Способ перемешивания высоковязких жидкостей

Изобретение относится к технологиям химической, фармацевтической, пищевой и других отраслей промышленности, а именно к перемешиванию жидкостей. Жидкости подают в емкость, образованную зазором постоянного размера между стенками коаксиальных сосудов одинаковой формы, цилиндрической или сферической, до полного заполнения ее объема, сосуды приводят во вращение навстречу друг другу внешним приводом со скоростью, соответствующей появлению турбулентности, жидкости перемешивают и затем удаляют готовую смесь. Отношение радиусов внутреннего и внешнего сосудов составляет 0.44-0.67, а частоту вращения внешнего сосуда fout модулируют во времени по синусоидальной зависимости с частотой не более 3% от fout с сохранением постоянных ненулевых значений своих осредненных величин. Технический результат состоит в повышении эффективности перемешивания высоковязких жидкостей. 2 табл.

 

Изобретение относится к перемешиванию жидкостей и может использоваться для приготовления растворов, суспензий, эмульсий и паст в технологиях химической, фармацевтической, пищевой и других отраслей промышленности.

Наиболее близким к заявляемому изобретению является способ приготовления фотографических эмульсий [1]. Согласно этому способу, жидкости непрерывно подают в емкость, образованную зазором постоянного или переменного размера между стенками сосудов (цилиндры, сферы, плоскости, конуса и т.д.). а полученную смесь непрерывно удаляют из емкости. Сосуды приводят во вращение, в том числе и навстречу друг другу, внешним приводом до величин скоростей, в том числе и непостоянных во времени, соответствующих появлению турбулентности; процесс перемешивания происходит для тонкой пленки жидкости, движущейся с ненулевой скоростью к месту удаления готовой смеси из емкости.

Недостатком такого способа являются очень низкая эффективность перемешивания высоковязких жидкостей.

Изобретение направлено на повышение эффективности смешения и обеспечение возможности перемешивания высоковязких жидкостей.

Указанный результат достигается тем, что жидкости подают в емкость, образованную зазором постоянного размера между стенками коаксиальных сосудов одинаковой формы, цилиндрической или сферической, до полного ее заполнения, сосуды приводят во вращение навстречу друг другу внешним приводом со скоростью, соответствующей появлению турбулентности, жидкости перемешивают, и затем удаляют готовую смесь, причем соотношение радиусов внутреннего и внешнего сосудов составляет 0.44-0.67, а частоту вращения внешнего сосуда fout модулируют во времени по синусоидальной зависимости с частотой, не более 3% от fout с сохранением постоянных ненулевых значений своих осредненных величин.

Отличительными признаками заявляемого изобретения являются:

- подача жидкое гей в емкость до полного заполнения ее объема;

- перемешивание жидкостей турбулентным течением, формирующимся встречным вращением сосудов;

- последующее за перемешиванием удаление готовой смеси;

- определенное отношение радиусов внутреннего и внешнего сосудов;

- величина отношения радиусов сосудов составляет от 0.44 до 0-67;

- синусоидальная модуляция частоты вращения внешнего сосуда;

- значение частоты модуляции составляет не более 3% от частоты вращения внешнего сосуда;

- сохранение постоянного ненулевого значения для осредненной величины частоты вращения внешнего сосуда.

Все указанные выше отличительные признаки заявляемого изобретения являются необходимыми для его реализации и способствуют использованию кинетической энергии турбулентного течения для перемешивания жидкостей.

Подача жидкостей в емкость до полного заполнения ее объема способствует сохранению циркуляции в меридиональной плоскости, проходящей через ось вращения сосудов, что предотвращает появление не перемешанных областей.

Перемешивание жидкостей происходит интенсивнее в присутствии их турбулентного течения, и угловые скорости вращения сосудов, необходимые для формирования турбулентности, существенно ниже в случае встречного вращения сосудов.

Последующее за перемешиванием удаление готовой смеси позволяет увеличивать степень перемешивания за счет возрастания времени процесса, без увеличения угловой скорости вращения сосудов.

Как интенсивность, так и порог формирования турбулентности, необходимой для интенсивного перемешивания жидкостей, зависят от отношения радиусов внутреннего и внешнего сосудов.

