Акустооптическая система

Изобретение относится к лазерной технике и может быть использовано при создании лазерных установок гравировки, маркировки и раскройки материалов, а также проекционных систем повышенной четкости. Оптическая часть системы состоит из источника когерентного излучения (1), неаксиального акустооптического дефлектора (2) со светозвукопроводом (3) из кристалла пьезоэлектрического материала в виде призмы, на котором закреплен звукоизлучающий пьезоэлемент (4), и оптической системы развертки (5). Электрическая часть содержит блоки питания и программно-аппаратный управляющий модуль (6), состоящий из блока управления (7) со счетно-решающим устройством (8), высокочастотного генератора сигналов (9) и блоков сопряжения (10) и (11). Плоская грань выходной поверхности светозвукопровода выполнена под углом 40°-70° к оси оптического луча. На входе акустооптического дефлектора установлена первая оптическая система (12) для расширения увеличения диаметра пучка света, а на выходе системы развертки - вторая оптическая система (13) для расширения диапазона углов сканирования. Программно-аппаратный управляющий модуль (6) выполнен с возможностью генерации высокочастотного сигнала, состоящего из определенного числа компонент с детерминированными амплитудами, частотами и относительными фазами. Технический результат - увеличение углового диапазона сканирования. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое устройство относится к лазерной технике и может быть использовано при создании технологических лазерных установок гравировки, маркировки и раскройки материалов, а также проекционных систем для формирования видеоизображения повышенной четкости.

Известна акустооптическая сканирующая система [RU 2193793], используемая для обработки объекта лазерным когерентным излучением ультрафиолетового диапазона длин волн. Такая система содержит источник когерентного излучения (лазер), выходное излучение которого направляется на акустооптический дефлектор. Основу акустооптического дефлектора составляет светозвукопровод, в котором происходит дифракция оптического излучения на специально сформированной акустической (звуковой) волне. При этом, изменяя частоту звука, можно изменять угол отклонения дифрагированного излучения. Предложенная в [RU 2193793] система, благодаря использованию парателлурита в качестве материала светозвукопровода акустооптического дефлектора, а также ряда технических решений, имеет повышенный угол сканирования (2,6°) при пониженной мощности высокочастотного сигнала управления и выполнена в виде двухкоординатного акустооптического сканера. Однако данное устройство имеет низкую эффективность дифракции (60%). Под эффективностью дифракции акустооптического устройства подразумевается отношение интенсивности отклоненного света к общей интенсивности введенного в дефлектор излучения.

Известен акустооптический дефлектор [US 4889415], где для увеличения угла сканирования изготавливают дефлектор с определенными геометрическими и пространственными параметрами. А именно, грани дефлектора, на которые падает излучение, располагают перпендикулярно к оптическому лучу и перпендикулярно к плоскости, в которой расположен пьезопреобразователь, формирующий звуковую волну. При этом перед дефлектором и после дефлектора устанавливают оптические линзы, увеличивающие угол расхождения пучка. Недостатком подобного технического решения является то, что при увеличении диапазона углов сканирования сохраняется число разрешимых положений оптического луча. Вследствие этого уменьшается угловое и линейное (в плоскости изображения) разрешение акустооптического дефлектора.

Описано устройство [Высокоэффективная акустооптическая дифракция света на многочастотном звуке в геометрии неаксиального дефлектора / С.Н.Антонов, А.В.Вайнер, В.В.Проклов, Ю.Г.Резвов // ЖТФ. - 2008. - Т.78. Вып.6. - С.79-83], использующее высокоэффективную акустооптическую дифракцию в кристалле парателлурита оптического излучения видимого диапазона. Использование в данном устройстве дифракции на многочастотном звуковом поле позволило обеспечить формирование нескольких оптических лучей с высокой суммарной эффективностью дифракции. Это позволяет повысить быстродействие сканирующей системы в целом, так как без ухудшения разрешения одновременно формируется элемент изображения (фрагмент строки), состоящий из нескольких минимальных элементов (пикселей). В описанном устройстве использовался акустический сигнал в виде суммы эквидистантных по частоте монохроматических акустических волн с детерминированными амплитудами и фазами, что позволило создать пятилучевой расщепитель лазерного излучения. Однако описанное устройство имеет малый полный угловой диапазон сканирования - 2,8 градусов. Кроме того, авторами указывается, что расчет амплитуд и фаз, необходимых для формирования наперед заданного распределения интенсивности в дифракционной зоне, при числе лучей более 5 сопряжен со значительным временем компьютерных вычислений, что не позволяет использовать такое решение для систем сканирования, формирующих изображение на основе входного видеосигнала в реальном времени.

