Устройство электронного гистерезиса



Устройство электронного гистерезиса
Устройство электронного гистерезиса
H03K3/13 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2486668:

Закрытое акционерное общество "Научно-производственный центр "Промэлектроника" (ЗАО "НПЦ "Промэлектроника") (RU)

Изобретение относится к импульсной технике, а именно к устройствам, аналогичным триггеру Шмитта. Технический результат - создание устройства, аналогичного триггеру Шмитта, при работе которого не требуется какого-либо внешнего источника питания, а параметры петли гистерезиса передаточной характеристики определяются только параметрами используемых элементов схемы. Указанная цель достигается введением в известный триггер Шмитта стабилитрона, четвертого, пятого резисторов и третьего р-канального МОП транзистора, исток которого подключен к выходу триггера Шмитта, затвор соединен с истоком первого транзистора триггера Шмитта, а сток, который одновременно является выходом устройства электронного гистерезиса, соединен с первым выводом четвертого резистора, второй вывод которого соединен с общей шиной устройства и триггера Шмитта, а шина питания триггера Шмитта, которая одновременно является входом устройства электронного гистерезиса, соединена с первым выводом стабилитрона, второй вывод которого соединен с входом триггера Шмитта и с первым выводом пятого резистора, вторым выводом соединенного с общей шиной. Предлагаемое устройство обладает гистерезисной передаточной функцией, не требует дополнительного источника питания, а значения напряжений срабатывания и отпускания петли гистерезиса однозначно определяются параметрами используемых элементов схемы. 2 ил.

 

Изобретение относится к импульсной технике, а именно к устройствам, аналогичным триггеру Шмитта.

Известен триггер Шмитта на основе операционного усилителя (http://rus12.on.ufanet.ru/el/39.htm). Это устройство является компаратором с гистерезисом передаточной характеристики и реализуется при охвате его положительной обратной связью по неинвертирующему входу. Особенностью такого построения является необходимость двух источников питания для работы операционного усилителя и наличие дополнительного опорного напряжения, что существенно сужает спектр применения схемы.

Известно устройство, представленное в авторском свидетельстве SU 1213522. Устройство решает задачу обеспечения возможности передачи величины амплитуды входного напряжения на выход триггера при превышении некоторого порогового уровня на входе. Достоинством указанного устройства является возможность обеспечения работы устройства без внешнего источника питания. Однако значение порогов срабатывания и отпускания схемы одинаковы, и теряется свойство гистерезисной передаточной функции.

За прототип предлагаемого устройства электронного гистерезиса взят известный триггер Шмитта, построенный на двух транзисторах одного типа проводимости с одним общим сопротивлением в цепи обратной связи (http://radioforall.ru/2010-01-11-19-05-54/311-2010-01-14-15-06-33). В таком триггере ширина петли гистерезиса передаточной функции определяется разностью падений напряжения на общем сопротивлении, стоящем в цепи положительной обратной связи, от токов первого и второго транзисторов, стоящих в разных плечах триггера. Однако для работы такого триггера требуется источник питания, а пороги срабатывания и отпускания триггеров Шмитта находятся в прямой зависимости от значения питающего напряжения. Кроме того, у рассматриваемого триггера нижний уровень петли гистерезиса на выходе не равен нулю. Это существенно затрудняет возможность его использования и снижает область применения такой схемы.

Целью разработки специального устройства электронного гистерезиса является создание устройства, аналогичного триггеру Шмитта. Но его работа не должна требовать какого-либо внешнего источника питания, а параметры петли гистерезиса передаточной характеристики должны определяться только параметрами используемых элементов схемы.

Указанная цель достигается тем, что в известный триггер Шмитта, имеющий гистерезисную характеристику и состоящий, например, из первого и второго n-канальных МОП транзисторов, первого и второго сопротивлений истоков, где исток первого транзистора соединен с затвором второго МОП транзистора, и одного общего сопротивления стоков транзисторов, второй вывод которого соединен с общей шиной, введены стабилитрон, четвертый, пятый резисторы и третий p-канальный МОП транзистор, исток которого подключен к выходу триггера Шмитта, затвор соединен с истоком первого транзистора триггера Шмитта, а сток, который одновременно является выходом устройства электронного гистерезиса, соединен с первым выводом четвертого резистора, второй вывод которого соединен с общей шиной устройства и триггера Шмитта, а шина питания триггера Шмитта, которая одновременно является входом устройства электронного гистерезиса, соединена с первым выводом стабилитрона, второй вывод которого соединен с входом триггера Шмитта и с первым выводом пятого резистора, вторым выводом соединенного с общей шиной.

