Пресс-пакет для производства фрикционных углерод-углеродных композиционных материалов и способ его получения

Изобретение относится к области изготовления фрикционных углерод-углеродных материалов и изделий из углеродистой волокнистой массы в смеси с порошкообразным связующим, в частности к пресс-пакетам, из которых формируются эти материалы и/или изделия. Пресс-пакет для производства фрикционных углерод-углеродных композиционных материалов и/или изделий содержит следующие компоненты, мас.%: длинные углеродные волокна 10-30; короткие углеродные волокна 1-30; игольчатый кокс 0,5-10 и связующее - остальное. Длина длинных углеродных волокон составляет 30-60 мм, а коротких волокон - 10-50% от длины длинных волокон. В качестве связующего используют частицы пека. Способ изготовления пресс-пакета включает подачу и смешение указанных компонентов, причем перед подачей частицы игольчатого кокса смешивают с частицами пека. Изобретение позволяет повысить теплопроводность и прочность изделий в направлении, параллельном оси прессования. 2 н. и 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к области изготовления фрикционных углерод-углеродных материалов и изделий из углеродистой волокнистой массы в смеси с порошкообразным связующим, в частности к пресс-пакетам, из которых формируются эти материалы и/или изделия.

В самом общем случае фрикционные углерод-углеродные материалы и/или изделия формируют путем прессования полуфабриката, содержащего углеродные волокна и связующее, который получил название пресс-пакета.

Для получения пресс-пакета непрерывные жгуты углеродных волокон режут на отрезки заданного размера, смешивают их со связующим компонентом и формируют из смеси заготовку - пресс-пакет.Далее из пресс-пакета получают изделие - пресс-пакет подвергают прессованию, обжигу, пропитке связующим, карбонизации и другим технологическим операциям с получением конечного углерод-углеродного композиционого материала или изделия.

Так в патенте RU 2088705 получают заготовки пресс-пакетов следующим образом: жгуты углеродных волокон режут на отрезки заданного размера, затем их уплотняют с образованием имеющего постоянное сечение и равномерно уплотненного объема волокон, после чего осуществляют разделение волокон и одновременно дозированную подачу их в камеру смешения со связующим путем последовательного раздува уплотненного объема волокон струей сжатого воздуха, при этом смешивание волокон со связующим компонентом проводят путем непрерывной дозированной подачи и равномерного распределения волокон и связующего компонента по поперечному сечению камеры смешения. Затем из полученной смеси уплотнением формируют заготовку.

Данное известное изобретение позволяет повысить качество пресс-пакета за счет увеличения однородности смеси и снижения степени разрушения волокон, а также расширить технологические возможности способа за счет использования в качестве исходного материала отходов углеродных волокон.

Наиболее близкое техническое решение раскрывается в JP 2003055057 на «Способ изготовления УУКМ». В данном способе пресс-пакет изготавливают следующим образом: нарезанное углеродное волокно длиной 2-30 мм смешивают с наполнителем, содержащим один или нескольких пеков, кокс и тонкодисперсный угольный порошок. Затем смесь измельчают, помещают ее в металлическую форму, в которой и формируют пресс-пакет. Соответственно, в данном документе также раскрывается и сам способ получения пресс-пакета.

Как следует из описания данного патента, метод позволяет из пресс-пакета, полученного по описанной технологии, получить углерод-углеродный материал без необходимости повторения процесса пропитки для уплотнения.

Однако оба известных способа не позволяют решить задачу одновременного улучшения теплопроводности и прочности в направлении, параллельном оси прессования, которые являются принципиально важными характеристиками фрикционных материалов при эксплуатации. При этом высокая теплопроводность в направлении, параллельном оси прессования, необходима для отвода тепла из тела фрикционного материала и исключения его локального перегрева, прочность на сжатие и изгиб при приложении силы в аналогичном направлении - также важные характеристики, высокие значения которых исключают разрушение материала в процессе эксплуатации.

Задачей изобретения является повышение теплопроводности и прочности в направлении, параллельном оси прессования.