Известен электронный модуль, описанный в патентном документе [US 5255257], который позволяет использовать акустооптический дефлектор в режиме высокоэффективной многочастотной дифракции. Данная задача решается путем внесения относительного сдвига фаз между компонентами акустического сигнала, при этом используется фиксированный сдвиг фаз на 0 и 180 градусов. Конкретное значение сдвига фазы для каждой частотной компоненты выбирается на основании предварительного расчета для определенных комбинаций частот компонент, из которых состоит сложный акустический сигнал. Такое техническое решение не позволяет формировать высокоэффективное многолучевое поле в режиме реального времени.

Наиболее близким по технической сущности к заявляемому решению, взятым за прототип, является акустооптический сканер [US 4000493] и методика одновременного формирования нескольких дифракционных максимумов (нескольких дифрагировавших лучей) при дифракции света на многочастотной акустической волне, для чего на пьезопреобразователь, формирующий звуковую волну, подается сложный высокочастотный сигнал. Устройство-прототип обеспечивает формирование произвольно заданного пространственного распределения интенсивностей дифрагировавшего излучения. Однако использованный способ расчета формы сложного высокочастотного сигнала, необходимого для формирования заданного распределения интенсивностей, использует предположение линейности акустооптического взаимодействия, что справедливо лишь для низкой эффективности дифракции (менее 6%). Работа такого устройства в случае, если эффективность дифракции будет превышать данный уровень, невозможна в силу возникновения ряда искажений, в частности появление интермодуляционных паразитных дифракционных порядков, что будет приводить к значительному рассогласованию получаемого пространственного распределения интенсивности дифрагировавшего излучения по отношению к заданному распределению.

Задачей данного изобретения является расширение углового диапазона сканирования акустооптической системы при сохранении (или увеличении) разрешающей способности устройства и высокой дифракционной эффективности с возможностью формирования требуемого пространственного распределения интенсивности дифрагировавшего излучения на основании входного электрического видеосигнала в реальном времени.

Для решения поставленной задачи предлагается акустооптическая система, содержащая оптическую часть, состоящую из последовательно размещенных источника оптического когерентного излучения (1), неаксиального акустооптического дефлектора (2) со светозвукопроводом (3) из кристалла пьезоэлектрического материала в виде призмы, на котором закреплен звукоизлучающий пьезоэлемент (4), и оптической системы развертки (5), и электрическую часть, содержащую блоки питания и программно-аппаратный управляющий модуль (6), состоящий из блока управления (7) со счетно-решающим устройством (8), высокочастотного генератора сигналов (9), блоков сопряжения (10) и (11). Согласно изобретению светозвукопровод (3) выполнен таким образом, что размер его поперечного сечения D в направлении, перпендикулярном оси оптического излучения, равен

D = 1,22 k λ Δ β R ,

где λ - длина волны излучения лазера, R - требуемая разрешающая способность дефлектора, коэффициент k находится в диапазоне 1,08-1,12, а плоская грань выходной поверхности светозвукопровода (3) выполнена под углом ψ к оси оптического луча, причем ψ находится в диапазоне 40°-70°, на входе акустооптического дефлектора установлена первая оптическая система (12) для расширения увеличения диаметра пучка света, а на выходе системы развертки установлена вторая оптическая система (13) для расширения диапазона углов сканирования, при этом программно-аппаратный управляющий модуль (6) выполнен с возможностью генерации на основе входного видеосигнала в режиме реального времени высокочастотного сигнала, состоящего по меньшей мере из числа Nmin компонент с детерминированными амплитудами, частотами и относительными фазами, равного соотношению

N min = D υ s τ ,

где D - размер поперечного сечения светозвукопровода (3) в направлении, перпендикулярном оси распространения оптического луча, υs - скорость звука в светозвукопроводе (3), τ - требуемое время отображения единичного элемента изображения.