Электрическая схема устройства приведена на фиг.1, а его передаточная характеристика, поясняющая принцип его работы, приведена на фиг.2.

Схема состоит из двух транзисторов одного типа проводимости 1, 2, например n-канальных МОП транзисторов, одного транзистора второго типа проводимости 3, например p-канального МОП транзистора, одного стабилитрона 4, пяти сопротивлений 5, 6, 7, 8, 9, входной шины 10, выходной шины 11 и общей шины 12.

Устройство работает следующим образом. В исходном, обесточенном состоянии все транзисторы закрыты. Выход устройства через резистор 9 подключен к общей шине. На выходе устройства устанавливается нулевой уровень напряжения. С появлением напряжения на входной шине это напряжение через резисторы 5 и 6 прикладывается к затвору и стоку p-канального транзистора 3 и одновременно через сопротивление 5 к затвору n-канального транзистора 2. Некоторое время еще все транзисторы будут оставаться закрытыми. Когда напряжение на входе транзистора 2 достигнет порога срабатывания, последний откроется. Триггер, состоящий из транзисторов 1, 2 и резисторов 5, 6 и 7, принимает свое первое устойчивое состояние. По резисторам 6 и 7 начнет протекать ток, и на затворах транзисторов 1 и 3 возникнет дополнительное запирающее напряжение за счет падения напряжений на этих резисторах. На выходе схемы продолжает удерживаться нулевой уровень напряжения (фиг.2). К затвору транзистора 1 относительно его стока будет приложено обратное напряжение U R 7 = ( U в х U и с т о к с т о к   н а с ) R 7 R 7 + R 6 . Такая ситуация сохраняется до тех пор, пока уровень входного напряжения не достигнет уровня срабатывания стабилитрона 4. После этого напряжение на сопротивлении 8 начнет быстро нарастать и будет изменяться по закону UR8=Uвх-Uст, где Uст - напряжение открывания стабилитрона. Поскольку это напряжение направлено встречно по отношению к напряжению на сопротивлении 7, отрицательное напряжение на затворе транзистора 1 относительно его стока сначала начнет уменьшаться, а затем поменяет знак и начнет расти. По достижении напряжения затвора порога срабатывания ток исток - сток транзистора 1 начинает возрастать, и напряжение на его истоке и соответственно на затворе транзистора 2 начнет падать, и последний будет закрываться. Так как ток истока транзистора 2 (Iист2) выбран больше тока истока транзистора 1 (Iист1), напряжение на сопротивлении 7 уменьшается еще больше открывая транзистор 1. Развивается лавинообразный процесс, в результате которого триггер Шмитта и все устройство примет свое второе устойчивое состояние. Транзистор 1 откроется, транзистор 2 закроется. К затвору р-канального транзистора 3 вместо запирающего положительного напряжения будет приложено отпирающее отрицательное напряжение. И он откроется (линия «a-b» на фиг.2). В дальнейшем при увеличении или уменьшении входного напряжения в некоторых пределах относительно точки «a» напряжение на выходе устройства (СЭГ) будет определяться входным напряжением схемы и соотношением резисторов 6 и 9. Оно будет отклоняться относительно точки «b», показанной на фиг.2, в соответствии со следующим выражением: U R 9 = ( U в х U и с т о к с т о к   н а с ) R 9 R 6 + R 9 . Поскольку падение напряжения открытого МОП транзистора 3 практически равно нулю, это напряжение U R 9 = U в х R 9 R 6 + R 9 .

Напряжение на входе, при котором это происходит, принимается за порог срабатывания устройства электронного гистерезиса Ucp (фиг.2).