Поставленная задача решается пресс-пакетом для производства фрикционных углерод-углеродных композиционных материалов и/или изделий, содержащим связующее, волокнистый наполнитель, выполненный из длинных и коротких углеродных волокон, где длина длинных волокон составляет 30-60 мм, а длина упомянутых коротких волокон - 10-50% от длины длинных волокон, и частицы игольчатого кокса при следующем соотношении компонентов, мас.%:

Длинные углеродные волокна 10-30
Короткие углеродные волокна 1-30
Игольчатый кокс 0,5-10
Связующее остальное

В частных воплощениях изобретения поставленная задача решается также тем, тем, что пресс-пакет содержит игольчатый кокс с параметром анизометрии не менее 1,70.

Поставленная задача решается также способом получения пресс-пакета для производства фрикционных углерод-углеродных композиционных материалов и/или изделий, который включает подачу и смешение связующего, волокнистого наполнителя, выполненного из длинных и коротких углеродных волокон, где длина длинных волокон составляет 30-60 мм, а длина упомянутых коротких волокон - 10-50% от длины длинных волокон, и частицы игольчатого кокса при следующем соотношении компонентов, мас.%:

Длинные углеродные волокна 10-30
Короткие углеродные волокна 1-30
Игольчатый кокс 0,5-10
Связующее остальное

В частных воплощениях способа поставленная задача также решается тем, что в качестве связующего используют частицы пека. В этом случае перед подачей частицы игольчатого кокса смешивают с частицами пека.

Сущность изобретение состоит в следующем.

Получаемый в соответствии с изобретением пресс-пакет содержит волокнистый наполнитель, включающий углеродные волокна двух различных длин, игольчатый пек и связующее при определенном соотношении этих компонентов.

Сочетание коротких и длинных волокон с заявленным соотношением их длин позволяет увеличить долю Z-составляющей (волокна, ориентированные в направлении, параллельном оси прессования), снизить количество изгибов волокна в пресс-пакете, а также снизить степень износа фрикционных углеродных дисков при эксплуатации.

Нами исследовано, что в некоторых воплощениях изобретения при использовании длинных углеродных волокон с длиной, равной 30-60 (наиболее желательно 40-50 мм), достигаются наиболее высокие показатели качества целевых композиционных материалов. При такой длине при прессовании пресс-пакета реализуется ориентирование длинных волокон в направлении, перпендикулярном оси прессования, при этом короткие углеродные волокна и частицы игольчатого кокса являются Z-составляющими. Все вышеописанное не означает, что изобретение не будет осуществляться при других размерах длинных волокон; важно соотношение длин коротких и длинных волокон.

Введение игольчатого кокса, который характеризуется ярко выраженной анизометрией свойств, вместе с вышеописанным волокнистым наполнителем способствует не только созданию анизометрии во всем пресс-пакете, но также способствует росту как прочности, так и теплопроводности в направлении, параллельном оси прессования, что может быть объяснено следующим образом: при прессования пресс-пакета частицы игольчатого кокса распределяются между длинными волокнами параллельно оси прессования или под некоторым углом в ней. При этом в результате анизометрии свойств, в том числе анизометрии теплопроводности, повышается теплопроводность композиционного материала в направлении, перпендикулярном поверхности прессования. Аналогично, повышается предел прочности на сжатие в том же направлении. Высокая прочность на изгиб при приложении усилия параллельно оси прессования реализуется благодаря укладке длинных волокон перпендикулярно оси прессования.

Приведенное в зависимом пункте формулы значение коэффициента анизометрии является наиболее оптимальным: при нем достигаются наилучшие характеристики материала, но весь диапазон параметров анизометрии не исчерпывается приведенными в зависимом пункте формулы значениями - изобретение может быть осуществлено и при иных, отличных от приведенных значений параметров.

В качестве связующего может быть использовано любое приемлемое для изготовления углерод-углеродного материала связующее, прежде всего, это каменноугольный пек, что объясняется его доступностью и дешевизной.

В качестве связующего могут быть также использованы такие вещества, как термореактивные смолы с высоким выходом по углероду: фенолформальдегидные, фурановые, фурфурольные и др.

Если в качестве связующего используется каменноугольный пек, то он может подаваться в аппарат для смешения компонентов пресс-пакета в сухом состоянии - в виде частиц, что упрощает процесс получения материала.

В этом случае каменноугольный пек предварительно перед подачей может быть смешан с игольчатьм коксом, что обеспечит более равномерное распределение в пресс-пакете.