Оптическая система развертки (5) выполнена в виде дополнительного акустооптического дефлектора, либо в виде микромеханического дефлектора.

Достигаемый технический результат состоит в увеличении углового диапазона сканирования Δβ до 6° в каждом направлении, при суммарной эффективности дифракции не менее 90% и разрешении не менее 720 элементов в каждом направлении. Технический результат достигается путем работы акустооптического дефлектора в режиме «искаженной» геометрии, что расширяет диапазон рабочих частот (угол направления звуковой волны α выбирается таким образом, чтобы условие фазового синхронизма выполнялось при двух значениях частоты звуковой волны f1 и f2); путем применения оптической системы, увеличивающей угловой диапазон сканирования; путем увеличения диаметра пучка излучения за счет увеличения размера светозвукопровода акустооптического дефлектора в направлении, перпендикулярном направлению распространения света, что приводит к уменьшению дифракционной расходимости и, следовательно, увеличивает разрешающую способность дефлектора; путем использования многочастотной дифракции, что увеличивает быстродействие дефлектора (в частности, компенсирует снижение быстродействия, вызванное увеличением размера светозвукопровода) за счет одновременного формирования группы дифракционных пятен; путем использования счетно-решающего устройства, работающего на основе матричного алгоритма, допускающего аппаратное распараллеливание, для вычисления требуемого амплитудно-фазового спектра высокочастотного сигнала, что позволяет формировать многочастотный сигнал в режиме реального времени по результатам обработки входного видеосигнала.

Предложенное техническое решение поясняется чертежами, где на фиг.1 изображена общая схематическая блок-схема акустооптической проекционной системы; на фиг.2 изображена схема акустооптического дефлектора.

Устройство выполнено следующим образом: оптически соединенные между собой источник оптического когерентного излучения (1), неаксиальный акустооптический дефлектор (2) со светозвукопроводом (3), на котором закреплен звукоизлучающий пьезоэлемент (4) и оптическая система развертки (5); блоки питания, электрически соединенные с лазером и программно-аппаратным управляющим модулем (6), состоящим из электрически соединенных между собой блока управления (7), счетно-решающего устройства (8), высокочастотного генератора сигналов (9), блоков сопряжения (10) и (11), электрически соединенных с пьезоэлементом и системой развертки соответственно. На входе акустооптического дефлектора располагается первая оптическая система (12), на выходе системы развертки - вторая оптическая система (13).

Работает предлагаемая акустооптическая проекционная система следующим образом. Излучение лазера (1) направляется на первую оптическую систему (12), где происходит расширение диаметра оптического луча до размера

d 0 = D k cos γ 1 ( sin γ n 0 ) 2 ,

где n0 - показатель преломления материала светозвукопровода (3) для обыкновенной волны, γ - угол между плоской гранью входной поверхности дефлектора (2) и осью оптического луча, входящего в дефлектор, D - размер поперечного сечения светозвукопровода (3) в направлении, перпендикулярном оси распространения оптического луча, коэффициент k равен отношению размера поперечного сечения D светозвукопровода к диаметру d оптического луча внутри кристалла. Коэффициент k находится в диапазоне 1,08-1,12 и выбирается с учетом технологических допусков, обусловленных точностью изготовления светозвукопровода. Затем излучение заводится в акустооптический дефлектор (2), работающий в режиме многочастотной акустооптической дифракции. Входная поверхность акустооптического дефлектора (2) просветлена известным способом для излучения с длиной волны, равной длине волны излучения лазера (1), а также расположена под уголом Брюстера к оси оптического луча, входящего в дефлектор (2). На пьезопреобразователь (4) акустооптического дефлектора поступает сигнал, формируемый программно-аппаратным модулем в режиме реального времени, который состоит из определенного числа N компонент различных частот, с детерментированными амплитудами и фазами. Это приводит к формированию высокоэффективного многолучевого одномерного поля в дифракционном порядке. Недифрагировавшее излучение задерживается поглотителем, дифрагировавшее поступает на оптическую систему развертки (5), где происходит отклонение одномерной многолучевой дифракционной картины вдоль перпендикулярной ей оси на угол, соответствующий строке видеосигнала, фрагмент которой проецируется в данный момент. Каждый фрагмент строки проецируется в течение времени τ0; после того как все фрагменты строки были засвечены, начинается проекция фрагмента следующей строки видеосигнала. С выхода оптической системы развертки (5) излучение поступает на вторую оптическую систему (13), где происходит расширение диапазона углов сканирования акустооптической системы.

