Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления



Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления
Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления
B01D53 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2488427:

Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) (RU)

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной трубы так, что устанавливается противоточное движение закрученных потоков фаз. При этом конденсат стекает вниз и выходит из трубы по ее внутренней поверхности, обогащаясь высококипящим компонентом, а пар поднимается вверх и выходит из трубы в приосевой области, обогащаясь низкокипящим компонентом. Смесь подают тангенциально и вверх в нижнюю часть трубы, а внутреннюю поверхность трубы охлаждают для образования на ней конденсата - флегмы. Температуру внутренней части трубы поддерживают таким образом, чтобы температура пара - целевого продукта - на выходе из трубы в приосевой области приближалась вплоть до совпадения к температуре кипения низкокипящего компонента. Устройство для сепарации низкокипящего компонента из смеси паров содержит вертикально расположенную цилиндрическую трубу с прилегающими верхним и нижним торцами, патрубок вывода газа в верхнем торце, средство для вывода жидкости в нижнем торце и средства тангенциальной подачи смеси внутрь трубы. Цилиндрическая труба заключена в соосную трубу большего диаметра с образованием проточного кольцевого канала, ограниченного верхним и нижним торцами, по которому может циркулировать теплоноситель. Средства тангенциальной подачи смеси выполнены в виде торцевого завихрителя в нижнем торце внутренней цилиндрической трубы. Средство для вывода жидкости представляет собой зазор между внутренней цилиндрической трубой и завихрителем. В проточном кольцевом канале и в патрубке вывода газа в верхнем торце внутренней цилиндрической трубы установлены средства контроля температуры, например термометры. На входе теплоносителя в кольцевой канал установлен регулятор расхода теплоносителя, например регулирующий вентиль. Техническим результатом является высокая степень чистоты выделяемого низкокипящего компонента за счет поддержания температуры пара на выходе вблизи точки кипения низкокипящего компонента. 2 н. и 1 з.п. ф-лы, 2 ил., 1 пр., 1 табл.

 

Изобретение относится к нефтяной, газовой отраслям промышленности и может быть использовано при разделении углеводородных смесей и сжиженных газов.

При разделении смесей паров хорошо себя зарекомендовали известные ректификационные колонны, в которых для повышения эффективности разделения организован противоток жидкой и газообразной фаз, и за счет разнообразных насадок сильно развита поверхность контакта этих фаз. Недостатками ректификационных колонн являются большие габариты и высокая металлоемкость.

Известно изобретение «Способ очистки газов от газового конденсата и устройство для его осуществления» [RU 2139751, 26.11.1997, B01D 53/14, B01D 45/12, F25B 43/00], согласно которому поток очищаемого газа при температуре ниже температуры конденсации конденсируемого компонента закручивают в вихревой трубе с одновременной конденсацией в ней. Далее при встречном движении потоков газа и жидкости происходит абсорбция газового конденсата жидким компонентом. Изобретение, за счет высокой эффективности разделения в закрученных потоках, снижает габариты и металлоемкость аппаратов для процесса сепарации жидкой фазы, однако не ставит целью достаточную чистоту газа, содержащего низкокипящие компоненты.

Наиболее близким к заявляемым способу сепарации низкокипящего компонента из смеси паров и устройству для его осуществления является изобретение «Multistage Fluid Separation Assemmly and Method» [US 2005/0115273 A1, 02,06.2005, C02F 1/22, B01D 9/04, F25J 1/00, B01D 19/00]. Согласно этому изобретению, на одной из стадий процесса отделения низкокипящего газа от высококипящих компонентов в жидкой фазе смесь компонентов подают с закруткой внутрь участка цилиндрической трубы. При этом жидкость стекает вниз по внутренней стенке трубы, а газ подымается вверх в ее приосевой области. Для этого в устройстве, представляющем собой вертикальный участок цилиндрической трубы с двумя торцами, верхним и нижним, предусмотрен кольцевой канал для выхода жидкости в нижнем торце и патрубок для выхода газа в приосевой области на верхнем торце. Предусмотрены также патрубки для тангенциальной подачи смеси внутрь трубы. При взаимодействии фаз в противотоке жидкость обогащается высококипящими компонентами, а газ обогащается низкокипящими компонентами. Кроме этого, согласно способу, закрутку газа и жидкости осуществляют в противоположных направлениях. Тем самым за счет интенсивного противотока обеспечивается высокая эффективность процесса разделения.

Недостатком предложенного способа является проблематичность осуществления в реальном аппарате противоположно направленного вращения фаз, а также недостаточная чистота отделения низкокипящего компонента, поскольку температура процесса разделения в приведенных способе и устройстве не контролируется.

Задачей заявляемого изобретения является создание способа сепарации низкокипящего компонента из смеси паров, обеспечивающего близкую к предельной чистоту низкокипящего компонента на выходе, и компактного одномодульного устройства для осуществления способа.