Изобретение осуществляется следующим образом.

Для получения пресспакета в соответствии с изобретением использовали следующие исходные вещества:

Жгуты углеродных волокон по ТУ 1916-214-51385208 «Волокно углеродное марки УК аппретированное, термообработанное при 2800°С» или волокно углеродное Zoltek Panex.35

Каменноугольный пек по ТУ У 24.1-00190443-084 «Пек каменноугольный высокотемпературный марки Г, гранулированный»

Кокс нефтяной игольчатый производства компании Nichimen Corporation, Япония.

Жгуты углеродных волокон, диаметр которых составляет 6-10 мкм, нарезали на отрезки длиной от 10 до 60 мм вручную или на специальном резаке. Нарезанные волокна смешивали в заданном соотношении (см. таблицу 1) и загружали в пневмопитатель.

Частицы каменноугольного пека (среднетемпературного или высокотемпературного) смешивали с частицами игольчатого кокса (нефтяного или пекового) в смесителе, обеспечивающем равномерное смешение и распределение компонентов смеси (в зависимости от вида смесителя - от 7 до 60 минут).

Затем порошок связующего (каменноугольный пек и игольчатый кокс) и нарезанные жгуты углеродного волокна направляли в камеру пневмопитателя, куда подавали сжатый воздух, который приводил смесь наполнитель-связующее в псевдоожиженное состояние, при этом продолжительность формирования пресспакета составляля 15-30 минут.

В таблице 1 приведены различные составы пресс-пакета в соответствии с изобретением, а также получаемые при этом свойства.

Как следует из представленных данных, пресс-пакет в соответствии с изобретением обладает улучшенной теплопроводностью и прочностью в направлении, параллельном оси прессования.

1. Пресс-пакет для производства фрикционных углерод-углеродных композиционных материалов и/или изделий, характеризующийся тем, что содержит связующее, волокнистый наполнитель, выполненный из длинных и коротких углеродных волокон, где длина длинных волокон составляет 30-60 мм, а длина упомянутых коротких волокон - 10-50% от длины длинных волокон, и частицы игольчатого кокса при следующем соотношении компонентов, мас.%:

Длинные углеродные волокна 10-30
Короткие углеродные волокна 1-30
Игольчатый кокс 0,5-10
Связующее Остальное

2. Пресс-пакет по п.1, характеризующийся тем, что содержит игольчатый кокс с параметром анизометрии не менее 1,70.

3. Способ получения пресс-пакета для производства фрикционных углерод-углеродных композиционных материалов и/или изделий, характеризующийся тем, что включает подачу и смешение связующего, волокнистого наполнителя, выполненного из длинных и коротких углеродных волокон, где длина длинных волокон составляет 30-60 мм, а длина упомянутых коротких волокон - 10-50% от длины длинных волокон, и частицы игольчатого кокса при следующем соотношении компонентов, мас.%:

Длинные углеродные волокна 10-30
Короткие углеродные волокна 1-30
Игольчатый кокс 0,5-10
Связующее Остальное

4. Способ по п.3, характеризующийся тем, что в качестве связующего используют частицы пека.

5. Способ по п.4, характеризующийся тем, что перед подачей частицы игольчатого кокса смешивают с частицами пека.



 

Похожие патенты:

Изобретение относится к модифицированию поверхности неорганического волокна путем формирования высокоразвитой поверхности неорганического волокна, используемого в качестве наполнителя, за счет формирования на волокнах углеродных наноструктур (УНС) и может найти применение в производстве высокопрочных и износостойких волокнистых композиционных материалов.

Изобретение относится к области изготовления фрикционных изделий, в частности изделий для фрикционного торможения, таких как авиационные тормоза. .

Изобретение относится к области техники фрикционных материалов, например дисков фрикционного тормоза для летательных аппаратов. .

Изобретение относится к композиционным материалам на основе терморасширенного графита, в частности к армированным листовым материалам, и может быть использовано в производстве прокладочных и других изделий, работающих в интервале температур от минус 80 до плюс 250°С.

Изобретение относится к области углерод-углеродных композиционных материалов (УУКМ). .

Изобретение относится к технологии создания композиционных материалов (КМ) и способам изготовления корпусных элементов авиационно-ракетно-космических изделий. .