Программно-аппаратный управляющий модуль (6) электрической части работает следующим образом. На вход блока управления (7) подается видеосигнал, который разбивается на строки. Каждая строка попадает в буфер, откуда по фрагментам передается в счетно-решающее устройство (8). В нем происходит численное решение обратной задачи многочастотной дифракции: находятся амплитуды, частоты и фазы акустических волн, акустооптическое взаимодействие оптического излучения с которыми даст в дифракционном поле картину интенсивности, соответствующую фрагменту строки видеоизображения. Решение задачи осуществляется путем решения линейной системы алгебраических уравнений, составленных на основе дифференциальных уравнений связанных волн, описывающих многочастотную дифракцию. Система уравнений связанных волн, описывающая многочастотное акустооптическое взаимодействие, согласно [Gazalet M.G., Kastelik J.C., Bruneel C., Bazzi C., Bridoux E. Acousto-optic multifrequency modulators: reduction of the phase-grating, intermodulation products // Appl. Opt. - 1993. - V.32. - P.2455-2460], представляет собой бесконечную систему связанных дифференциальных уравнений вида:

где G n 1 n 2 n 3 n μ = G n 1 n 2 n 3 n μ ( x ) - комплексная амплитуда вектора диэлектрического смещения D, относящаяся к лучу, последовательно дифрагировавшему на n1-й, n2-й, … nµ-й акустической волне (рис.1 для случая N=2), n1n2n3…nµ∈[1, N], n a n a + 1 a ; η n 1 n 2 n 3 n μ n 1 n 2 n 3 n μ n μ + 1 - фазовая расстройка между лучом с амплитудой G n 1 n 2 n 3 n μ в нулевом порядке и лучом G n 1 n 2 n 3 n μ n μ + 1 в брегговском порядке (дифрагировавшие лучи); x - нормированная координата вдоль оси распространения света в акустооптической ячейке х∈[0, 1]; cm - величина, связанная с акустической мощностью Pm m-й компоненты акустического сигнала: с m = π 2 P m P o , где P0 - акустическая мощность, при которой наблюдается 100% эффективность акустооптической дифракции в режиме Брегга.

Для решения такой системы дифференциальных уравнений рассматривается построенное на ее основе дерево, где каждому уравнению будет соответствовать свой конкретный узел. После чего производится обход дерева от конечных узлов до корня и составляется система линейных уравнений. Существующие алгоритмы решения систем линейных уравнений допускают проведение распараллеливания секций, на которые приходятся наибольшие затраты процессорного времени, что дает возможность работы в режиме реального времени с минимальной задержкой (от 100 мс) аппаратных решений.

Пример 1

Рассмотрим акустооптическую систему, предназначенную для отображения входного видеосигнала, представляющего собой сигнал телевидения: число точек на строку изображения - 720 точек, частота смены кадров - 25 кадров в секунду, число строк - 1280 строк. В этом случае время отображения одного кадра составляет 40 мс, а время, приходящееся на одну точку изображения при последовательном сканировании всех точек, - τ=43 нс.

Используется полупроводниковый лазер с длиной волны излучения λ=635 нм. Светозвукопровод акустооптического дефлектора выполнен из парателлурита (TeO2), при этом направление распространения света совпадает с осью [001] кристалла, а направление распространения звука имеет малый угол (от 3 до 10 градусов) с осью [110], что соответствует «искаженной» геометрии акустооптического взаимодействия. Скорость звука в выбранном направлении составляет υs=617 м/с. Диапазон рабочих частот составляет 66 МГц…121 МГц, при эффективности дифракции более 90%. Этот диапазон частот соответствует диапазону углов сканирования, равному Δθ=2,4°. Выход сканируемого излучения из кристалла осуществляется под углом примерно 60°. Диапазон углов сканирования в такой акустооптической системе становится равным Δβ=6,1°. Разрешающая способность дефлектора равна

R = Δ β Δ φ ,

где Δ ϕ = 1,22 λ d - угловая расходимость пучка света, имеющего диаметр d. Так как требуемое значение R составляет 720 разрешимых положений, то необходимый диаметр пучка

d = 1,22 λ R Δ β = 5,4   м м .

