Способ определения качества смешивания сыпучих материалов

Изобретение относится к контрольно-измерительной технике, а именно к способам анализа качества смеси сыпучих материалов, в том числе содержащих наноструктурированные компоненты. Способ заключается в предварительном получении «эталонной» смеси и ее цифрового изображения. Определяют качество фактической смеси разделением ее цифрового изображения на одинаковое число частей (ячеек) и их сравнением по гистограммам яркости с изображением «эталонной» смеси. Коэффициент неоднородности смеси рассчитывают по формуле

V c = 100 S с р 1 k ( S i S с p ) 2 / ( k 1 ) ,

где k - число частей (ячеек); Si - отличие i-й гистограммы части (ячейки) фактического изображения от «эталонной» гистограммы критерием квазирасстояния пересечений гистограмм Свейна-Балларда; Scp - среднее арифметическое значение отличий. Изобретение обеспечивает снижение трудоемкости, повышение скорости и точности определения качества смешивания сыпучих материалов. 1 ил.

 

Изобретение относится к контрольно-измерительной технике, а именно к способам анализа качества смеси сыпучих материалов, в том числе содержащих наноструктурированные компоненты, и может быть применено в химической, строительной, пищевой, фармацевтической, радиоэлектронной и других отраслях промышленности.

Известен способ определения качества смеси компонентов, различающихся по цвету (см. Патент 2385454 РФ, кл. G01N 1/38 B01F 3/18/ Способ определения качества смеси компонентов, различающихся по цвету / Таршис М.Ю., Королев Л.В., Зайцев А.И.; заявитель и патентообладатель Ярославский. Гос.Техн. Ун-т - №2008144214/12; заявл. 06.11.2008, опубл. 27.03.2010.), включающий отбор и сканирование проб, вычисление концентраций ключевого компонента в пробах на основе анализа их изображений и расчет коэффициента неоднородности смеси по колебаниям этих концентраций относительно средней концентрации. Недостатками данного способа являются необходимость отбора и анализа проб смеси, а также вычисление концентраций ключевого компонента в пробах на основе анализа их изображений и расчет коэффициента неоднородности смеси по колебаниям этих концентраций относительно средней концентрации, коррекция «плоскостного» коэффициента неоднородности смеси, что приводит к высокой трудоемкости и затратам времени на оценку качества смешивания.

За прототип технического решения взят способ определения качества смеси сыпучих материалов (см. Патент 2343457 РФ, кл. G01N 21/85. Способ определения качества смеси сыпучих материалов / Ткачев А.Г. и др..; заявитель и патентообладатель Тамб. Гос. Техн. Ун-т - №2007115024/28; заявл. 20.04.2007, опубл. 10.01.2009, Бюл. №1.), состоящий из отбора пробы, прессования таблетки, формирования тарировочных таблеток, получения цифрового RGB изображения (сканирование поверхности таблетки), определения концентрации ключевого компонента по тарировочной зависимости от среднего арифметического значения яркости анализируемого изображения и расчета коэффициента неоднородности пробы. Недостатками данного способа являются высокая трудоемкость и низкая скорость определения качества смешивания в связи с необходимостью отбора и формования таблеток, расчет тарировочных зависимостей для анализа на схожесть с каждой из проб требует проведение дополнительных исследований и расчетов, сканирование лишь поверхности таблеток приводит к невысокой точности.

Технической задачей изобретения является снижение трудоемкости, повышение скорости и точности определения качества смешивания сыпучих материалов.

На фиг.1. представлены цифровые изображения «эталонной» смеси (а) и фактической смеси (б).

Решение поставленной задачи достигается тем, что определение качества смешивания сыпучих материалов, различающихся по цвету, осуществляется сравнением цифрового изображения фактической исследуемой смеси с «эталонным» изображением по гистограммам яркости. В качестве критерия оценки отличия изображений используется квазирасстояние пересечений гистограмм Свейна-Балларда:

S = [ 1 ( i = 1 n min ( x i , y i ) / i = 1 n x i ) ] 100 % , ( 1 )

где n - количество уровней яркости;

xi, yi - количество пикселов i-го уровня яркости для гистограмм x, y.

Способ определения качества смешивания сыпучих материалов, различающихся по цвету, заключается в следующем.