Изобретение относится к композиционным материалам на основе терморасширенного графита, в частности к армированным листовым материалам, и может быть использовано в производстве прокладочных и других изделий, например гибких нагревателей, труб, футеровки для высокотемпературных печей и т.д.
Изобретение относится к материалам на основе терморасширенного графита, в частности к армированным листовым материалам, и может быть использовано в производстве прокладочных и других изделий, например гибких нагревателей, труб, футеровки для высокотемпературных печей и т.д.

Изобретение относится к изготовлению деталей из углерод-углеродного композиционного материала для использования, например, в качестве дисков для тормозных авиационных систем.

Изобретение относится к области изготовления заготовок из композиционных углерод-углеродных материалов и предназначено для изготовления фрикционных элементов тормозных дисков для авиационной техники и наземного транспорта. Способ включает резку углеродного волокна на отрезки заданного размера с подачей на рабочий орган устройства для резки напряжения от источника постоянного тока, дозированную подачу отрезков углеродного волокна одновременно со связующим в формообразующую часть камеры смешения с заземленным дном, смешивание и формовку заготовки из полученной смеси. Способ осуществляют на установке, содержащей устройство для резки углеродного волокна, питатель для подачи связующего и камеру смешения, при этом рабочий орган устройства для резки содержит, по меньшей мере, один нож и соединен с источником постоянного тока, а камера смешения содержит формообразующую часть, дно которой заземлено. Изобретение позволяет формировать заготовки фрикционных элементов тормозов с высокими механическими и эксплуатационными свойствами за счет максимально возможного разделения жгутов углеродного волокна на монофиламенты и ориентации их в заготовке по направлению, перпендикулярному поверхности трения. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к изготовлению сопла или диффузора сопла из композитного материала. Техническим результатом изобретения является повышение прочности изделий. Способ изготовления тонкостенного сопла или диффузора сопла из композитного материала, содержащего уплотненный матрицей закрепленный волокнистый каркас, включает получение полотнища из волокнистой ткани, изготовленной объемным ткачеством. Затем формируют волокнистую преформу путем пригонки полотнищ на форме, которая имеет поверхность, воспроизводящую желаемую геометрию внутренней или наружной поверхности подлежащего изготовлению сопла или диффузора сопла причем полотнища пригоняют на форме с перекрытием их смежных кромок, или путем соединения полотнищ на уровне взаимного контакта их кромок. После чего формируют закрепленный волокнистый каркас путем формообразования волокнистой преформы, пропитанной содержащей смолу композицией закрепления, причем формообразование выполняют между формой и оболочкой, наложенной на пропитанную волокнистую преформу таким образом, чтобы получить закрепленный волокнистый каркас, имеющий объемное содержание волокон, равное, по меньшей мере, 35 %, и имеющий, по меньшей мере, на большей части своего размера по оси толщину не более 5 мм, сформированную единственным слоем полотнища волокнистой ткани. Наконец продолжают уплотнение закрепленного волокнистого каркаса посредством химического осаждения из газовой фазы после пиролиза смолы таким образом, что после уплотнения получают деталь, практически имеющую форму и толщину стенки подлежащего изготовлению сопла или диффузора сопла. 2 н. и 12 з. п. ф-лы, 12 ил.

