Светодиодное осветительное устройство

Изобретение относится к средствам наружного освещения, использующим светодиоды высокой мощности, и может быть использовано для освещения городских площадей, улиц и магистралей. Теплопроводный стержень выполнен в виде тепловой трубки, на участке испарения которой размещены источники излучения. Узел охлаждения установлен на участке конденсации. Воздуховод установлен вдоль направления действия силы тяжести. Разветвленная поверхность узла охлаждения ориентирована вдоль оси воздуховода и размещена ближе к верхнему концу воздуховода. Теплопроводный стержень и узел охлаждения выполнены из материала, обладающего теплопроводностть не менее 170 Вт/(м·°C). Воздуховод может иметь круглое или прямоугольное поперечное сечение и изготовлен из бетонных, пластических и/или металлических материалов. Техническим результатом изобретения является повышение эффективности охлаждения светодиодов, повышение срока службы светодиодов и надежности осветительного устройства. 3 з.п. ф-лы, 3 ил.

 

Область техники

Решение относится к светотехнике, а именно, к средствам наружного освещения с использованием светодиодов высокой мощности и может быть использовано в оборудовании для освещения городских площадей, улиц и магистралей, в частности, имеющих движение транспортных средств.

Уровень техники

Светодиоды, являются эффективным источником света, обладают низким потреблением электроэнергии и большим сроком службы.

Однако использование для указанного применения мощных светодиодов создает проблему с рассеиванием выделяемого тепла. Учитывая, что температурный режим работы заметно влияет на срок службы светодиодов, проблема термодинамического равновесия, становится тем острее, чем более мощный световой поток необходимо получить для создания нормируемой освещенности.

Для рассеяния тепла чаще всего используют радиаторы, эффективность работы которых зависит от массотдачи на поверхности теплообмена.

При естественной конвекции эффективность охлаждения имеет ограниченные возможности, так как напрямую связана с площадью теплообмена, которую беспредельно увеличивать невозможно.

Для интенсификации теплообмена используют принудительную конвекцию. Создание таких охлаждающих потоков реализуется с помощью различного рода электромеханических устройств, таких как компрессоры, насосы, вертиляторы и тому подобные, которые имеют движущиеся части с ограниченным сроком службы, являются потребителями электроэнергии, требуют дополнительного обслуживания, поэтому их использование снижает эффективность и надежность светодиодных осветительных устройств.

Известны конструкции содержащие теплопроводный элемент, на одном конце которого закреплены светодиоды, а на другом конце средство рассеяния тепла, снабженное разветвленной поверхностью, охлаждение которой осуществляется естественной конвекцией воздуха (например, EP 2341284; WO 2011023790; CN 201193813; TWM 300866 и др).

Общим недостатком известных решений является ограниченная возможность отвода тепловой энергии. Увеличение световой мощности требует все больших площадей теплообмена, увеличение которых приводит к увеличению габаритов радиаторов и, как следствие, к ограничению области применения светодиодных осветительных устройств.

Известно решение содержащие теплопроводный элемент в виде тепловой трубки, на участке испарения которой закреплены светодиоды, а на участке конденсации - узел рассеяния тепла, снабженный разветвленной поверхностью, охлаждение которого осуществляется потоком воздуха, создаваемого вентилятором (TW M295889, МКИ H05K 7/20, опубликовано 11.08.2006).

Недостатком известного решения является наличие электромеханического средства создания воздушного потока, которое имеет движущиеся части с ограниченным сроком службы, требует дополнительного обслуживания и само является потребителем электроэнергии.

В качестве прототипа выбрано решение по TWM 295889, совпадающее с заявленным решением по большинству существенных признаков.

Техническим результатом решения является повышение срока службы светодиодов и надежности осветительного устройства.

