Способ получения оксида железа

Изобретение может быть использовано в химической промышленности. Способ получения оксида железа (III) включает окисление соединений железа (II). Окисление соли железа (II) осуществляют введением нитрита натрия, расход которого составляет не менее 0,65 моль на 1 моль соли железа (II). Затем в полученный раствор добавляют щелочь, в результате происходит осаждение оксида железа (III). Изобретение позволяет сократить время реакции и уменьшить расход нитрита натрия в 2 раза и более. 8 пр.

 

Предлагаемое изобретение относится к химической промышленности и касается способов получения оксида железа(III).

Оксид железа(III) является сырьем в производстве ферритов, пигментов, компонент керамики, термита, полирующих материалов, рабочего слоя магнитных лент. В качестве пигмента оксид железа(III) применяется в лакокрасочной, бумажной, резинотехнической и других отраслях промышленности.

Известен способ переработки сернокислотных травильных растворов, позволяющий получать оксид железа(III). В травильный раствор при 40…60°С подают аммиак и диоксид углерода. Выделившийся осадок карбоната железа(II) отделяют от раствора с помощью фильтрования и затем разлагают при 450…500°С, после чего проводят окисление путем прокалки при 650…700°С. Недостатком этого способа является многостадийность. [А.с. 850592 СССР. МКИ3 C01G 49/14, С09С 1/24, C01G 1/24. Способ переработки сернокислого железосодержащего раствора. Шлифер Б.А. и др. Заявка 2756900/23-26 от 19.04.79. Опубл. 30.07.81. Бюл. №28.]

Известен способ получения оксидов железа из металлического железа, включающий взаимодействие с водным раствором карбоновой кислоты в среде инертного газа; окисление до карбоксилата железа(III) карбоксилата железа(II); образование оксидов железа из карбоксилатов железа(III) при нагревании на воздухе. Этот способ получения оксида железа(II) является многостадийным и требует больших затрат времени. [Патент 2318730 РФ. МПК C01G 49/02, C01G 49/06, С09С 1/24, B01J 23/745, B01J 35/10, B01J 37/12. Способ получения оксидов железа / Авторы: Конка Э., Рубини К., Петрини Г. Заявка: 2003107342/15, 17.03.2003. Опубл. 10.03.2008.]

Известен способ получения железного сурика из отходов травильного производства, который заключается в том, что соля-нокислые или сернокислые травильные растворы смешивают с промывными водами и шламами травления и нейтрализуют гидроксидом натрия до рН 11…12 при перемешивании в течение 30…40 мин, полученный осадок Fe(ОН)3 промывают водой, нагретой до 50…80°С до отрицательной реакции на сульфат- или хлорид-ионы и обжигают при 500…600°С в течение 2…2,5 ч.

[А.с. 1740320 СССР. МПК5. C01G 49/06. Способ получения оксида железа. Авторы: Бовыкин Б.А., Тишкина Н.С., Костянец Р.В. Заявитель: Днепропетровский химико-технологический институт им. Ф.Э. Дзержинского. Заявка: 4834292, 04.06.1990. Опубл. 15.06.1992.]

Для получения пигментной окиси железа сернокислый травильный раствор обрабатывают одновременно аммиаком и диоксидом углерода. Осадок карбоната железа отделяют от раствора фильтрованием и затем нагревают в атмосфере водяного пара при 130°С в течение 250 мин. После этого образовавшийся гидроксид железа (II) подвергают окислительному прокаливанию на воздухе при 350°С в течение 60 мин. Продукт прокаливания имеет красный цвет и на 99,9% состоит из железного сурика. Недостатком указанного способа является многостадийность. [А.с. 1313857 СССР. МПК4 С09С 1/24. Способ переработки сернокислого железосодержащего раствора. Авторы; Шлифер В.А., Заславский Ю.И., Барский В.Д., Комар Т.В. Заявитель: Днепропетровский химико-технологический институт им. Ф.Э. Дзержинского Заявка: 3945937, 27.05.1985. Опубликовано: 30.05.1987.]

Для получения окиси железа(II) из соли Мора в горячий раствор сульфата железа(II) медленно добавляют горячий раствор щавелевой кислоты. Осадок оксалата железа(II) отделяют фильтрованием от раствор и промывают водой до отрицательной реакции на сульфат-ионы. Далее осадок сушат при 100…110°С и затем проводят окислительное разложение оксалата железа(II) путем прокаливания при 400…500°C. [Карякин Ю.В., Ангелов И.И. Чистые химические вещества. Ид. 4-е, пер. и доп. М.: Химия. - 1974. - 408 с.]

