Варикап на основе системы металл-диэлектрик-полупроводник

Изобретение относится к области полупроводниковой электроники и может быть использовано при разработке варикапов на основе системы металл-диэлектрик-полупроводник (МДП), предназначенных для управления частотой и фазой переменного сигнала в радиотехнических устройствах ВЧ и СВЧ диапазона. Изобретение обеспечивает возможность использования варикапа в качестве емкостного ключа. Сущность изобретения: в варикапе на основе системы МДП, содержащем полупроводник электронной проводимости, диэлектрик, управляющий электрод и узел стока неосновных носителей с p-n-переходом, область дырочной проводимости p-n-перехода узла стока неосновных носителей имеет глубину, равную толщине полупроводника, и выполнена в виде цилиндрического слоя, внутри которого расположена часть исходного полупроводника электронной проводимости, соединенная с управляющим электродом. 2 ил.

 

Изобретение относится к области полупроводниковой электроники и может быть использовано при разработке МДП-варикапов, предназначенных для использования в устройствах ВЧ и СВЧ диапазона для управления частотой и фазой переменного сигнала.

Известен МДП-варикап, предназначенный для использования в качестве переключательного емкостного элемента с низким уровнем мощности управления в фазовращателях СВЧ диапазона [Bernie Siegal. "The binary varactor - a new microwave device", Electronic Equipment News, 1971, v12, №10, p. 43-47]. Он содержит полупроводник, диэлектрик, управляющий электрод и контакт к полупроводнику. Недостаток известной конструкции МДП-варикапа состоит в низкой стабильности состояния с минимальным значением емкости, обусловленной ограничением ширины области пространственного заряда (ОПЗ) в полупроводнике зарядом неосновных носителей, термогенерированных на границе раздела диэлектрик-полупроводник, в ОПЗ полупроводника и в квазинейтральной области полупроводника.

Наиболее близким к предлагаемой конструкции является МДП-варикап, содержащий полупроводник электронной проводимости, диэлектрик, управляющий электрод, узел стока неосновных носителей с р-n-переходом [Lloyd W Hackley, Seminole, Fla, "Varactor tuning diode with inversion layer, Put. 4.903.086, Feb. 20, 1990, US].

Недостаток данной конструкции прибора состоит в наличии тока проводимости p-n-перехода, включенного в прямом направлении, при состоянии емкости прибора, соответствующей номинальному значению, что ограничивает возможность его использования в качестве емкостного ключа.

Предлагаемое техническое решение направлено на обеспечение возможности использования прибора в качестве емкостного ключа как при максимальном значении емкости, так и при минимальном значении емкости.

В предлагаемой конструкции это достигается тем, что в варикапе на основе системы МДП, содержащем полупроводник электронной проводимости, диэлектрик, управляющий электрод и узел стока неосновных носителей с p-n-переходом, область дырочной проводимости p-n-перехода узла стока неосновных носителей имеет глубину, равную толщине полупроводника, и выполнена в виде цилиндрического слоя, внутри которого расположена часть исходного полупроводника электронной проводимости, соединенная с управляющим электродом.

Выполнение области дырочной проводимости p-n-перехода узла стока неосновных носителей в виде цилиндрического слоя, охватывающего часть исходного полупроводника электронной проводимости (внутреннюю часть), а также имеющего высоту, равную толщине полупроводника, обеспечивает изоляцию друг от друга обеих частей полупроводника электронной проводимости. При этом торцевые поверхности цилиндрического слоя изолированы от электродов и контактов слоями диэлектрика. Таким образом обеспечена полная изоляция внутренней части полупроводника электронной проводимости от исходного полупроводника.

На Фиг.1 представлена конструкция предлагаемого прибора, на Фиг.2 - его эквивалентная схема.

Прибор содержит полупроводник 1 электронной проводимости, выполненный в виде полупроводниковой пластины, диэлектрик 2, управляющий электрод 3, область дырочной проводимости 4 узла стока, вспомогательный диэлектрик 5 и контакт к полупроводнику 6 (Фиг.1). Эквивалентная схема прибора представлена на Фиг.2, где С0 - удельная емкость диэлектрика; CSC - емкость области пространственного заряда полупроводника; RS - последовательное эквивалентное сопротивление прибора; D1 - р-n-переход узла стока между внутренней областью полупроводника и цилиндрическим слоем дырочной проводимости; D2 - р-n-переход узла стока между полупроводником и внешней плоскостью цилиндрического слоя дырочной проводимости.

Принцип действия предлагаемого прибора состоит в следующем.

При подаче на управляющий электрод 3 положительного управляющего напряжения в приповерхностной области полупроводника 1 реализуется режим обогащения приповерхностной области основными носителями и емкость прибора CH=C0S,

где СH - номинальное значение емкости прибора;

С0 - удельная емкость диэлектрика 2;

S - площадь управляющего электрода 3.

В этом случае р-n-переход D1 включен в обратном направлении, а р-n-переход D2 - в прямом, и ток проводимости через прибор определяется обратным током диода D1, что обеспечивает возможность использования прибора в качестве одного из состояний емкостного ключа.