Получают «эталонную» смесь сыпучих материалов в лабораторных или производственных условиях, удовлетворяющую требованиям качества производства смеси по любому известному критерию и с помощью любого применяемого для конкретного производства способа (гравиметрического, оптического и т.д.). Организуют одинаковые условия для получения цифрового изображения поверхностей слоя «эталонной» и исследуемой фактической смесей (размер фотоизображения, высота слоя смеси, освещение и т.д.). Получают черно-белое цифровое изображение «эталонной» смеси и заносят его в базу данных с помощью специального программного обеспечения. Получают черно-белое цифровое изображение фактической смеси в условиях производства и с помощью того же программного обеспечения проводят сравнение его с изображением «эталонной» смеси из базы данных. Программа позволяет разделять фактическое изображение на любое одинаковое число частей (ячеек) k c учетом используемых условий и требований конкретного производства к минимальному размеру анализируемых проб или минимальному объему партии смеси. Происходит построение гистограмм яркости для каждой части с последующим их сравнением с гистограммой изображения «эталонной» смеси по формуле (1). Качество смешивания определяется

коэффициентом неоднородности Vc.

V c = 100 S с р 1 k ( S i S с p ) 2 / ( k 1 ) , ( 2 )

где k - число частей (ячеек); Si - отличие i-й гистограммы

фактического изображения части (ячейки) от «эталонной» гистограммы критерием квазирасстояния пересечений гистограмм Свейна-Балларда; S с р = i = 1 n S i / k - среднее арифметическое значение отличий.

Полученный результат с использованием коэффициента неоднородности Vc позволяет определить качество смешивания сыпучих материалов в процессе производства непосредственно после выгрузки смеси при ее транспортировке, к примеру, ленточным конвейером.

Способ определения качества смешивания проверен на модельных материалах с использованием лабораторных смесителей (одновальный лопастной смеситель и гладкий барабанный смеситель) и традиционной методики оценки качества смешивания. Использовались двухкомпонентные смеси модельных материалов с различным процентным содержанием (таблица 1). Проводилось 20 циклов смешивания. Исследуемую смесь выгружали на ленточный транспортер, где получали ее цифровое изображение (фиг.1). Изображения представляли собой квадрат со стороной 1500 пикселей и разрешением 72 dpi (смесь черного (50%) и желтого пшена (50%)). Полученные изображения заносились в базу данных с помощью специального программного обеспечения. Осуществлялся отбор проб и их анализ на содержание ключевого компонента путем расчета коэффициента неоднородности ( V C ф а к т ) по известной традиционной методике [см. кн. Макаров Ю.И. Аппараты для смешения сыпучих материалов - М.: Машиностроение, 1973]. «Эталонную» смесь выбирали с минимальным значением коэффициента неоднородности ( V C ф а к т = min ) . Изображения фактических смесей разбивались на 100 равных частей (ячеек) (k=100), для каждой части строилась яркостная гистограмма. Производилось сравнение гистограмм яркости каждой части (ячейки) смесей по формуле (1) (квазирасстояние пересечений гистограмм Свейна-Балларда Si) с гистограммой «эталонной» смеси (отклонение фактической смеси от «эталонной») и определялся коэффициент неоднородности Vc по формуле (2). Результаты проверки предложенного способа определения качества смешивания представлены в таблице 1.

Таблица 1
№, п/п смеситель компоненты смеси содержание, % Vc, % V C ф а к т , %
1 лопастной Черное пшено 50 2,13 2,25
Желтое пшено 50
2 Черное пшено 25 3,81 4,1
Желтое пшено 75
3 Черное пшено 10 4,83 5,1
Желтое пшено 90
4 барабанный Черное пшено 50 2,3 2,0
Желтое пшено 50
5 Черное пшено 25 3,6 4,3
Желтое пшено 75
6 Черное пшено 10 4,4 5,3
Желтое пшено 90

Предложенный способ определения качества смешивания сравнением гистограмм яркости изображений «эталонной» и фактической смесей позволяет снизить трудоемкость, повысить скорость и точность определения качества смешивания сыпучих материалов, различающихся по цвету, непосредственно в процессе производства после выгрузки из смесителя, исключая отбор проб, прессование таблеток и применение тарировочных зависимостей для определения коэффициента неоднородности.