При уменьшении входного напряжения ниже некоторого значения, при котором разница напряжений на сопротивлении 8 и сопротивлении 7 станет меньше удержания транзистора 1 в открытом состоянии, последний начнет закрываться. При этом напряжение на истоке транзистора 1 и соответственно на затворе транзистора 2 начнет расти. Транзистор 2 начнет открываться, его ток коллектора и падение напряжения на резисторе 7 будет увеличиваться, еще более закрывая транзистор 1. Развивается лавинообразный процесс, в результате которого триггер Шмитта и все устройство электронного гистерезиса перейдут в свое первоначальное состояние (линия «с-d» на фиг.2). На выходе СЭГ опять устанавливается нулевой уровень напряжения. Входное напряжение, при котором это происходит, принимается за напряжение отпускания (или возврата - фиг.2) устройства электронного гистерезиса Uотп. В дальнейшем при уменьшении или увеличении входного напряжения в некоторых пределах относительно точки «d» выходное напряжение схемы будет оставаться равным нулю до тех пор, пока входное напряжение опять не превысит порог срабатывания схемы.

Условие отпускания СЭГ описывается выражением

( U о т п U с т ) U о т п R 7 R 5 + R 7 = U з а к р . з а т в с т о к

Условие срабатывания СЭГ описывается выражением

( U с р а б U с т ) U с р а б R 7 R 6 + R 7 = U з а к р . з а т в с т о к

Если принять, что Uзакр. затв-сток = Uоткр. затв-сток = Uзатв-сток, из приведенных выражений можно вычислить Ucp и Uотп предлагаемой схемы электронного гистерезиса.

U с р = ( U с т + U з а т в с т о к ) ( R 6 + R 7 ) R 7 U о т п = ( U с т + U з а т в с т о к ) ( R 5 + R 7 ) R 7

Из приведенных выражений и описания работы схемы следует, что значения параметров Ucp и Uотп определятся параметрами используемых элементов и могут варьироваться в широких пределах

Таким образом, предлагаемое устройство гистерезиса обладает гистерезисной передаточной функцией, не требует дополнительного источника питания, а параметры петли гистерезиса передаточной функции определяются параметрами используемых элементов схемы.

Устройство электронного гистерезиса, содержащее триггер Шмитта, состоящий, например, из первого и второго n-канальных МОП транзисторов, первого и второго сопротивлений истоков, где исток первого транзистора соединен с затвором второго МОП транзистора, и одного общего сопротивления стоков транзисторов, второй вывод которого соединен с общей шиной, отличающееся тем, что в него введены стабилитрон четвертый пятый резисторы и третий р-канальный МОП транзистор, исток которого подключен к выходу триггера Шмитта, затвор соединен с истоком первого транзистора триггера Шмитта, а сток, который одновременно является выходом устройства электронного гистерезиса, соединен с первым выводом четвертого резистора, второй вывод которого соединен с общей шиной устройства и триггера Шмитта, а шина питания триггера Шмитта, которая одновременно является входом устройства электронного гистерезиса, соединена с первым выводом стабилитрона, второй вывод которого соединен с входом триггера Шмитта и с первым выводом пятого резистора вторым выводом соединенного с общей шиной.



 

Похожие патенты:

Изобретение относится к области автоматики и телемеханики. .

Изобретение относится к импульсной технике и может быть использовано в системах зажигания, светотехнике, квантовой электронике, в электрофизических установках с высоковольтными емкостными накопителями энергии.

Изобретение относится к области импульсной и вычислительной техники и может быть использовано при построении самосинхронных вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к области схемотехники. .

Изобретение относится к области вычислительной техники и электроники, а именно к способам повышения надежности дискретных электронных систем, работающих в условиях радиации, и более точно, к способам постоянного поэлементного дублирования в дискретных электронных системах, находящихся под воздействием частиц излучения.

Изобретение относится к электротехнике, а именно к способам получения электрической энергии от маломощных источников электропитания, например пьезоэлементов, вмонтированных в поверхность, по которой перемещаются подвижные объекты.

Изобретение относится к области высоковольтной импульсной техники. .