Согласно изобретению, способ сепарации низкокипящего компонента из смеси паров включает подачу смеси тангенциально и вверх в нижнюю часть трубы в состоянии пароконденсата, закручивание потока внутри вертикальной трубы так, что устанавливается противоточное движение закрученных потоков фаз, при этом конденсат (флегма) стекает вниз и выходит из трубы по ее внутренней поверхности, обогащаясь высококипящим компонентом, а пар поднимается вверх и выходит из трубы в приосевой области, обогащаясь низкокипящим компонентом, охлаждение внутренней поверхности трубы для образования на ней конденсата (флегмы), и поддержание температуры внутренней поверхности трубы таким образом, чтобы температура пара (целевого продукта) на выходе из трубы в приосевой области приближалась вплоть до совпадения к температуре кипения низкокипящего компонента.

Эффективность процесса достигается, во-первых, за счет легко осуществимого вертикального противотока фаз, во-вторых, за счет развитой поверхности контакта, которая из-за неустойчивости границы раздела фаз (слой смешения всегда неустойчив) непрерывно обновляется, и, в-третьих, за счет контроля температуры процесса. Согласно предложенному способу температура газа в верхней точке сепаратора поддерживается, насколько это возможно, вблизи температуры кипения низкокипящего компонента. Чем ниже температура на выходе низкокипящего компонента, тем большее количество высококипящего компонента сможет уйти в жидкую фазу при хорошо развитой поверхности контакта и высокой скорости относительного движения фаз. С другой стороны, если эта температура окажется ниже точки кипения низкокипящего компонента, то увеличиваются потери целевого продукта в жидкую фазу.

Согласно изобретению, устройство (сепаратор) сепарации низкокипящего компонента из смеси паров содержит вертикально расположенную цилиндрическую трубу с прилегающими верхним и нижним торцами, патрубок вывода газа в верхнем торце, средство вывода жидкости в нижнем торце и средства тангенциальной подачи смеси внутрь трубы. Цилиндрическая труба заключена в соосную трубу большего диаметра с образованием проточного кольцевого канала, ограниченного верхним и нижним торцами, по которому может циркулировать теплоноситель. Средства тангенциальной подачи смеси выполнены в виде торцевого завихрителя в нижнем торце внутренней цилиндрической трубы. Средство вывода жидкости представляет собой зазор между внутренней цилиндрической трубой и завихрителем. В проточном кольцевом канале и в патрубке вывода газа в верхнем торце внутренней цилиндрической трубы установлены средства контроля температуры, например, термометры, а на входе теплоносителя в кольцевой канал установлен регулятор расхода теплоносителя, например регулирующий вентиль. Регулятор расхода теплоносителя выполнен с возможностью автоматического регулирования по заданной температуре на выходе газа из сепаратора. Регулировка параметров теплоносителя, таких как его температура и расход, может производиться автоматически исходя из условия равенства температуры пара в выходном патрубке температуре кипения низкокипящего компонента.

Предлагаемое устройство поясняется чертежом, фиг.1, где: 1 - внутренняя цилиндрическая труба; 2 - нижний торец; 3 - верхний торец; 4 - торцевой завихритель; 5 - выходной патрубок для газа; 6 - внешняя соосная цилиндрическая труба; 7 - термометры; 8 - входной патрубок для теплоносителя; 9 - выходной патрубок для теплоносителя; 10 - регулировочный вентиль.

Устройство для осуществления заявленного способа работает следующим образом.

Пар подают через торцевой завихритель 4 внутрь трубы 1 и отбирают через патрубок 5. В теплообменник через входной патрубок 8 подают теплоноситель. Вследствие закрутки потока пара в завихрителе, он движется к стенке трубы и вверх. Попадая на охлаждаемую стенку трубы, пар конденсируется, при этом образующаяся на стенке пленка жидкости под действием силы тяжести спускается вниз, и вытекает в зазор между трубой и завихрителем, а не сконденсировавшийся пар продолжает двигаться к стенке и вверх. Взаимодействие жидкой и газообразной фаз происходит на всей длине трубы в противотоке. При этом жидкая фаза (флегма) при движении вниз обогащается высококипящими компонентами, а паровая фаза при движении вверх обогащается низкокипящим компонентом.

Регулировкой расхода и температуры теплоносителя можно добиться установления и поддержания температуры перед выходным патрубком для газа близкой к температуре кипения низкокипящего компонента.

Наряду с высокой эффективностью сепарации за счет взаимодействия фаз в противотоке и высокой интенсивностью обновления поверхности контакта в слое смешения на границе раздела фаз, последнее условие обеспечивает максимальную чистоту целевого продукта.

Пример осуществления.

Было испытано устройство, схема которого показана на фиг.1. На фиг.2 показан испытательный стенд.