Соотношение радиусов внутреннего и внешнего сосудов в диапазоне 0.44-0.67 позволяет обеспечить интенсивную турбулентность гари существенно меньших угловых скоростях вращения сосудов, чем в других случаях.

Изменение скорости вращения внешнего сосуда по синусоидальной зависимости от времени позволяет обеспечить выравнивание степени перемешивания по всему зазору за счет перемещения по этому зазору максимума турбулентных пульсаций скорости.

В том случае, если частота модуляции составляет не более 3% от частоты вращения внешнего сосуда, интенсивная турбулентность может обеспечиваться при меньших скоростях сосудов, чем в случае их равномерного вращения.

Сохранение условия встречного вращения сосудов при модуляции частоты вращения внешнего сосуда обеспечивается постоянным ненулевым значением для осредненной величины его частоты вращения.

Сущность заявляемого изобретения поясняется нижеследующим описанием.

Заявляемый способ предназначен для перемешивания жидкостей, диапазон изменения величины вязкости которых составляет от 1 до 200 10-6 м2/с. Интенсивность перемешивания жидкостей определяется коэффициентом диффузии, который существенно выше для турбулентных течений |2]. При встречном вращении сосудов силы трения на поверхности стенок обеспечивают встречное в азимутальном направлении движение жидкостей, и с увеличением скоростей вращения сосудов течение жидкостей в зазоре становится турбулентным. Таким образом, интенсивное перемешивание жидкостей обеспечивается встречным вращением сосудов под действием привода.

Отличительные признаки заявляемого изобретения основаны на следующих эффектах.

Первый - в случае встречного вращения границ скорости вращения сосудов, необходимые для обеспечения перехода к турбулентному режиму течения, минимальны для соотношения радиусов внутреннего и внешнего сосудов 0.44-0.67.

Второй эффект - интенсивность турбулентных пульсаций для течений вязкой жидкости, образующихся при встречном вращении границ, максимальна на поверхности, где осредненная величина азимутальной скорости течения равна нулю. Третий эффект - снижение не менее чем на 8% скорости вращения внутреннего сосуда, необходимой для перехода к турбулентному течению, при модулировании частоты вращения внешнего сосуда частотой; не превышающей 3% от его частоты вращения.

Для достижения интенсификации перемешивания с учетом этих эффектов, как показали результаты экспериментов и численных расчетов, необходим выбор скоростей вращения стенок сосудов таким образом, чтобы, во-первых, обеспечить турбулентный режим течения в зазоре, во-вторых, непрерывно изменять положение поверхности нулевой азимутальной скорости течения. Положение этой поверхности определяется соотношением мгновенных величин скоростей вращения сосудов. Поэтому изменение ее положения достигается за счет модулирования колебаниями синусоидальной формы средней ненулевой скорости вращения внешнего сосуда таким образом, чтобы поверхность нулевой азимутальной скорости течения непрерывно перемещалась между границами зазора.

Пример осуществления технического решения.

Прозрачная жидкость с вязкостью 50 10-6 м2/с заполняла зазор толщиной 0.075 м, образованный двумя прозрачными сферическими поверхностями. Измерение величин пульсаций скорости в жидкости при вращении сферических поверхностей проводилось лазерным доплеровским анемометром, измерения проводились на разных расстояниях от границ зазора. Возникновение турбулентных режимов течения определялось по виду спектра пульсаций скорости. Визуализация течений а зазоре между двумя прозрачными сферическими поверхностями проводилась добавлением небольшого количества алюминиевой пудры таким образом, чтобы жидкость оставалась оптически прозрачной, и наружным освещением течения в зазоре. В случае встречного вращения сферических поверхностей поверхность нулевой азимутальной скорости хорошо просматривалась визуально, и было установлено, что ее местоположение изменяется в зависимости от отношения скоростей вращения границ зазора.