По способу, описанному в патенте США, оксид железа(III) получают в несколько стадий. На первой стадии синтезируют карбонат железа(II) путем медленного добавления в течение 2…3 ч раствора сульфата железа(II) к раствору карбоната и бикарбоната аммония при перемешивании. Осадок карбоната железа(II) промывают от растворимых примесей и затем проводят окислительное расщепление на воздухе при 550…650°С. Недостатком указанного способа является многостадийность. [Патент США №3469942, Production of iron oxide for oxidic sintered shaped bodies. Henneberger F., Gebhardt F. Int. Cl. C01g 49/02, C04b 35/26, H01v 9/02. U.S. Cl. 23-200, 30 Sept. 1969.]

Для получения красного железоокисного пигмента гептагидрат сульфата железа(II) сначала превращают в моногидрат при 200±20°C. Затем в него вводят последовательно лигнин и сульфат алюминия. Далее смесь прокаливают при 850120°С, полученный оксид железа (III) отмывают от водорастворимых солей, сушат и размалывают. [А.с. 1629299 СССР, МКИ5 С09С 1/24. Способ получения красного железоокисного пигмента. Авторы: Герман В.А., Келлерман Л.А., Фраш В.Г. Заявка 4496941/26 от 20.10.88. Опубл. 23.02.91. Бюл. №7.]

Известен способ получения зародышей красного железоокисного пигмента, в соответствии с которым из раствора сульфата железа (II) и сульфата аммония готовят осадок гидроксида железа со структурой лепидокрокита, для чего в раствор добавляют водный раствор аммиака. При этом происходит выделение осадка. Затем суспензию перемешивают в течение 30 минут и потом в течение 2-х часов продувают воздух. Далее суспензию кипятят в течение 2-х часов. При нагревании лепидокрокит полностью переходит в гематит Fe2O3. [А.с. 1458368 СССР. МКИ С09С 1/24, C01G 49/06. Способ получения зародышей красного железоокисного пигмента. Авторы: Леонтьева Н.А., Бубнов А.А., Распопов Ю.Г., Клещев Д.Г., Краснобай Н.Г., Ленев Л.М. Заявка №4186423/23-26 от 26.01.87. Опубл. 15.02.89. Бюл. №6.]

Наиболее близким (прототип) является способ синтеза оксида железа (III), в соответствии с которым окисление проводится в слабокислой среде в присутствии нитрита натрия. Продолжительность синтеза 8 часов. Условия, для получения красного оксида железа: pH 3-6, мольное соотношение нитрита натрия к железу (II) составляет 2…3. [Xianxian Ma et all., Modification of wet-process production of red iron oxide pigment // Tuliao Gongye. - 1990. - N 6. - P.8-11.] Недостатками указанного способа являются большая длительность проведения синтеза и большой расход нитрита натрия.

Целью изобретения является сокращение продолжительности и уменьшение расхода нитрита натрия.

Это достигается тем, что осаждение и окисление проводится в присутствии нитрита натрия в щелочной среде.

Способ реализуется следующим образом. В раствор сульфата железа(II) вводят нитрит натрия, затем добавляют щелочь. Выделившийся осадок оксида железа(III) отделяют от маточного раствора, промывают до нейтральной реакции и отрицательной реакции на сульфат-ионы. Осадок сушат при 100°C и измельчают.

Пример 1. В 40 мл кипящей дистиллированной воды растворяют 5 г гептагидрата сульфата железа(II). В полученный раствор вносят 1,24 г нитрита натрия. Через 2…3 минуты добавляют 8 мл 2 М раствора гидроксида натрия. Выделившийся осадок оксида железа(III) отделяют от маточного раствора вакуум-фильтрованием и промывают теплой дистиллированной водой до нейтральной реакции и до отрицательной реакции на сульфат-ионы. Осадок сушат при 100°C и измельчают. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 2. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что синтез проводится при 20°C. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 3. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо раствора гидроксида натрия добавляют 6 мл концентрированного водного раствора аммиака. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 4. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо 1,24 г нитрита натрия добавляют 1 г нитрита натрия. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 5. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо 1,24 г нитрита натрия добавляют 0,8 г нитрита натрия. Готовый продукт представляет собой черное вещество, обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании соединения, обладающего кристаллической структурой.