Способ определения качества смешивания сыпучего материала, включающий получение цифрового изображения смеси и определение ее неоднородности, отличающийся тем, что предварительно получают «эталонную» смесь и ее цифровое изображение, качество фактической смеси определяют разделением ее цифрового изображения на одинаковое число частей (ячеек) и их сравнением по гистограммам яркости с изображением «эталонной» смеси, а коэффициент неоднородности смеси рассчитывают по формуле
V c = 100 S с р 1 k ( S i S с р ) 2 / ( k 1 ) ,
где k - число частей (ячеек); Si - отличие i-й гистограммы части (ячейки) фактического изображения от «эталонной» гистограммы критерием квазирасстояния пересечений гистограмм Свейна-Балларда; Scp - среднее арифметическое значение отличий.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к спектрометрии. .

Изобретение относится к металлургии. .

Изобретение относится к контрольно-измерительной технике, а именно к способам и устройствам для цветовой классификации объекта или их поверхностей на основе анализа цветовых параметров объекта, и может быть использовано для решения различных прикладных задач, например для сортировки полезных ископаемых и их селекции, для сортировки промышленных или бытовых отходов, для контроля качества продуктов или промышленных изделий и т.д.

Изобретение относится к контрольно-измерительной техники и предназначено для контроля токсичности выбросов автомобилей. .

Изобретение относится к гидродинамике течения жидкостей в кристаллизаторе. .

Изобретение относится к способам контроля параметров плоских светопропускающих материалов. .

Мутномер // 2408873

Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в лакокрасочной, фармацевтической промышленности при анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так и ее полуфабрикатов

Изобретение относится к контрольно-измерительной технике, а именно к переработке сыпучих материалов, в том числе содержащих наноструктурированные компоненты, и может быть применено в химической, строительной, пищевой, фармацевтической, радиоэлектронной и других отраслях промышленности. Способ включает анализ изображения поверхности смеси и определение коэффициента ее неоднородности. При этом исследуемую смесь равномерно распределяют на гладкой поверхности и разделяют на необходимое число порций, получают цифровые изображения их поверхностей с построением гистограмм яркости. Затем каждую порцию разделяют на одинаковое число частей (проб) с построением их гистограмм яркости. Коэффициент неоднородности смеси рассчитывают сравнением цифровых изображений частей (проб) порции с изображением всей порции исследуемой смеси по гистограммам яркости. Достигаемый при этом технический результат заключается в снижении трудоемкости, повышении скорости и точности определения качества смеси компонентов, различающихся по цвету. 1 ил.

Изобретение относится к анализу свойств свертывания молока и заключается в способе сортировки молока в режиме онлайн на основании прогнозируемых свойств коагуляции. Способ включает отбор проб сырого молока из молочной линии от поста дойки до пункта сбора, выполнение спектрального анализа пробы сырого молока, прогнозирование по меньшей мере одного параметра коагуляции в режиме онлайн на основании спектрального анализа и направление молока во время протекания по молочной линии в одно из нескольких мест на основании по меньшей мере одного параметра коагуляции. Способ позволяет улучшить сортировку молока, облегчает сортировку молока в режиме онлайн, улучшает частоту разделения молока, повышает экономическую ценность среднего молока от стада. 3 н. и 20 з.п.ф-лы, 9 ил.

Изобретение относится к области приборостроения и может быть использовано для измерения параметров взвеси в жидкости. Способ определения фоновой мутности заключается в выделении частицы заданных размеров, с помощью фильтра, для чего применяют гравитационное разделение частиц взвеси в ламинарном потоке жидкости с заданной стабилизированной скоростью ее движения. При этом устройство для определения фоновой мутности содержит фильтр с заданным размером ячеек, а так же последовательно соединенные успокоитель турбулентности, камеру гравитационного разделения взвеси, систему измерения параметров фоновой взвеси, насос и систему стабилизации скорости прокачки воды. Техническим результатом является повышение точности и надежности измерений. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру. В системе и способе охарактеризовывания размолотого материала в размольной установке используются участок облучения для пропуска части потока размолотого материала, содержащий средство облучения частиц в части потока электромагнитным излучением, и участок регистрации для пропуска, содержащий средство регистрации электромагнитного излучения, излучаемого частицами части потока размолотого материала, пропущенной через участок облучения. Средство регистрации содержит отображающую систему и датчик цветного изображения для отображения на нем частиц посредством излученного ими электромагнитного излучения. Датчик цветного изображения содержит элементы изображения для спектрально-избирательной регистрации отображенного на них электромагнитного излучения. Участок регистрации содержит светящееся средство или выполненное и расположенное с возможностью регистрации частиц размолотого материала с помощью комбинации проходящего и падающего света. Изобретения обеспечивают повышение скорости и точности регистрации свойств потока продукта помола. 2 н. и 24 з.п. ф-лы, 3 ил.