Поперечный размер светозвукопровода акустооптического дефлектора выберем увеличенным на 10% по сравнению с величиной d с учетом технологических допусков, обусловленных точностью изготовления (D=6 мм). Быстродействие такого дефлектора равно

τ 0 = d υ s = 9,7   м к с .

Минимально требуемое число компонент многочастотного сигнала равно

N = τ 0 τ = 226.

Рекомендуемое значение числа компонент многочастотного сигнала составляет 240, что соответствует разбиению строки на три отдельно отображаемые части.

Пример 2

Рассмотрим акустооптическую систему, предназначенную для отображения входного видеосигнала, представляющего собой сигнал телевидения: число точек на строку изображения - 720 точек, частота смены кадров - 25 кадров в секунду, число строк - 1280 строк. В этом случае время отображения одного кадра составляет 40 мс, а время, приходящееся на одну точку изображения при последовательном сканировании всех точек, - τ=43 нс.

Пусть используется DPSS лазер с длиной волны излучения λ=514 нм. Светозвукопровод акустооптического дефлектора выполнен из парателлурита (TeO2), при этом направление распространения света совпадает с осью [001] кристалла, а направление распространения звука имеет малый угол (от 3 до 10 градусов) с осью [110], что соответствует «искаженной» геометрии акустооптического взаимодействия. Скорость звука в выбранном направлении составляет υs=617 м/с. Диапазон рабочих частот составляет 71 МГц…166 МГц, при эффективности дифракции более 90%. Этот диапазон частот соответствует диапазону углов сканирования, равному Δθ=2,4°. Выход сканируемого излучения из кристалла осуществляется под углом примерно 67°. Диапазон углов сканирования в такой акустооптической системе становится равным Δβ=8°. Разрешающая способность дефлектора равна

R = Δ β Δ φ ,

где Δ ϕ = 1,22 λ d - угловая расходимость пучка света, имеющего диаметр d. Так как требуемое значение R составляет 720 разрешимых положений, то необходимый диаметр пучка

d = 1.22 λ R Δ β = 5,6 м м .

Поперечный размер светозвукопровода акустооптического дефлектора выберем увеличенным на 10% по сравнению с величиной d с учетом технологических допусков, обусловленных точностью изготовления (D=6,2 мм). Быстродействие такого дефлектора равно

τ 0 = d υ s = 10 м к с .

Минимально требуемое число компонент многочастотного сигнала равно

N = τ 0 τ = 233.

Рекомендуемое значение числа компонент многочастотного сигнала составляет 240, что соответствует разбиению строки на три отдельно отображаемые части.

Выводы

Таким образом, взаимосвязь известных признаков и новых, обозначенных в отличительной части, дает возможность получить неожиданный технический результат, а именно увеличение углового диапазона сканирования акустооптической системы до 6° в каждом направлении, при суммарной эффективности дифракции не менее 90% и разрешении не менее 720 элементов в каждом направлении.

