Способ нанесения покрытия на металлическую основу

Изобретение относится к технологии получения покрытий и может быть использовано в машиностроении при изготовлении или восстановлении деталей. Способ нанесения покрытия включает предварительный нагрев сжатого воздуха до температуры 300-500°С, подачу его в сверхзвуковое сопло, формирование в нем высокоскоростного воздушного потока, введение в этот поток порошковой смеси с обеспечением ее ускорения воздушным потоком и нанесения на поверхность детали. В качестве порошковой смеси используют смесь, содержащую порошки меди и оксида алюминия, а при нанесении покрытия поток частиц порошковой смеси направляют под углом α=82-84° к поверхности детали. Технический результат - увеличение адгезии покрытия к основе. 1 ил., 2 пр.

 

Изобретение относится к технологии нанесения покрытий на поверхности изделий, а именно к способам получения покрытий с использованием неорганического порошка, и может быть использовано в различных отраслях машиностроении, в частности при изготовлении или восстановлении изношенных деталей машин для придания их поверхности повышенных коррозионно- и износостойких, электротехнических, а так же иных свойств.

Известен способ нанесения покрытий на поверхность детали машины путем нанесения порошковых металлов, ускоренных подогреваемым газовым потоком в сверхзвуковом сопле.

(см. авт.свид. СССР 1618778, С23С 4/00, 1986 г.).

В этом способе обеспечивается ускорение частиц порошка до высоких скоростей (650-1200 м/сек), что позволяет получать покрытия с повышенной прочностью сцепления и невысокой пористостью.

Однако этот способ сравнительно дорог и технически сложен, так как для его реализации необходимо использовать дорогостоящие газы (например, гелий) и высокое давление рабочего газа (15-20 атм).

Наиболее близким к заявляемому решению является способ нанесения покрытий на поверхность детали машины, включающий предварительный нагрев сжатого воздуха до температуры 300-500°С, подачу его в сверхзвуковое сопло, формирование в нем высокоскоростного воздушного потока, введение в этот поток порошковой смеси с обеспечением ее ускорения воздушным потоком и нанесения на поверхность детали

(см. Патент РФ 2038411, С23С 4/00, 1993 г.).

В этом способе в качестве основы используют поверхность детали из стали. Нагрев сжатого воздуха до 300-500°С осуществляют перед входом в сверхзвуковое сопло. Нагретый воздух, проходя сужение в сверхзвуковом сопле, ускоряется и с помощью образующегося за узкой частью сопла разряжения, затягивает порошковую смесь и разгоняет ее в разгонной части сопла и выбрасывает на металлическую основу. Напыление осуществляют под прямым углом к поверхности детали.

Этот способ обеспечивает получение покрытий при относительно невысоких затратах.

Недостаток известного способа в низкой адгезионной прочности покрытия.

Задачей заявляемого решения является улучшение качества покрытий, а именно повышение прочности сцепления покрытия с основой.

Поставленная задача достигается тем, что в предлагаемом способе нанесения покрытий на поверхность детали машины, включающем предварительный нагрев сжатого воздуха до температуры 300-500°С, подачу его в сверхзвуковое сопло, формирование в нем высокоскоростного воздушного потока, введение в этот поток порошковой смеси с обеспечением ее ускорения воздушным потоком и нанесения на поверхность детали, причем в качестве порошковой смеси используют смесь, содержащую порошки меди и оксида алюминия, а при нанесении покрытия поток частиц порошковой смеси направляют под углом α=82-840° к поверхности детали.

Сущность изобретения состоит в том, что на периферии газового потока его температура и скорость за счет соприкосновения с внешней средой ниже, чем в центре, качество различных участков нанесенного покрытия может отличаться друг от друга. Поэтому улучшение и стабилизация показателей качества покрытия могут быть достигнуты путем оптимизации геометрического расположения поверхности основы относительно направления потока.

Согласно изобретению адгезионную прочность покрытия измеряли в соответствии с ГОСТ 9.304-87. «Покрытия газотермические. Общие требования и методы контроля». В качестве подложки (металлической основы) брали пластины из стали и титана, в качестве материала покрытия - механическую смесь оксида алюминия и меди.

Способ иллюстрируют примерами выполнения.

Пример 1. Осуществляют предварительный нагрев сжатого воздуха до 300°С в камере, из которой воздух подают в сверхзвуковое сопло. Далее за соплом вводится механическая смесь оксида алюминия и меди. Напыление осуществляют под различными углами от 90° (известный способ) до 72° к металлической основе из стали.

Результаты испытаний представлены в виде графика (фиг.1а) зависимости величины адгезии покрытия к подложке от угла α наклона потока частиц к поверхности металлической основы.

Пример 2. Осуществляют предварительный нагрев сжатого воздуха до 500°С в камере, из которой воздух подают в сверхзвуковое сопло. Далее за соплом вводится механическая смесь оксида алюминия и меди. Напыление осуществляют под различными углами от 90° (известный способ) до 72° к металлической основе из титана.