Внутренний диаметр сепарационной трубы составлял 50 мм, ее длина составляла 900 мм. В устройство подавалась под давлением смесь паров воды и спирта. Вода подавалась в теплообменник при температуре 20°С. Результаты испытаний отражены в таблице.

Концентрация паров спирта на входе, % Расход смеси, кг/ч Концентрация паров спирта на выходе, % Расход пара на выходе Количество теоретических тарелок Расход воды в кольцевом теплообменнике, кг/ч Температура пара на выходе, С
22 3 92,5 0,22 11 14 77,5
35 3,5 79 0,67 5,7 10.7 85,7

Из представленных данных видно, что заявляемые способ и устройство демонстрируют возможность достижения высокой эффективности выделения чистого низкокипящего компонента в малогабаритном одномодульном аппарате.

1. Способ сепарации низкокипящего компонента из смеси паров, согласно которому смесь подают в состоянии пароконденсата и закручивают внутри вертикальной трубы так, что устанавливается противоточное движение закрученных потоков фаз, при этом конденсат стекает вниз и выходит из трубы по ее внутренней поверхности, обогащаясь высококипящим компонентом, а пар поднимается вверх и выходит из трубы в приосевой области, обогащаясь низкокипящим компонентом, отличающийся тем, что смесь подают тангенциально и вверх в нижнюю часть трубы, а внутреннюю поверхность трубы охлаждают для образования на ней конденсата - флегмы, при этом температуру внутренней части трубы поддерживают таким образом, чтобы температура пара - целевого продукта - на выходе из трубы в приосевой области приближалась вплоть до совпадения к температуре кипения низкокипящего компонента.

2. Устройство для сепарации низкокипящего компонента из смеси паров, содержащее вертикально расположенную цилиндрическую трубу с прилегающими верхним и нижним торцами, патрубок вывода газа в верхнем торце, средство для вывода жидкости в нижнем торце и средства тангенциальной подачи смеси внутрь трубы, отличающееся тем, что цилиндрическая труба заключена в соосную трубу большего диаметра с образованием проточного кольцевого канала, ограниченного верхним и нижним торцами, по которому может циркулировать теплоноситель, средства тангенциальной подачи смеси выполнены в виде торцевого завихрителя в нижнем торце внутренней цилиндрической трубы, средство для вывода жидкости представляет собой зазор между внутренней цилиндрической трубой и завихрителем, в проточном кольцевом канале и в патрубке вывода газа в верхнем торце внутренней цилиндрической трубы установлены средства контроля температуры, например термометры, а на входе теплоносителя в кольцевой канал установлен регулятор расхода теплоносителя, например регулирующий вентиль.

3. Устройство по п.2, отличающееся тем, что регулятор расхода теплоносителя выполнен с возможностью автоматического регулирования по заданной температуре на выходе газа из сепаратора.



 

Похожие патенты:

Изобретение относится к области разделения жидких сред выпариванием. .

Изобретение относится к устройству очистки отработавшего газа. .

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. .

Изобретение относится к устройству и способу обработки дымового газа, основано на использовании растворителя и предназначено для извлечения СО2 из потока дымового газа.

Изобретение относится к устройству и способу обработки дымового газа, основанное на использовании растворителя и предназначенное для извлечения СО2 из потока дымового газа.

Изобретение относится к способам очистки и разделения гелийсодержащих топливных газов, включая природный и попутный нефтяной газы. .

Изобретение относится к технологическим процессам получения инертных газов. .

Изобретение относится к технологическим процессам получения инертных газов. .
Изобретение относится к технологии получения из древесины фильтрующего материала. .

Изобретение относится к фильтрационной установке под давлением. .
Изобретение относится к области волокнистых сорбционно-фильтрующих материалов, используемых для очистки от аэрозолей и радиоактивных форм йода. .

Изобретение относится к области физико-химической технологии обработки жидкостей, в частности к установкам для очистки жидкостей от механических примесей с помощью фильтров и дополнительных средств промывки фильтров обратным током очищенной жидкости без их демонтажа.

Изобретение относится к пищевой промышленности и может быть использовано на предприятиях консервной отрасли. .

Изобретение относится к новому способу очистки раствора диэтаноламина от примесей, включающему нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси.

Изобретение относится к пищевой промышленности, например для обезвоживания сырья при производстве пектина, выделения жидкой фазы из сыпучих материалов, при сушке материалов, а также к сельскому хозяйству, в частности к оборудованию для разделения отходов кормооткормочных комплексов на жидкие и твердые фазы, пригодные для транспортировки на поля в качестве удобрений в жидком или твердом состоянии.

Изобретение относится к области судостроения, в частности к системам очистки воздуха, подаваемого в двигатели для горения топлива, преимущественно газотурбинные. .

Изобретение относится к технологии фракционирования водно-органических смесей и используется в химической, нефтехимической, газодобывающей промышленности
Наверх