1. Акустооптическая система, содержащая оптическую часть, состоящую из последовательно размещенных источника оптического когерентного излучения (1), неаксиального акустооптического дефлектора (2) со светозвукопроводом (3) из кристалла пьезоэлектрического материала в виде призмы, на котором закреплен звукоизлучающий пьезоэлемент (4), и оптической системы развертки (5), и электрическую часть, содержащую блоки питания и программно-аппаратный управляющий модуль (6), состоящий из блока управления (7) со счетно-решающим устройством (8), высокочастотного генератора сигналов (9), блоков сопряжения (10) и (11), отличающаяся тем, что светозвукопровод (3) выполнен таким образом, что размер его поперечного сечения D в направлении, перпендикулярном оси оптического излучения, равен
D = 1,22 k λ Δ β R ,
где λ - длина волны излучения лазера, R - требуемая разрешающая способность дефлектора, коэффициент k находится в диапазоне 1,08-1,12, а плоская грань выходной поверхности светозвукопровода (3) выполнена под углом ψ к оси оптического луча, причем ψ находится в диапазоне 40°-70°, на входе акустооптического дефлектора установлена первая оптическая система (12) для расширения увеличения диаметра пучка света, а на выходе системы развертки установлена вторая оптическая система (13) для расширения диапазона углов сканирования, при этом программно-аппаратный управляющий модуль (6) выполнен с возможностью генерации на основе входного видеосигнала в режиме реального времени высокочастотного сигнала, состоящего по меньшей мере из числа Nmin компонент с детерминированными амплитудами, частотами и относительными фазами, равного соотношению
N min = D υ s τ ,
где D - размер поперечного сечения светозвукопровода (3) в направлении, перпендикулярном оси распространения оптического луча, υs - скорость звука в светозвукопроводе (3), τ - требуемое время отображения единичного элемента изображения.

2. Акустооптическая система по п.1, отличающаяся тем, что оптическая система развертки (5) выполнена в виде дополнительного акустооптического дефлектора, либо в виде микромеханического дефлектора.



 

Похожие патенты:

Изобретение относится к акустооптике и лазерной технике, в частности к акустооптическому модулятору пучка оптического излучения. .

Изобретение относится к устройствам для управления лазерным излучением. .

Изобретение относится к акустооптическим модуляторам света (АОМ) на стоячих упругих волнах, предназначенным для осуществления амплитудной модуляции непрерывного когерентного оптического излучения, и может быть использовано для синхронизации мод лазеров, модуляции добротности.

Изобретение относится к квантовой электронике, лазерной спектроскопии, акустооптике и может быть использовано для широкополосной частотной стабилизации лазеров и сужения спектра их излучения.

Изобретение относится к области лазерной техники и может быть использовано для точного управления лазерным излучением. .

Изобретение относится к акустооптике и может быть использовано в качестве перестраиваемого узкополосного фильтра в анализаторах спектров оптического излучения. .

Изобретение относится к области приборостроения. .

Изобретение относится к области оптической обработки сигналов и может быть использовано для передачи многоканальных и одноканальных сообщений по оптическим линиям связи.

Изобретение относится к прикладной оптике и спектроскопии и может быть использовано в спектрометрах и приборах на их основе. .

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем составе лазер, коллиматор, акустооптический дефлектор, глухое зеркало, две интегрирующие линзы и две линейки фотоприемных устройств, в котором измеряемый радиосигнал подается на пьезопреобразователь акустооптического дефлектора, а на одну из его оптических граней лазерное излучение падает под отрицательным углом Брэгга и дифрагирует по направлению последовательно расположенных первой интегрирующей линзы и первой линейки фотоприемных устройств, а на вторую оптическую грань акустооптического дефлектора лазерное излучение, переотражаясь от глухого зеркала, падает под положительным углом Брэгга и дифрагирует по направлению последовательно расположенных второй интегрирующей линзы и второй линейки фотоприемных устройств, дополнительно между первой и второй гранями акустооптического дефлектора и первой и второй интегрирующими линзами включены первый и второй поляроиды, а акустооптический дефлектор выполнен на основе ниобата лития с косым углом среза, равным β, и аномальной дифракцией, характеризуемой наличием двух одинаковых полос пропускания ΔfΣ1 и ΔfΣ2 вблизи отличающихся частот перегиба f01 и f02, задаваемых соответствующей величиной угла β, и между собой взаимосвязанных посредством f02-f01≃ΔfΣ1≃ΔfΣ2, причем протяженность по свету пьезопреобразователя акустооптического дефлектора выбрана из условия совмещения полос ΔfΣ1 и ΔfΣ2 по заданному уровню неравномерности дифракционной эффективности. 4 ил.
Изобретение относится к области прикладной оптики и касается двойного акустооптического монохроматора на одном кристалле. Монохроматор содержит первый поляризатор, акустооптическую ячейку, второй поляризатор и поворотную призму, установленную с возможностью возврата оптического луча во второй поляризатор. Входной луч последовательно проходит через часть первого поляризатора, часть акустооптической ячейки и часть второго поляризатора. Поворотная призма обеспечивает возврат луча в монохроматор таким образом, чтобы луч последовательно проходил через соседнюю часть второго поляризатора, акустооптической ячейки и первого поляризатора. При этом первый поляризатор выполняет функцию выходного поляризатора. Технический результат заключается в уменьшении энергопотребления, упрощении производства и наладки монохроматора.