Пример 6. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо сульфата железа(II) используют 7,36 г соли Мора, а подщелачивание проводили через 30…60 с после добавления нитрита натрия. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 7. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо сульфата железа(II) используют 3,56 г тетрагидрата хлорида железа(II), а подщелачивание проводили через 30…60 с после добавления нитрита натрия. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Пример 8. Способ получения оксида железа(III) в условиях примера 1, отличающийся тем, что вместо раствора гидроксида натрия добавляют 20 мл 1 М раствора гидроксида калия. Готовый продукт представляет собой темно-красное вещество, не обладающее магнитной активностью. Данные рентгеноструктурного анализа свидетельствуют об образовании аморфного соединения.

Таким образом, для получения аморфного оксида железа(III) расход нитрита натрия должен составлять не менее 0,8 г на 5 г гептагидрата сульфата железа(II), то есть 0,65 моль на 1 моль соли железа(II).

Результаты, приведенные в примерах, указывают на то, что предлагаемый способ получения оксида железа позволяет значительно сократить продолжительность синтеза и уменьшить более чем в 2 раза расход нитрита натрия.

Способ получения оксида железа (III) путем окисления соединений железа (II) и последующего осаждения оксида железа (III), отличающийся тем, что окисление проводят путем введения нитрита натрия и последующего внесения щелочи, а расход нитрита натрия составляет не менее 0,65 моль на 1 моль соли железа (II).



 

Похожие патенты:
Изобретение относится к производству пигментов и может быть использовано при получении пигментов и при их дальнейшем применении в различных отраслях промышленности, в частности при производстве лакокрасочных материалов, строительных материалов, керамических материалов, стекол, эмалей, пластиков, пластмасс, резины и др.
Изобретение относится к получению железоокисных пигментов и может быть использовано в лакокрасочной промышленности, производстве строительных материалов, пластмасс, резинотехнических изделий.
Изобретение относится к оксиду железа (III) пластинчатой структуры, который может быть использован в качестве пигмента. .
Изобретение относится к технологии пигментов и может быть использовано в лакокрасочной, полиграфической промышленности, в производстве резины, пластических масс. .
Изобретение относится к обработке неорганических пигментов из отходов металлургического производства и может быть использовано в металлургической, лакокрасочной промышленности и в промышленности строительных материалов.

Изобретение может быть использовано в химической промышленности. Для переработки отходов растворов хлорида железа, содержащего хлорид железа(II), хлорид железа(III) или возможные смеси этих веществ и необязательно свободную хлористоводородную кислоту указанные отходы концентрируют при пониженном давлении до получения концентрированной жидкости, с общей концентрацией хлорида железа, по меньшей мере, 30 мас.%, предпочтительно, по меньшей мере, 40 мас.%. При необходимости хлорид железа(II), содержащийся в полученной концентрированной жидкости, окисляют до хлорида железа(III) для получения жидкости, содержащей хлорид железа(III). Далее эту жидкость гидролизуют при температуре 155-350°C, поддерживая концентрацию хлорида железа(III) на уровне, по меньшей мере, 65 мас.% для получения потока, содержащего хлористый водород, и жидкости, содержащей оксид железа(III). Затем проводят стадию разделения, на которой оксид железа(III) отделяют от жидкости, содержащей оксид железа(III). После чего проводят стадию извлечения, на которой поток, содержащий хлористый водород, полученный на указанной стадии гидролиза, конденсируют для извлечения хлористоводородной кислоты с концентрацией, по меньшей мере, 10 мас.% предпочтительно, по меньшей мере, 15 мас.%. При этом энергию конденсации потока, содержащего хлористый водород, полученного на стадии извлечения, прямо или косвенно используют в качестве источника нагрева на стадии концентрирования. Изобретение позволяет получить высокочистый и легко фильтрующийся оксид железа(III), регенерировать хлористоводородную кислоту и снизить потребление энергии на 30-40%. 12 з.п. ф-лы, 2 ил., 3 пр.
Изобретение может быть использовано в неорганической химии. Для получения оксида железа(III) в раствор соли железа(II) вводят нитрит натрия, затем добавляют раствор гидроксида натрия. Полученный осадок отделяют, сушат и проводят термическое окисление при 650°C. Изобретение позволяет уменьшить продолжительность и сократить число стадий получения кристаллического оксида железа(III). 6 пр.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве материала положительного электрода источников тока на основе лития, для питания электронных устройств различной мощности, в частности портативных приборов, транспортных средств и т.д. Предлагается полученный из растворимых прекурсоров сложный оксид состава SrFe12O19 для применения в качестве активного вещества для композитного материала положительного электрода литиевого аккумулятора, состоящего из связки, токопроводящего агента и активного вещества. Варьируя температурный режим обжига, можно получать целевую фазу с различными регулируемыми размерами частиц. Подбор размера частиц позволяет оптимизировать эксплуатационные параметры работы аккумулятора. Сохранение структуры при разряде (внедрение лития) позволило использовать данный материал до 80-100% от теоретической емкости. Удельная теоретическая емкость составляет 303 мАч/г. 6 н. и 2 з.п. ф-лы, 1 табл., 6 ил.