Изобретение относится к нанесению покрытий для защиты от окисления деталей из термоструктурных композитных материалов, содержащих углерод. Для получения самовосстанавливающегося слоя на детали из композитного материала на деталь наносят композицию, содержащую: суспензию коллоидного диоксида кремния, бор или соединение бора в виде порошка, карбид кремния в виде порошка, кремний в виде порошка и по меньшей мере один сверхжаропрочный оксид: Y2O3, HfO2, Al2O3, ZrO2. Композицию наносят на деталь в виде последовательных слоев с промежуточной сушкой с последующей термообработкой для поверхностного стеклования при температуре 600-1000°С. Технический результат изобретения - получение самовосстанавливающегося покрытия для эффективной защиты от окисления при температурах выше 1450°С. 2 н. и 16 з.п. ф-лы, 1 табл., 5 ил.
Изобретение относится к изделиям скользящего контактного токосъема, в частности к токосъемным вставкам для железнодорожного и городского электротранспорта и технологии ее получения. Токосъемная вставка токоприемника электротранспортного средства включает основание и контактную поверхность и выполнена из композиционного материала, содержащего следующие компоненты, мас.%: графит 12,0-60,0, кокс 10,0-50,0, железный порошок 2,0-5,0, коксовый остаток - остальное. Также раскрывается способ изготовления данного материала, предусматривающий смешение всех компонентов, получение заготовки, карбонизующий обжиг заготовки, ее последующую пропитку, повторный карбонизующий обжиг и механическую обработку заготовки с получением вставки. Техническим результатом является снижение удельного электрического сопротивления до значений 10-11 мкОм/м и менее; снижение интенсивности изнашивания при повышенных токах и повышенных скоростях движения, что позволит использовать данную токосъемную вставку для электрифицированного транспорта с повышенными скоростями движения. 2 н. и 3 з.п. ф-лы, 1 табл.
Изобретение относится к получению углерод-углеродных композиционных материалов фрикционного назначения, которые могут быть использованы в авиационных, автомобильных и железнодорожных тормозных системах. Способ изготовления углерод-углеродного материала включает следующие стадии: (А) получение графитированного наполнителя путем обжига углеродного волокна в виде жгутов при температуре от 2000 до 2500оС и его штапелирования; (В) аэродинамическое смешение графитированного наполнителя с модифицированным органическим связующим с высоким выходом коксового остатка, содержащим порошок кокса в количестве от 1 до 10 масс.% от массы связующего; (С) формование зеленой заготовки из смеси, полученной на стадии (В); (D) карбонизацию упомянутой зеленой заготовки, предпочтительно при 800-1000оС; (Е) пропитку заготовки, полученной на стадии (D), связующим под давлением и последующую карбонизацию; (F) высокотемпературный стабилизационный обжиг. В качестве органического связующего используют пеки или синтетические смолы. Прочность на сжатие полученного в соответствии со способом материала составляет не менее 180 МПа, а прочность на изгиб - не менее 125 МПа. Изобретение позволяет упростить и удешевить технологию получения углерод-углеродного материала при увеличении прочности при изгибе и прочности при сжатии, а также улучшить стабильность коэффициента трения. 2 н. и 12 з.п. ф-лы, 3 пр.