Раскрытие сущности

Решение характеризуется следующей совокупностью существенных признаков:

Светодиодное осветительное устройство, содержащее источники излучения; теплопроводный элемент; узел охлаждения, снабженный разветвленной поверхностью; и средство создания потока воздуха, направленного на разветвленную поверхность узла охлаждения, отличающееся тем, что в качестве средства создания потока воздуха использован воздуховод, установленный в направлении действия силы тяжести, а разветвленная поверхность узла охлаждения размещена в полости воздуховода.

В качестве дополнительных следует указать следующие уточняющие или развивающие признаки:

- поверхность теплообмена узла охлаждения ориентирована вдоль оси воздуховода. Такая ориентация поверхностей теплообмена, с одной стороны, увеличивает теплообмен, а с другой "стороны, создает оптимальные условия для движения воздушного потока;

- разветвленная поверхность узла охлаждения размещена ближе к верхнему концу воздуховода;

- теплопроводный элемент и узел охлаждения выполнены из материала, обладающего теплопроводностью не менее 170 Вт/(м·°C). Такой теплопроводностью обладают алюминий и некоторые его сплавы, золото, медь, серебро, карбоновые композиты. Наиболее практичным для широкого использования следует считать сплавы алюминия;

- теплопроводный элемент выполнен в виде тепловой трубки, при этом источники излучения размещены на участке испарения, а узел охлаждения установлен на участке конденсации.

Воздуховодом в заявленном решении является устройство в виде преимущественно прямого трубопровода, дополненного при необходимости частями, обеспечивающими изменение направления, разделение, расширение или сужение воздушного потока. Воздуховод может иметь круглое или прямоугольное поперечное сечение и изготавливаться из металлических, бетонных или пластических материалов.

Под признаком «воздуховод, установленный вдоль направления действия силы тяжести» понимается такое направление оси воздуховода, которое близко к вертикали или имеет от него отклонение на небольшой длине воздуховода.

Создание естественного конвекционного потока в заявленном решении основано на переносе теплоты в воздухе, возникающем в поле силы тяжести при неравномерном нагреве столба воздуха в воздуховоде. Воздух, нагретый сильнее, имеет меньшую плотность и под действием архимедовой силы перемещается относительно менее нагретого вещества. Хотя в основе возникновения свободной конвекции в воздуховоде лежат естественные причины, считать такой организованный конвекционный поток естественным будет не совсем правильно. Более точным характеризовать его как естественно-принудительное.

При размещении в полости воздуховода узла охлаждения создамся условия для возникновения дополнительной локальной принудительной конвекции, возникающей в следствие нераномерности нагрева воздуха у поверхности радиатора узла охлаждения и температурой естественного конвекционного потока в воздуховоде. Совместное действие естественно-принудительной и принудительной конвекции среды в воздуховоде показало высокую эффективность решения. Так, при размещении узла охлаждения осветительного устройства в воздуховоде длиной менее 1 метра падение температуры светодиодов составило 5°C.

Признак «поверхность теплообмена узла охлаждения ориентирована вдоль оси воздуховода» означает поверхность узла охлаждения любой формы, простирающуюся вдоль оси воздуховода. Например, в случае ребристого радиатора поверхностью теплообмена являются боковые плоскости ребер.

Привлекательной особенностью заявленного светодиодного осветительного устройства является отсутствие в его конструкции не только электромеханических узлов, но вообще подвижных элементов, что обусловливает его высокую надежность.

Изобретение иллюстрируется следующими графическими материалами:

на фиг.1 показана схема относительного положения узлов светодиодного осветительного устройства;

на фиг.2 изображена схема варианта расположения светодиодного осветительного устройства при его использовании совместно с дорожными осветительными столбами;

на фиг.3 показана схема варианта расположения светодиодного осветительного устройства при его использовании в строительстве зданий.

Светодиодное осветительное устройство (фиг.1) содержит источники узлучения 1, теплопроводный стержень 2, узел охлаждения 3 и воздуховод 4 с нижним 4' и верхним 4'' концами.