Изобретение может быть использовано при получении железооксидных пигментов. Способ комплексной переработки мартит-гидрогематитовой руды включает грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку. Мартитовую руду сначала подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий. Крупный класс направляется на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливается и разделяется грохочением на промежуточный и мелкий классы. Промежуточный класс транспортируют на металлургическую переработку, мелкий класс отправляют на брикетирование. Гидрогематитовую руда также подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий. Крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы. Промежуточный класс транспортируют на металлургическую переработку. Часть мелкого класса направляют на брикетирование, другую часть направляют на магнитную сепарацию, магнитная фракция которой поступает на брикетирование. Немагнитную фракцию измельчают с перемешиванием мелющей средой и направляют на гидравлическую классификацию первой стадии. Пески классификации возвращаются в мельницу. Слив поступает на вторую стадию классификации, слив которой после сгущения и сушки используют как пигмент третьего сорта. Пески второй классификации подают на вторую стадию измельчения с перемешиванием мелющей средой. Измельченный во второй стадии продукт подвергается гидравлической классификации третьей стадии, пески которой сгущают, сушат и используют как пигмент второго сорта. После этого слив сгущают, сушат и используют как пигмент первого сорта. Изобретение позволяет получить одновременно несколько сортов железооксидного пигмента и готовое сырье для металлургической промышленности. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение может быть использовано в неорганической химии. Для получения наночастиц маггемита готовят водный раствор хлорида железа (III), добавляют к нему щелочь до рН 6,5-8, нагревают до 60-70°С, промывают до начала окрашивания промывных вод. Добавляют в полученную суспензию агент, регулирующий рост наночастиц оксида железа, и повторно вводят щелочь до получения раствора с рН 8-12. Далее нагревают суспензию до 130-190°С и выдерживают при этой температуре в течение 1-3 часов. Затем полученную суспензию центрифугируют, промывают и сушат до рассыпающегося состояния. Раствор хлорида железа (III) предварительно фильтруют, центрифугируют и добавляют к нему 25-38% соляную кислоту до величины рН раствора 0,1-1,0. В качестве агента, регулирующего рост наночастиц, берут фосфоновые (оксиэтилидендифосфоновую, нитрилотриметилфосфоновую, фосфонуксусную), гидроксиполикарбоновые (лимонную, винную), поликарбоновые (глутаровую, адипиновую, фумаровую, малеиновую) кислоты, или аминокислоты (аминоуксусную, 2-аминопропановую), или их смеси в количестве 3·10-3-1,2·10-1 моль на моль железа. Супермагнитная порошковая композиция содержит маггемит и защитную оболочку, включающую адсорбированный агент, регулирующий рост наночастиц. Изобретение позволяет упростить получение наночастиц маггемита, повысить химическую стабильность получаемых супермагнитных наночастиц сферической формы с размером менее 10 нм. 2 н. и 2 з.п. ф-лы, 3 ил., 10 пр.
Изобретение может быть использовано в химической промышленности. Железооксидный пигмент содержит оксид железа(III) α-модификации с пластинчатой формой кристаллов. Содержание Fe2O3 в пигменте 97-99% масс. Кристаллы имеют средний диаметр 0,1-0,8 мкм при соотношении диаметра к толщине кристалла 0,1-0,2. Способ получения железооксидного пигмента включает окислительный гидролиз водных растворов сульфата железа(II) при температуре 10-40 ºC с последующей гидротермальной обработкой образовавшихся продуктов в щелочной среде при температуре 150-250 ºC. Гидролиз суспензий, полученных из водных растворов сульфата железа(II), ведут при pH=10-13, а окисление ведут пероксидом водорода. Изобретение позволяет снизить средние размеры кристаллов оксида железа(III) α-модификации для использования в лакокрасочных композициях с низкой вязкостью связующего, в частности в воднодисперсных композициях. 2 н.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной оболочкой путем гидролитического синтеза включает обработку раствора соли железа (III) раствором аммиака при рН=10 с последующей пептизацией полученного осадка Fe(OH)3 соляной кислотой при рН=9 и температуре 90-95°C. К полученному коллоидному раствору добавляют раствор силиката натрия со скоростью 5-50 ммоль/л·час. Образовавшиеся дисперсные частицы осаждают смесью силиката и хлорида натрия. Затем добавляют раствор силиката натрия, поддерживая значение рН=8 добавлением соляной кислоты. Реакционную смесь с осадком доводят до значения рН=5 и выдерживают температуре 95-100°C в течение 1-5 часов. Отделяют осадок на фильтре, промывают и подвергают термообработке при 100-800°C. Изобретение позволяет расширить диапазон сорбционных и магнитных свойств получаемого материала, повысить экологическую безопасность при одновременном упрощении технологии. 2 з.п. ф-лы, 3 ил., 4 пр.