Изобретения могут быть использованы в аппаратах химической, химико-металлургической отраслях промышленности, а также в производстве особо чистых материалов. Неразъеёмная монолитная деталь аппарата, снабженная выступающими частями, изготовлена из углерод-углеродного композиционного материала на основе каркаса тканепрошивной структуры. Для изготовления такой детали сначала формируют тканепрошивные каркасы закладных элементов в форме труб и/или пластин с фланцами путем выкладки слоев ткани с отбортовкой на фланцевый участок. Уплотняют пироуглеродом термоградиентным методом, оставляя отбортованные на фланцевый участок слои ткани ненасыщенными пироуглеродом. Механически обрабатывают насыщенный пироуглеродом участок. Затем формируют каркас основной части на формообразующей оправке путеём последовательного вшивания в него ненасыщенных пироуглеродом слоеёв ткани, насыщения их пироуглеродом термоградиентным методом и механической обработки ранее необработанных участков детали. Оправка-нагреватель предназначена для размещения основного участка каркаса закладного элемента, а формообразующая оправка, не являющаяся нагревателем, предназначена для размещения фланцевого участка. Техническим результатом является повышение срока службы деталей в химически агрессивных средах и/или при высоких температурах, увеличение их габаритов без усложнения технологии. 3 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области композиционных материалов с карбидокремниевой матрицей, предназначенных для работы в условиях окислительной среды при высоких температурах. Способ включает изготовление заготовки из пористого углеродсодержащего материала, армированного термостойкими волокнами, и ее силицирование паро-жидкофазным методом. Материал заготовки имеет ультратонкую открыто-пористую структуру, полученную путем пропитки волокнистого каркаса суспензией сажи в 1%-ном растворе ПВС. Нагрев заготовки в интервале 1300-1500°C осуществляют при давлении в реакторе не более 36 мм рт.ст. при температуре паров кремния, превышающей температуру заготовки, а нагрев до конечной температуры 1700-1850°C и изотермическую выдержку в указанном интервале температур проводят в вакууме или при атмосферном давлении в инертной среде в отсутствии указанного перепада температур. При нагреве заготовки в интервале 1300-1500°C температура паров кремния превышает температуру заготовки на 20-150°С, при этом меньшей температуре соответствует больший перепад температур, и наоборот. Технический результат изобретения - повышение ресурса работы изделий за счет увеличения содержания в нем карбида кремния и уменьшение цикла производства. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к области производства углерод-углеродных композиционных материалов (УУКМ) на основе объемно армированных каркасов из высокомодульного волокна и матрицы, произведенной из пеков или смол в процессе карбонизации и последующих высокотемпературных обработок. Технический результат изобретения - производство УУКМ, обладающих высокой кажущейся плотностью и увеличенным уровнем коэффициента теплопроводности (130-140 Вт/м·К), при наименьших затратах. Способ получения УУКМ включает последовательные процессы пропитки волокнистой заготовки расплавленными углеводородами и карбонизации в герметизированном контейнере в аппарате высокого давления, где в качестве передающей давление среды используют кварцевый песок, извлечения заготовки и ее графитации в вакууме, причем эти процессы повторяют до получения материала с плотностью 1,95-2,01 г/см3. Для пропитки и карбонизации в герметизированном контейнере заготовку помещают в специальное приспособление, состоящее из двух одинаковых частей, нижней и верхней, каждая из которых выполнена из металлического кольца и графитовых пластин, размещенных внахлест вертикально диаметрально к сварному шву контейнера и металлическому кольцу, при этом свободное пространство контейнера засыпают углеводородами. Графитацию в вакууме проводят в пять этапов с понижением температуры от первого этапа к последнему: на первом этапе температура не более 2700°C, на втором этапе не более 2100°C, на третьем этапе не более 1700°C, на четвертом этапе не более 1300°C, на пятом этапе не более 800°C. 7 табл., 5 пр.
Изобретение относится к способу получения формованного изделия из углеродного материала и может быть использовано в качестве графитовых электродов и соединительных элементов для электротермических процессов. Способ включает следующие стадии: a) измельчение отходов производства или бракованных изделий из усиленного карбоновыми волокнами композиционного материала с отсеиванием пыли, при этом указанный материал представляет собой усиленный карбоновыми волокнами полимер, усиленный карбоновыми волокнами углерод или усиленный карбоновыми волокнами бетон; b) получение смеси из полученного на стадии a) измельченного продукта, связующего вещества, такого как пек, углеродного материала, такого как кокс, и необязательно одной или нескольких добавок, причем данная смесь содержит менее 20 масс.% волокон; c) формование полученной смеси в формованное изделие; d) карбонизацию формованного изделия. После карбонизации изделие может быть пропитано пропитывающим средством с последующей графитизацией. Технический результат изобретения: повышение прочности и стойкости изделий к перепадам температуры при упрощении способа их производства. 2 н. и 13 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к области создания и производства углеродных материалов с высокими физико-механическими характеристиками, в частности углерод-углеродных композиционных материалов на основе тканых армирующих наполнителей из углеродного высокомодульного волокна и углеродной матрицы, сформированной из пеков в процессе карбонизации и последующих высокотемпературных обработок. Способ получения углеродного композиционного материала (УУКМ) на основе углеродного волокнистого наполнителя и углеродной матрицы включает последовательные процессы сухой выкладки каркаса на основе армирующего наполнителя в виде ткани из углеродного высокомодульного волокна на оправку, закрепления оправки с тканью в приспособлении для пропитки сухого каркаса, размещая его в пропиточном контейнере, и проводят пропитку каркаса пеком и карбонизацию, затем каркас пропитывают пеком и карбонизируют в герметизированном контейнере в аппарате высокого давления, где в качестве передающей давление среды используют кварцевый песок, извлекают заготовки и графитизируют в вакууме. При этом операции пропитки и карбонизации под давлением и вакуумной графитации повторяют до получения материала с плотностью 1,88-1,91 г/см3. Изобретение позволяет получить УУКМ на основе армирующих наполнителей в виде тканей из углеродного высокомодульного волокна, обладающих высокими физико-механическими характеристиками, при наименьших затратах. 3 з.п. ф-лы, 4 ил., 1 табл.
Наверх