Эксперименты проводились при встречном вращении границ зазора, как в случае невозмущенной частоты вращения внешней сферы, так и в случае вращения с модуляцией этой частоты. Установлено, что в первом случае величина скорости внутренней сферы, необходимая для достижения турбулентных режимов течения, более чем на 10% выше, чем во втором случае. Известно также, что в слое с отношением радиусов внутренней и внешней сфер r1/r2=0,5 переход к турбулентному режиму течения происходит при величинах скорости внутренней сферы меньших в 270 раз по сравнению с аналогичным отношением, равным 0.9. Некоторые результаты приведены в таблицах 1 и 2, в которых представлены минимальные значения угловой скорости внутреннего сосуда Ωi при фиксированной скорости внешнего Ωout, необходимые для возникновения турбулентности в течении.

Таблица 1.
Угловые скорости вращения коаксиальных сосудов, соответствующие переходу к турбулентному течению в различных сферических зазорах
Угловая скорость вращения r1/r2=0.5 r1/r2=0.9
Ωi, 1/с 4 1097
Ωout, 1/с 2 2
Таблица 2.
Угловые скорости вращения внутреннего сосуда, соответствующие переходу к турбулентному течению при модуляции скорости внешнего сосуда
Угловая скорость вращения Без модуляции с модуляцией частотой 0.01 Гц
Ωi 1/с 4 3.66
Ωout, 1/с 2 2

Указанные выше результаты подтверждают достоверность отличительных признаков, на которых основано заявляемое изобретение. Использование предлагаемого изобретения позволяет с высокой эксплуатационной надежностью и технологичностью интенсифицировать процессы перемешивания высоковязких жидкостей.

Источники

1. Continuous method of preparing silver halide emulsion / Патент US 3801326 А, кл. B01F 3/08, 02.04.1974 (прототип).

2. Монин А.С., Яглом A.M. Статистическая гидромеханика. T1. M.: Наука, 1965.

Способ перемешивания высоковязких жидкостей с помощью их подачи в емкость, образованную зазором постоянного размера между стенками коаксиальных сосудов одинаковой формы, цилиндрической или сферической, и встречного вращения сосудов внешним приводом, с меняющейся во времени скоростью, соответствующей появлению турбулентности, отличающийся тем, что жидкости подают в емкость до полного ее заполнения, их перемешивают и затем удаляют готовую смесь, причем соотношение радиусов внутреннего и внешнего сосудов составляет 0,44-0,67, а частоту вращения внешнего сосуда fout модулируют во времени по синусоидальной зависимости с частотой не более 3% от fout с сохранением постоянных ненулевых значений своих осредненных величин.



 

Похожие патенты:

Изобретение относится к технологиям получения композиционных бактерицидных препаратов, обладающих бактерицидной и фунгицидной активностью. .

Изобретение относится к настольному устройству для смешивания и выдачи многокомпонентных масс, в частности стоматологической слепочной массы, содержащему выдавливающие толкатели (8а, 8b), моторный привод (24) для выдавливающих толкателей (8а, 8b), переключаемую муфту (30) для присоединения и отсоединения выдавливающих толкателей (8а, 8b) соответственно, к моторному приводу (24) и от него и по меньшей мере одно ручное средство (3а, 3b) для выполняемого вручную перемещения выдавливающих толкателей (8а, 8b) в их отсоединенном состоянии.

Изобретение относится к области кавитационной обработки жидких сред, удельное содержание воды или иной жидкой фазы которых превышает 65-70% от общей массы, а также к обработке предметов, находящихся в этой среде.

Изобретение относится к устройствам для перемешивания вязких нефтепродуктов с маловязкими и может быть использовано в любой отрасли промышленности. .

Изобретение относится к топливу мазутному суперлегкому, способу его получения и устройству для осуществления способа. .

Изобретение относится к приготовлению высококачественных битумных эмульсий и может быть использовано в строительной, дорожной и химической отраслях промышленности.

Изобретение относится к оборудованию для приготовления кремнийорганических вазелинов, паст, уплотнительных и разделительных смазок и может быть использовано во всех отраслях производства, где требуется получение пастообразных композиционных материалов, высококонцентрированных эмульсий, суспензий, лаков, красок.

Изобретение относится к технологии диспергирования масложировых соединений, в частности, представляющих отходы, образующиеся при производстве растительных масел, и может найти применение в цветной металлургии и химической промышленности.