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц Fe2O3 проводят в два этапа. Сначала осуществляют плазменно-дуговой синтез металл-углеродного материала. Синтезированный материал отжигают в кислородсодержащей среде при атмосферном давлении. В плазме электрического дугового разряда распыляют металл-углеродный композитный электрод, в просверленную по центру полость которого запрессована смесь порошков железа и графита в весовом соотношении 2/1. Синтез проводят при давлении буферного газа 50 торр. Синтезированный материал представляет собой углеродную матрицу с железосодержащими наночастицами размером 5-10 нм. Отжиг осуществляют путем нагрева полученного материала до температуры 300°C, выдержки в течение двух часов и остывания в кислородсодержащей атмосфере. Изобретение позволяет получить материал, устойчивый к окислению и коагуляции, увеличить длительность его хранения, транспортировать его к месту использования для изготовления суспензий, уменьшив слипание частиц. 8 ил.

Изобретение относится к области неорганической химии, а именно к методам синтеза композиционных материалов на основе соединений железа, содержащим его одновременно в различных степенях окисления: (0), (+2), (+3) и выше, и может быть использовано: в технологических решениях кондиционирования поверхностных и грунтовых вод бытового назначения; очистки и дезинфекции сточных вод; изготовления катодных материалов для химических источников электрического тока; ингибирования коррозии изделий из стали и сплавов, содержащих железо; в качестве окислительного реагента; катализатора в органическом синтезе; автономного источника теплоты, выделяющейся в результате образования материала. Композиция для синтеза кислородных соединений железа со степенями окисления (+4), (+5) и (+6) содержит металлическое железо в виде фракции размером от 1 до 20 мкм в количестве 40-80 мас.% и нитрат щелочного металла, термически обработана при температуре 240-350°С. Способ синтеза композиционных материалов - кислородных соединений железа со степенями окисления (+2), (+3), (+4), (+5), (+6) и металлического железа, включающий нагрев смеси, содержащей металлическое железо и нитрат калия, при котором в качестве реакционного материала используют указанную выше композицию, а нагрев осуществляют до температуры начала самоподдерживающейся реакции окисления. Способ получения растворов кислородных соединений железа (+4) и (+6), включающий их выщелачивание из твердой фазы, при котором в качестве твердой фазы используют композиционный материал, полученный по вышеуказанному способу, а выщелачивание осуществляют после увлажнения его водой. 3 н. и 5 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в химической промышленности. Для концентрирования и отделения хлоридов металлов в/из содержащего хлорид железа (III) раствора соляной кислоты хлорид железа (III) превращают путем гидролиза в гематит и осаждают его из указанного раствора. Гематит отфильтровывают в фильтрующем устройстве с получением фильтрата соляной кислоты. Концентрированные негидролизуемые хлориды металлов осаждают из железосодержащего фильтрата соляной кислоты путем повышения концентрации свободного хлористого водорода в растворе. Изобретение позволяет уменьшить концентрацию соляной кислоты и энергопотребление в ходе процесса, увеличить степень регенерации хлористого водорода. 8 з.п. ф-лы, 4 ил., 6 табл., 8 пр.
Наверх