Изобретение относится к устройству и к способу для экономичного inline-измерения методом ближней инфракрасной спектроскопии, в частности, для экономичного inline-измерения методом ближней инфракрасной спектроскопии ингредиентов, качественных параметров или в целом свойств зерен злаков и проч., а также их составляющих в потоках продукта (3) в мукомольных производствах или на комбикормовых заводах. Посредством, по меньшей мере, одного измерительного зонда (1) в предпочтительном варианте от свободно протекающего в проточной трубе продукта (3) принимаются спектры отражения, которые передаются на пространственно отделенное от него устройство (2) обработки данных со встроенным спектрометром (12). Определенные устройством (2) обработки данных измеренные значения передаются на блок (24) управления или на систему (22) управления и могут быть использованы там для мониторинга и/или регулировки процессов или установок. Технический результат - за счет простого предъявления продукта, а также многократного использования устройства обработки данных расходы из расчета на одно место измерения по сравнению с использованными до настоящего времени системами для измерения методом ближней инфракрасной спектроскопии, существенно снижаются. 5 н. и 16 з.п. ф-лы, 3 ил.

Изобретение относится к способам контроля параметров печатной бумаги. Способ определения прозрачности плоских светопропускающих запечатываемых материалов основан на регистрации относительных световых потоков, отраженных образцом бумаги, который сначала размещают на черной подложке, затем на плоском металлическом зеркале, и последующем расчете показателей прозрачности бумаги. После регистрации относительные световые потоки последовательно преобразуют в последовательность электрических сигналов с формированием электронных образов исследуемого материала, представляющих собой таблицы значений коэффициентов отражения света в N равномерно распределенных вдоль строки точках, размещенного сначала на черной подложке, затем на плоском металлическом зеркале, а после преобразований относительных световых потоков определяют коэффициент отражения света материалом, размещенным на черной подложке, и коэффициент отражения материалом на зеркале в N равномерно распределенных вдоль строки точках, а о макронеоднородности исследуемого материала судят по величине стандартного отклонения прозрачности. Технический результат - повышение качества контроля прозрачности за счет выявления макронеоднородностей печатной бумаги. 3 ил.

Изобретение относится к датчикам с переменной длиной пути для оптического анализа материала на месте. Предоставляется датчик, имеющий головку датчика, в которой образовано отверстие для приема образца, подлежащего анализу. Головка содержит пару оптических интерфейсов, каждый из которых расположен на соответствующей противолежащей внутренней поверхности отверстия, чтобы ограничивать путь для светового излучения через отверстие. По меньшей мере один из пары оптических интерфейсов содержит элемент, пропускающий световое излучение в интересующей области (областях) длин волн, и размещен для того, чтобы позволять световому излучению перемещаться между внутренней частью головки датчика и отверстием. Датчик также содержит подвижную диафрагму, в которой один из пары оптических интерфейсов расположен для перемещения с ее помощью, и привод размещен в головке датчика и в оперативном соединении с диафрагмой, чтобы управлять ее перемещением для изменения длины пути для светового излучения. Технический результат - уменьшение отрицательных воздействий отражения между интерфейсами, а также получение более количественных и качественных показателей образца. 9 з.п. ф-лы, 6 ил.

Группа изобретений относится к контрольно-измерительной технике и может быть использовано для предварительной оценки обогатимости руд твердых полезных ископаемых и определения параметров их селекции. Согласно способу определяют полезность и зоны различения каждого минерального объекта из партии образцов. Формируют цветные изображения, по меньшей мере, двух сторон каждого минерального объекта и определяют их суммарную площадь и суммарную площадь изображений всех сторон минеральных объектов, признанных полезными. Преобразуют исходные RGB массивы в цветовые пространства HLS и Yuv с сохранением исходных RGB массивов. Осуществляют цветокоррекцию каждого из девяти исходных массивов, получая при этом совокупность откорректированных RGB, HLS, Yuv массивов. Для каждого минерального объекта определяют их технологические параметры и производят оценку степени обогатимости. Технический результат - повышение оперативности, достоверности и точности измерений. 2 н. и 11 з.п. ф-лы, 5 ил.
Наверх