Результаты испытаний представлены в виде графика (фиг.1б) зависимости величины адгезии покрытия к подложке от угла наклона потока частиц к поверхности металлической основы.

Как видно на графике, величина адгезии покрытия, нанесенного предложенным способом, по сравнению с известным повысилась с 23,1 МПа до 27,4 МПа и с 41,2 МПа до 48,5 МПа.

Таким образом, использование предложенного способа позволяет увеличить адгезию покрытия к подложке приблизительно на 18,6%, что улучшает качество покрытий и, соответственно, повышает надежность изделий, на которые оно нанесено.

Способ нанесения покрытия на поверхность детали машины, включающий предварительный нагрев сжатого воздуха до температуры 300-500°С, подачу его в сверхзвуковое сопло, формирование в нем высокоскоростного воздушного потока, введение в этот поток порошковой смеси с обеспечением ее ускорения воздушным потоком и нанесения на поверхность детали, отличающийся тем, что в качестве порошковой смеси используют смесь, содержащую порошки меди и оксида алюминия, а при нанесении покрытия поток частиц порошковой смеси направляют под углом α=82-84° к поверхности детали.



 

Похожие патенты:
Изобретение относится к электродуговым способам нанесения покрытий на поверхности изделий с использованием металлических проволок и может быть использовано в различных отраслях машиностроения, в частности в ремонтном производстве при восстановлении формы и размеров деталей.

Изобретение относится к области информационных технологий и может быть использовано при формировании идентификационных меток и создания баз данных твердых материалов (как металлических, так и диэлектрических).
Изобретение относится к оборонной технике, а именно к производству стрелково-пушечного вооружения, и может быть использовано при ремонтно-восстановительных операциях на ремонтных предприятиях или в местах эксплуатации.

Изобретение относится к устройствам для газодинамического напыления покрытий из порошковых материалов и может быть использовано в машиностроении и других отраслях для получения качественных покрытий при ремонте и изготовлении изделий.

Изобретение относится к способу нанесения металлического покрытия, а также к элементу конструкции летательного аппарата с упомянутым покрытием. .

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического напыления.

Изобретение относится к способам нанесения покрытий, в частности антикоррозийных. .

Изобретение относится к области газодинамического напыления порошковых материалов и может быть использовано в машиностроении и других сферах производства для получения покрытий различного функционального назначения.

Изобретение относится к способам нанесения полимерных покрытий на поверхности изделий из металлов и сплавов и может быть использовано в медицине для покрытия поверхности имплантатов.

Изобретение относится к способам и устройствам напыления покрытий на поверхности изделий холодным газодинамическим напылением, в том числе на поверхности художественных изделий и объемных форм из натурального камня или из металлического материала

Изобретение относится к устройствам газодинамического нанесения покрытий на внутреннюю цилиндрическую поверхность изделий и может быть использовано в машиностроении, в автомобильной промышленности, энергетике, строительстве и нефтегазовой отрасли промышленности. Технический результат - повышение качества покрытий, упрощение конструкции устройства, унификация конструкции для различных типоразмеров обрабатываемых изделий. Устройство содержит питатель-дозатор, систему подачи рабочего газа и частиц порошка в форкамеру, сменное радиальное сверхзвуковое сопло и средство перемещения устройства внутри изделия, а также изолирующую камеру с системой отсоса. Диаметр сопла на срезе выбран из соотношения: dex=din-2lns, где din - диаметр отверстия в изделии, lns - расстояние от среза сопла до напыляемой поверхности изделия, выбираемое в пределах (1-10)δex; δex - поперечный размер канала сверхзвуковой части радиального сопла на срезе. Внутренний диаметр радиального сверхзвукового сопла выбран из соотношения: , где δcr - поперечный размер канала сверхзвуковой части радиального сопла в критическом сечении. При этом устройство выполнено с возможностью подачи рабочего газа в форкамеру через тангенциальные или радиальные каналы и подачи порошка через радиальные каналы. 7 ил.