Изобретение относится к способам приготовления эмульсий веществ, гидрофобизирующих волокнистые материалы, и может применяться в целлюлозно-бумажной, химической и других отраслях народного хозяйства .

Изобретение относится к механическому перемешиванию жидкостей, растворов, суспензий, эмульсий и паст и может использоваться для их приготовления в технологиях химической, фармацевтической, пищевой и других отраслей промышленности. Жидкостями заполняют емкость, образованную зазором постоянного размера между стенками коаксиальных сосудов одинаковой формы, цилиндрической или сферической, жидкости перемешивают при встречном вращении сосудов внешним приводом с меняющейся во времени скоростью, соответствующей появлению турбулентности, осредненные значения скоростей вращения сосудов сохраняются постоянными; готовую смесь затем удаляют, а скорость вращения внутреннего сосуда модулируют по синусоидальной зависимости от времени с частотой fin, величина которой определяется соотношением: , где ν - средняя по объему вязкость жидкостей, rin - радиус внутреннего сосуда. Изобретение обеспечивает снижение энергоемкости перемешивания высоковязких жидкостей. 1 табл.
Изобретение относится к технологии разгрузки высоковязких и высокозастывающих нефтепродуктов с выраженными тиксотропными свойствами при температуре ниже температуры застывания и может быть использовано для выгрузки мазута при отрицательных температурах из емкостей произвольных конструкций и размеров. Способ повышения текучести мазута при отрицательных температурах характеризуется тем, что осуществляют механическое воздействие на мазут за счет вращательного и возвратно-поступательного воздействия перемешивающего устройства, погруженного в емкость с мазутом, снабженного режущими лопастями, винтами или лопатками, при этом механическую обработку проводят при температуре мазута ниже 0°C в течение 1-3 минут. Техническим результатом изобретения является повышение текучести мазута при отрицательных температурах и снижение энергетических и трудовых затрат на разгрузку мазута из емкостей произвольных конструкций и размеров.

Изобретение относится к машиностроению, в частности к экспериментальной гидравлике, и может быть использовано в стендах для гидравлических исследований и испытаний измерительных приборов. Способ включает следующие этапы: подают двухкомпонентную жидкость в накопительную емкость, объем которой достаточен для образования в верхней и нижней ее частях смесей жидкостей требуемых концентраций при условии прокачивания двухкомпонентной жидкости с максимально возможным расходом; отбирают в замкнутый контур циркуляции жидкости с разных уровней накопительной емкости по раздельным каналам; смешивают жидкости, отобранные с разных уровней накопительной емкости, регулируя соотношение расходов в направлении устранения рассогласования между заданным и замеренным в замкнутом контуре соотношением компонентов; возвращают смешанные жидкости в накопительную емкость после прохождения ими исследовательской части контура. Решение отличается простотой технической реализации: не требует больших емкостей и мощных перемешивающих устройств, позволяет оперативно изменять расход и соотношение компонентов в смеси. 2 з.п. ф-лы, 1 ил.

Изобретение относится к перемешиванию жидкостей, паст, расплавов жидких металлов и может использоваться в технологиях химической промышленности, в экспериментальных установках, предназначенных для выявления возможности генерации магнитного поля с использованием в качестве рабочего тела жидкого натрия, а также при приготовлении питательных сред для выращивания микроорганизмов в биотехнологических производствах фармацевтической и пищевой промышленности. Способ бестранспортного перемешивания жидкостей заключается в полном заполнении ими емкости, образованной зазором постоянного размера между стенками коаксиальных сосудов одинаковой формы, цилиндрической или сферической, перемешивании при встречном вращении сосудов внешним приводом, с меняющейся во времени скоростью, соответствующей появлению турбулентности, и последующем удалении готовой смеси, угловые скорости вращения внутреннего и внешнего сосудов модулируют во времени по синусоидальной зависимости, их осредненные значения остаются нулевыми, а мгновенные значения определяются соотношением: Ω1+Ω2=0, где Ω1, Ω2 - угловые скорости вращения внутреннего и внешнего сосудов. Изобретение обеспечивает увеличение равномерности перемешивания по объему и устранения непрерывной транспортировки жидкостей. 1 табл.
Наверх