брикет подвергают равноканальному угловому прессованию при сохранении неизменного положения плоскости деформации. Сплав обладает высокими механическими и триботехническими свойствами при трении по стали в отсутствие жидкой смазки. 7 ил.
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Гранулы крупностью менее 100 мкм получают методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения более 15000 об/мин. Дегазацию гранул проводят в движущемся потоке при массовой подаче 10-50 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул. Горячее изостатическое прессование и закалку проводят в течение 2-8 часов в однофазной области на 2-30°C выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 25°C/мин. Старение проводят в две стадии: для высокожаропрочных сплавов - при 850-890°C и 740-780°C, а для высокопрочных - при 800-760°C и 680-720°C. Повышается ресурс и надежность изделий, работающих в условиях жесткого нагружения в ГТД, за счет более высоких характеристик прочности, жаропрочности и трещиностойкости при рабочих температурах. 1 табл.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм. 7 ил.

Изобретение относится к обработке металлокерамических материалов резанием, в частности к формированию поверхностного слоя пористых металлокерамических спеченных материалов, которые могут быть использованы при производстве деталей из антифрикционных материалов, которые применяются в качестве самосмазывающихся подшипников скольжения для установки в спидометрах, распределителях зажигания, стартерах, стеклоочистителях, стеклоподъемниках автомобилей и тракторов, глубинных насосах, бытовой технике. Способ обработки включает удаление основной части припуска детали механической обработкой, после чего поверхность подвергают воздействию химически активного раствора, поступающего в зону резания из емкости-активатора, наполненного раствором, с пропусканием через него электрического тока с напряжением до 28 В и силой тока до 2,4 А с обеспечением процесса электрохимического травления. В результате обработки улучшается обрабатываемость металлокерамических сплавов. 1 ил.

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·1012 эл/см2, и проводят стабилизирующий отжиг в интервале температур от 200 до 350 °С. Обеспечивается стабилизация механических характеристик. 5 ил.

Изобретение относится к области металлургии, в частности к изделиям из карбидсодержаших твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Способ получения режущего инструмента из карбидсодержащих сплавов вольфрамовой (ВК) и титано-вольфрамовой (ТК) групп включает спекание карбидсодержащих сплавов при температуре 1400-1650°C и охлаждение. После спекания производят вакуумный отжиг с нагревом до температуры 1050°C-1250°C и выдержкой 1 час, а последующее охлаждение осуществляют вместе с печью в течение 4 часов. Повышается стойкость карбидсодержащих сплавов. 8 ил., 5 табл.

Изобретение относится к области металлургии, в частности к изделиям из твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Техническим результатом предлагаемого изобретения является упрощение технического процесса термообработки твердых сплавов,. Способ термической обработки твердосплавного изделия включает спекание твердосплавного изделия и охлаждение. Спекание проводят при температуре 1650°С, затем осуществляют вакуумный отпуск с нагревом до температуры 1050°С-1250°С и выдержкой 1 час, а охлаждение проводят вместе с печью в течение 4 часов. Увеличиваются твердость, прочность и стойкость изделий. 1 ил., 4 табл.

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей, работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ получения биметаллического диска газотурбинного двигателя включает засыпку в капсулу для диска, состоящего из ободной и ступичной частей, гранул двух жаропрочных никелевых сплавов, горячее изостатическое прессование капсулы и последующую термообработку. В капсулу для диска засыпают гранулы двух жаропрочных никелевых сплавов, различающихся по температуре сольвуса не более чем на 5-10°С. Для засыпки ободной части диска используют гранулы одного жаропрочного никелевого сплава с фракцией 140 мкм и более. Для ступичной части используют гранулы другого жаропрочного никелевого сплава с фракцией не более 70 мкм, при этом горячее изостатическое прессование и термообработку проводят при одной температуре, превышающей температуру сольвуса каждого сплава. Повышается КПД, ресурс и надежность и снижается вес газотурбинного двигателя за счет более высоких характеристик прочности и сопротивления малоцикловой усталости в ступице дисков турбины и повышенных характеристик жаропрочности и трещиностойкости на их ободе. 1 табл.
Наверх