Изобретение относится к устройству газодинамического нанесения покрытий на внешние цилиндрические поверхности изделий и может быть использовано в машиностроении и других областях хозяйства. Устройство содержит питатель-дозатор, систему подачи рабочего газа и порошка в форкамеру (1), узел напыления и средство продольного перемещения изделия. Узел напыления выполнен в виде Ns>1 многоканальных кольцевых секций, установленных вдоль оси напыляемого изделия на расстоянии друг от друга и зафиксированных относительно друг друга на заданный угол. Каналы, образованные плоскими сменными вставками (4), расположены равномерно по периметру кольцевой секции и образуют плоские сверхзвуковые сопла с размером канала в критическом сечении hcr и углом раскрытия αn, обеспечивающими угол соударения напыляемых частиц с поверхностью изделия 60÷90° и число Маха на срезе сопла Mex=1÷3. Длина и ширина сверхзвуковой части каналов обеспечивает оптимальное ускорение напыляемых частиц. Выбор числа каналов обеспечивает оптимальное перекрытие сверхзвуковых струй непосредственно у напыляемой поверхности. Технический результат: расширение технологических и функциональных возможностей процесса нанесения покрытий на внешние цилиндрические поверхности изделий различных размеров и повышение качества покрытий. 2 ил.
Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия. Напыление материала подслоя и медного покрытия ведут при давлении воздуха в качестве рабочего газа в интервале 0,5-1,0 МПа, причем для подслоя при температуре в пределах 500-600°С, для медного покрытия - в пределах 300-400°С, а термическую обработку медного покрытия проводят в интервале температур 1065-1070°С в течение 1,0-3,0 часов. Обеспечивается получение медных покрытий, имеющих прочность на отрыв не ниже 50 МПа. 1 пр.

Изобретение относится к области металлургии, в частности к способам получения теплозащитных износостойких покрытий на деталях из чугуна или стали. Проводят абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, осуществляют плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление керметной композиции из порошковой смеси, содержащей компоненты, при следующем соотношении, вес.%: нихром 10-20, диоксид циркония, стабилизированный оксидом иттрия, 30-20, никельалюминий 30-40, никельтитан 20-10, карбид хрома 5, карбид вольфрама 5. Обеспечивается повышение стойкости покрытия к изнашиванию при трении, твердости покрытия, термостойкости и адгезии покрытия к сплаву основы.6 ил., табл. 1, пр. 1.

Изобретение относится к способу получения магнитотвердого покрытия из сплава самария с кобальтом и может использоваться при изготовлении постоянных магнитов, используемых в конструкциях малогабаритных двигателей постоянного тока, бортовой измерительной аппаратуре, а также различных устройствах, предназначенных для исследования космического пространства. Осуществляют послойное напыление с помощью плазмотрона на охлаждаемую подложку расплавленного в высокотемпературной зоне плазменной струи порошка сплава самария с кобальтом при следующем соотношении компонентов: самарий - 40 вес.%, кобальт - остальное. Напыление проводят в камере в среде отработанных инертных газов плазмотрона при температуре в пятне напыления 800-900°С. Получается покрытие из магнитотвердого сплава самария с кобальтом, имеющего высокую коэрцитивную силу и низкое значение температурного коэффициента намагниченности. 4 ил., 2 табл.

Изобретение относится к машиностроению, а именно к чистовой упрочняющей безабразивной обработке поверхностей деталей из конструкционных сталей. На поверхности дорожки качения подшипника размещают порошок графита или дисульфида молибдена и через слой порошка к поверхности вращающейся детали прижимают индентор, совершающий ультразвуковые механические колебания. Индентор имеет сферическую рабочую поверхность и радиус, равный минимальному значению радиуса профиля дорожки качения. Минимальную силу воздействия индентора на обрабатываемую поверхность устанавливают из условия возникновения контакта индентора по всему профилю обрабатываемой поверхности. Обеспечивается возможность обработки фасонной поверхности, повышение качества покрытия и исправление геометрического профиля. 3 ил.
Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя. Подслой представляет собой высоколегированную сталь, содержащую по массе: не более 18% хрома, не более 14% никеля, не более 3% молибдена, не более 0,1% углерода. Основной слой представляет собой материал, содержащий металлокерамическую фазу в матрице из сплава на основе никеля, содержащий по массе: не более 28% железа, не более 52% хрома в соединениях, никеля не более 15%, кремния 1,0…1,3%, бора 1,0…1,3%, углерода не более 0,8%. Повышается коррозионная стойкость покрытия, а также обеспечивается возможность противостоять образованию задиров на поверхностях, контактирующих с сальниковым уплотнением, что позволяет увеличить ресурс работы детали с покрытием. 1 пр.
Изобретение относится к машиностроению, а именно к способам получения антифрикционных восстановительных покрытий методом газодинамического напыления на стальных изделиях, используемых в технологических процессах восстановления деталей в узлах машин и в авиационной технике. Осуществляют ускорение порошкового материала в сверхзвуковом сопле потоком нагретого газа и проводят нанесение на поверхность изделия порошкового материала в виде смеси мелкодисперсных порошков, содержащей следующие компоненты, мас.%: корунд - не более 1/4 части объема смеси, алюминий - не более 1/10 части объема смеси, медь - остальное или корунд - не более 1/4 части объема смеси, олово - не более 1/10 части объема смеси, медь - остальное. После нанесения упомянутого порошкового материала проводят отжиг в течение 24-48 часов при температуре 180-220°C. В частных случаях осуществления изобретения в смесь вводят TiC в количестве не более 0,17 части объема смеси. Обеспечивается получение недорогого и качественного антифрикционного покрытия с хорошей адгезией на стальных изделиях. 2 н. и 1 з.п. ф-лы.
Наверх