Изобретение относится к акустооптическому устройству, предназначенному для управления оптическим излучением посредством акустооптической брэгговской дифракции света на звуке, и может использоваться для управления амплитудой, частотой, фазой и поляризацией оптического излучения. Акустооптическое устройство содержит акустооптический кристалл, пьезопреобразователь и управляющий элемент для изменения угла наклона, расположенный между акустооптическим кристаллом и пьезопреобразователем и жестко связанный с последним. Управляющий элемент выполнен в виде двух призм, соприкасающихся друг с другом двумя плоскостями и установленных с возможностью вращения относительно друг друга вокруг оси, перпендикулярной поверхности кристалла и оси, перпендикулярной плоскостям соприкосновения призм. Технический результат - увеличение точности установки угла наклона пьезопреобразователя к акустооптическому кристаллу. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области спектрометрии и касается акустооптического анализатора спектра оптических сигналов. Анализатор включает в себя акустооптический фильтр, фотоприемное устройство, радиочастотный анализатор спектра и цепь обратной связи. Акустооптический фильтр включает в себя анизотропный кристалл, поляризатор и анализатор. Анизотропный кристалл вырезан таким образом, чтобы обеспечивать коллинеарный режим дифракции света на ультразвуке с рассеянием излучения одновременно в несколько дифракционных порядков. Поляризатор и анализатор ориентированы таким образом, чтобы на выходе акустооптического фильтра существовали +1-й, -1-й и 0-й дифракционные максимумы. Радиочастотный анализатор спектра электрически связан с выходом фотоприемного устройства и обеспечивает регистрацию спектра электрического сигнала фотоприемного устройства. Цепь электрической обратной связи связывает выход фотоприемного устройства с входом пьезоэлектрического преобразователя акустооптического фильтра. Технический результат заключается в повышении спектрального разрешения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области оптического приборостроения и касается акустооптического перестраиваемого фильтра. Фильтр включает в себя поляризатор, акустооптическую ячейку, анализатор, светоделитель, фотоприемное устройство, цепь электрической обратной связи и радиочастотный генератор. Акустооптическая ячейка обеспечивает коллинеарный режим дифракции с рассеянием излучения одновременно в несколько дифракционных порядков. На выходе из анализатора осуществляется интерференция +1, -1 и 0 дифракционных максимумов. Цепь обратной связи связывает фотоприемное устройство и пьезоэлектрический преобразователь ячейки. Радиочастотный генератор выполнен с возможностью управления амплитудой и частотой сигнала генерации и предназначен для управления положением и шириной полосы пропускания фильтра. Технический результат заключается в уменьшении полосы пропускания и обеспечении возможности управления шириной и положением полосы пропускания. 1 з.п. ф-лы, 1 ил.

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности совмещает в себе функции поляризатора и спектрального селектора и представляет собой акустооптический фильтр на основе кристалла парателлурита, с формой, обеспечивающей совпадение оси дифрагированного луча на выходе кристалла с осью оптического резонатора. Техническим результатом изобретения является повышение эффективности накачки параметрического генератора света и точности спектральных исследований, а также упрощается оптическая схема и уменьшается энергопотребление лазера. 1 ил.