Изобретение относится к вычислительной технике и может быть использовано при создании управляющих вычислительных систем реального времени, работающих при воздействии мощных электромагнитных импульсных излучений, в том числе импульсов ионизирующего излучения как естественного, так и искусственного происхождения.

Изобретение относится к вычислительной технике. .

Изобретение относится к интегральным микросхемам и может быть использовано в синхронных системах приема, обработки и передачи цифровых данных, в которых установлены жесткие требования к времени задержки распространения и скважности управляющих сигналов.

Изобретение относится к импульсной технике и может быть использовано в качестве устройства электронного гистерезиса

Изобретение относится к импульсной технике и может быть использовано в качестве устройства электронного гистерезиса

Изобретение относится к электротехнике и может быть использовано при передаче электрической энергии потребителю с помощью неизолированной линии электропередачи трехпроводного исполнения

Изобретение относится к импульсной технике и может быть использовано для получения наносекундных импульсов высокого напряжения большой частоты следования, которые могут быть использованы для питания лазеров и рентгеновских трубок

Изобретение относится к области цифровых систем приема и обработки сигналов и предназначено для уменьшения влияния аддитивных случайных импульсных помех

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в системах автоматического управления

Изобретение относится к области радиотехники и, в частности, может быть использовано для избирательного радиоподавления источников излучения. Технический результат - расширение области применения, в том числе для радиоподавления каналов связи априорная информация о загруженности рабочих частот которых не известна, и которые используют режим с псевдослучайной перестройкой рабочей частоты. Способ радиоподавления каналов связи заключается в том, что сигналы источника излучения принимают в полосе частот ΔF в течение временного цикла Тр на каждой рабочей частоте источника излучения fi, определяют и запоминают пространственные координаты источника излучения, после чего определяют и запоминают параметры принятых сигналов. При приеме сигнала измеряют время ti, в течение которого сигнал существует на i-й частоте, из числа измеренных временных интервалов ti выделяют минимальное значение tmin, a временной цикл Тр завершают при условии трехкратного совпадения наименьшего из значений ti обнаруженных сигналов на рабочих частотах fi источника излучения, при этом модулируют, усиливают и излучают помеховые сигналы в интервале времени tп=tmin в течение временного цикла Тр, а завершенным временной цикл Тп считают, если после окончания очередного излучения помехового сигнала на интервале времени tп, на всех частотах fi сигнал от источника с ранее запомненными пространственными координатами отсутствует. 1 ил.

Изобретение относится к технике формирования импульсов тока, в частности к устройствам питания импульсных газонаполненных ламп накачки твердотельных лазеров с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение надежности и сокращение массо-габаритных параметров. Генератор импульсов тока выполнен в виде замкнутого контура, состоящего из последовательно включенных накопительного конденсатора, дросселя, газонаполненной лампы, транзисторного ключа со схемой управления и датчика тока, а также демпфирующего диода, включенного параллельно дросселю и лампе, дроссель и лампа с демпфирующим диодом включены между коллектором транзисторного ключа и высоковольтным электродом накопительного конденсатора, а схема управления выполнена в виде формирователя управляющего импульса фиксированной длительности и содержит пороговое устройство, связанное по своему сигнальному входу с датчиком тока, а по выходу с импульсным формирователем, подключенным ко входу транзисторного ключа, при этом введена цепь обратной связи между выходом импульсного формирователя и управляющим входом порогового устройства. 1 ил.

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение эффективности накачки лазера при имеющихся ограничениях на величину и энергию импульса тока, протекающего через оптический источник. Способ оптической накачки лазера с модулированной добротностью заключается в освещении активного элемента лазера импульсным излучением оптического источника, возбуждаемого импульсом тока заданной длительности, поддерживаемого в процессе накачки в регулируемых пределах, величину тока через оптический источник изменяют в течение импульса так, чтобы энергия выходного излучения лазера была максимально возможной при заданных ограничениях на максимальное и минимальное значения тока накачки и на величину энергии импульса тока, причем момент включения добротности лазера и характер зависимости тока накачки от времени определяют предварительно путем измерения выходной энергии лазера при изменении времени включения добротности и тока накачки в заданных пределах. 4 з.п. ф-лы, 3 ил.
Наверх