При подаче на управляющий электрод отрицательного напряжения смещения диод D1 включен в прямом направлении, а диод D2 - в обратном. В этом случае реализуется режим стока неосновных носителей из области пространственного заряда полупроводника, и при полном обеднении полупроводника неосновными носителями реализуется второе стабильное состояние прибора, позволяющее использовать его в качестве емкостного ключа. Использование в конструкции двух встречных p-n-переходов обеспечивает отсутствие шунтирующих токов проводимости при всех режимах работы варикапа.

Вспомогательный диэлектрик 5 конструктивно расположен в области локализации узла стока неосновных носителей, обеспечивает изоляцию и устраняет влияния поверхностных токов утечки вдоль обратной поверхности полупроводника на параметры прибора.

Таким образом, разработана конструкция варикапа на основе системы МДП, обеспечивающая возможность его использования в качестве емкостного ключа и настроечного элемента в широком классе ВЧ и СВЧ приборов. Прибор может быть изготовлен с использованием стандартных технологических процессов.

Варикап на основе системы металл-диэлектрик-полупроводник, содержащий полупроводник электронной проводимости, диэлектрик, управляющий электрод и узел стока неосновных носителей с p-n-переходом, отличающийся тем, что область дырочной проводимости p-n-перехода узла стока неосновных носителей имеет глубину, равную толщине полупроводника, и выполнена в виде цилиндрического слоя, внутри которого расположена часть исходного полупроводника электронной проводимости, соединенная с управляющим электродом.



 

Похожие патенты:

Изобретение относится к области полупроводниковой электроники и может быть использовано при разработке МДП-варикапов, предназначенных для устройств ВЧ и СВЧ диапазона для управления частотой и фазой переменного сигнала; направлено на увеличение предельного допустимого управляющего напряжения и на повышение стабильности минимального значения емкости прибора.

Изобретение относится к области твердотельной микро- и наноэлектроники. .

Изобретение относится к области суперконденсаторов и может быть использовано в энергетике, в особенности солнечной энергетике, в качестве автономных мобильных миниатюрных слаботочных источников питания с управляемыми характеристиками разряда, в системах связи как базисный элемент автономных узлов приема-передачи информации, в системах и узлах микросхемотехники, в аппаратуре биомедицинского назначения, в других устройствах, функционирующих за счет электрической энергии, запасаемой в суперконденсаторе. В качестве материала подложки используют пеноникель - материал с высокой пористостью 96-97% и хорошими электро- и теплопроводящими свойствами, химической и термической стойкостью, металлической прочностью и жесткостью, развитой удельной поверхностью. В качестве исследуемых наносимых на подложку материалов использовали разбавленные растворы азотнокислых солей Со, Ni, Mn и их концентрационные соотношения. Для получения оксидных слоев смесь гидрооксидов осаждаемых компонентов или азотнокислых солей наносили тонким слоем с помощью золь-гель метода или аэрозольного напыления на подложку (пеноникель), затем высушивали при 90°С и обжигали при температурах 360-370°С. Заявленные суперконденсаторы обладают высокой морозостойкостью и низким внутренним сопротивлением (1-10 Ом) в сравнении с известными образцами. Снижение внутреннего сопротивления и нижнего температурного предела работы суперконденсаторов позволяет значительно расширить сферы их применения. 3 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к области полупроводниковой электроники и может быть использовано при разработке варикапов, предназначенных для управления частотой и фазой переменного сигнала в радиотехнических устройствах ВЧ и СВЧ диапазона. МДП-варикап содержит полупроводник электронного типа проводимости, диэлектрик, управляющий электрод и узел стока неосновных носителей с р-n областью, имеющей глубину, равную толщине полупроводника. Узел стока выполнен многоэлементным в виде набора чередующихся областей электронной и дырочной проводимости, причем одна из областей узла стока соединена с управляющим электродом, а линейный размер элементов узла стока равен линейному размеру полупроводника. Предлагаемая конструкция обеспечивает снижение собственной емкости узла стока обратно пропорционально числу областей дырочной проводимости элементов узла стока, что приводит к увеличению перекрытия по емкости. 3 ил.

Изобретение относится к области суперконденсаторов и может быть использовано в энергетических системах, функционирующих за счет запасаемой электрической энергии, в особенности солнечной энергетике, в качестве накопителей и автономных источников питания с управляемыми характеристиками заряда и разряда. Сущность изобретения: в суперконденсаторе, состоящем из подложки из диэлектрического материала, на которой последовательно расположены слой металла - первый электрод, сопряженный по границе со следующим слоем суперионного проводника, слой суперионного проводника, второй электрод из проводящего материала, который имеет сопряженную границу со слоем суперионного проводника, новым является то, что подложка выполнена в виде полого цилиндра, на поверхность которого нанесены последовательно первый электрод, слой сопряжения, активный слой суперионного проводника, второй электрод. В качестве суперионного проводника используется модифицированный полититанат калия, первый электрод выполнен в виде субмикронной пленки инертного металла, слои сопряжения и второго электрода состоят из нанопорошкового активного металла. Изобретение обеспечивает повышение удельной (в расчете на единицу мощности, объема и веса) емкости накапливаемой электрической энергии. 1 ил.
Наверх