Акустооптическое устройство преобразования поляризации лазерного излучения состоит из первой и второй акустооптических ячеек, в которых происходит коллинеарная или неколлинеарная дифракция. Первая ячейка осуществляет деление входного пучка на два пучка, один из двух выходных пучков которой падает на вторую ячейку, которая обеспечивает на выходе допплеровский сдвиг второго пучка, равный по знаку и величине допплеровскому сдвигу первого пучка. Также устройство содержит полуволновую фазовую пластинку, которая поворачивает направление поляризации одного из пучков на 90°, оптическую линию задержки для обеспечения заданной разности фаз двух пучков и поляризационную призму, которая обеспечивает когерентное сложение двух пучков на выходе системы. Технический результат заключается в обеспечении возможности преобразования входной линейной поляризации лазерных пучков в произвольную эллиптическую поляризацию и снижение оптических потерь. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области лазерной техники и касается акустооптического устройства трансформации профиля лазерного пучка. Устройство включает в себя два снабженных пьезопреобразователям акустооптических элемента. Плоскости дифракции акустооптических элементов ортогональны. Первый пьезопреобразователь соединен с первым генератором посредством первой согласующей системы, а второй презопреобразователь соединен со вторым генератором посредством второй согласующей системы. Лазерное излучение последовательно проходит через первый и второй акустооптические элементы, причем в качестве входного пучка для второго акустооптического элемента используется дифрагированный пучок, вышедший из первого акустооптического элемента. Вышедший из второго акустооптического элемента дифрагированный пучок проходит через диафрагму. Вместо двух акустооптических элементов может быть использован один двухкоординатный акустооптический элемент с двумя ортогонально расположенными пьезопреобразователями. Технический результат заключается в обеспечении возможности адаптивного управления устройством и возможности преобразования пространственного профиля пучка с аксиальной симметрией в выходной пучок с прямоугольным профилем. 2 н.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике, в частности к способам управления фазовым сдвигом между двумя когерентными монохроматическими световыми волнами в лазерных измерительных информационных системах. В способе управления фазовым сдвигом в интерференционных системах, включающем формирование когерентного монохроматического излучения посредством лазерного источника, его разделение на опорный и предметный световые пучки посредством коллимационной системы, их направление на объект измерения и опорную поверхность с формированием в них фазового сдвига Δϕ, предназначенного для интерпретации интерференционной картины при их отражении на фотоприемнике, фазовый сдвиг опорного и предметного световых пучков формируют за счет их брэгговской дифракции на одинаковые по номеру и знаку порядки путем пропускания на участке между коллимационной системой и опорной поверхностью и объектом измерения соответственно через идентичные акустооптические модуляторы, на которые подают опорные колебания U1 и U2 от общего генератора так, что U1=U0 cos[2π f×t+Δϕ] и U2=U0 cos[2π f×t], где U0 - амплитуда опорных колебаний; f - частота опорных колебаний акустооптических модуляторов; t - время осуществления опорных колебаний, при этом возможна подача опорных колебаний U1 на акустооптический модулятор, через который проходит предметный световой пучок, а опорных колебаний U2 - на акустооптический модулятор, через который проходит опорный световой пучок, или наоборот. Технический результат - повышение надежности за счет повышения точности и помехоустойчивости. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к способам управления фазовым сдвигом между двумя когерентными монохроматическими световыми волнами в лазерных измерительных информационных системах. В способе управления фазовым сдвигом в интерференционных системах, включающем формирование когерентного монохроматического излучения посредством лазерного источника, его разделение на опорный и предметный световые пучки посредством коллимационной системы, их направление на объект измерения и опорную поверхность с формированием в них фазового сдвига Δϕ, предназначенного для интерпретации интерференционной картины при их отражении на фотоприемнике, фазовый сдвиг опорного и предметного световых пучков формируют за счет их брэгговской дифракции на одинаковые по номеру и знаку порядки путем пропускания на участке между коллимационной системой и опорной поверхностью и объектом измерения соответственно через идентичные акустооптические модуляторы, на которые подают опорные колебания U1 и U2 от общего генератора так, что U1=U0 cos[2π f×t+Δϕ] и U2=U0 cos[2π f×t], где U0 - амплитуда опорных колебаний; f - частота опорных колебаний акустооптических модуляторов; t - время осуществления опорных колебаний, при этом возможна подача опорных колебаний U1 на акустооптический модулятор, через который проходит предметный световой пучок, а опорных колебаний U2 - на акустооптический модулятор, через который проходит опорный световой пучок, или наоборот. Технический результат - повышение надежности за счет повышения точности и помехоустойчивости. 2 з.п. ф-лы, 3 ил.
Наверх