Согласно другому варианту (фиг.2) светодиодное осветительное устройство 5 размещено на столбе 6 дорожной осветительной системы. В этом варианте функцию воздуховода выполняет полость в столбе 6. Патрубки 7 обеспечивают разделение воздушного потока, поднимающегося от вентиляционного отверстия 8 в основании столба 6 и направление его на поверхность теплообмена узла охлаждения 3 (фиг.1).

Следующий вариант расположения светодиодного осветительного устройства 5 представлен на фиг.3. Воздуховод 4, смонтированный вертикально вдоль фасада здания 9, обеспечивает направление воздушного потока, поднимающегося от вентиляционного отверстия 8 в основании воздуховода 4, омывает поверхность теплообмена узла охлаждения 3, расположенного внутри воздуховода.

Возможность промышленного применения

Приведенные в описании варианты осветительного устройства не являются исчерпывающими. Они могут быть изменены для реализации конретных целей освещения. Элементы конструкции осветительного устройства известны и могут быть изготовлены с использованием известных средств, имеющих автоматизированное управление.

1. Светодиодное осветительное устройство, содержащее источники излучения, теплопроводный стержень, узел охлаждения, снабженный разветвленной поверхностью, воздуховод, установленный с возможностью направления потока воздуха на разветвленную поверхность узла охлаждения, отличающееся тем, что теплопроводный стержень выполнен в виде тепловой трубки, на участке испарения которой размещены источники излучения, а узел охлаждения установлен на участке конденсации, при этом воздуховод установлен вдоль направления действия силы тяжести, а разветвленная поверхность узла охлаждения ориентирована вдоль оси воздуховода.

2. Светодиодное осветительное устройство по п.1, отличающееся тем, что разветвленная поверхность узла охлаждения размещена ближе к верхнему концу воздуховода.

3. Светодиодное осветительное устройство по п.1, отличающееся тем, что теплопроводный стержень и узел охлаждения выполнены из материала, обладающего теплопроводностью не менее 170 Вт/(м·°C).

4. Светодиодное осветительное устройство по п.1, отличающееся тем, что воздуховод имеет круглое или прямоугольное поперечное сечение и изготовлен из бетонных, пластических и/или металлических материалов.



 

Похожие патенты:

Изобретение относится к области электротехники и касается конструкции цоколя лампы светодиодной небольшой мощности, который содержит изготовленный из диэлектрика полнотелый корпус с винтовой поверхностью, встроенный в корпус блок питания, центральный контакт, выводы.

Изобретение относится к области светотехники и может быть использовано для освещения целевого объекта, расположенного в заданном диапазоне от системы освещения. .

Изобретение относится к области электротехники и касается ламп светодиодных, работа которых сопровождается нагревом колб. .

Изобретение относится к области светотехники. .

Изобретение относится к области светотехники. .
Изобретение относится к области светотехники. .

Изобретение относится к области электротехники. .

Изобретение относится к тепловому распределению и формированию пучка осветительных устройств. .

Изобретение относится к светотехнике, а именно к радиаторам для светодиодных ламп, предназначенных для замены ламп накаливания. .

Изобретение относится к устройству для рассеяния тепла для выделяющего тепло электрического компонента. Технический результат - обеспечение экономически эффективного устройства, обеспечивающего эффективное рассеяние тепла, а также облегчение монтажа/демонтажа и предотвращение деформации, вызываемой различиями в коэффициенте теплового расширения. Достигается тем, что устройство для рассеяния тепла для выделяющего тепло электрического компонента (10) содержит выделяющий тепло электрический компонент (10), размещенный на печатной плате (20), в тепловом контакте с теплопроводным слоем (23) печатной плате (РСВ). Теплопроводный установочный элемент (40) прикреплен к теплопроводному слою (23) посредством пайки и имеет соединительную часть (43), выполненную с возможностью зацепления с углублением (31) в радиаторе (30); обеспечивая, таким образом, крепление печатной платы (20) к радиатору (30); при этом обеспечен тепловой канал от выделяющего тепло электрического компонента (10) через теплопроводный слой (23) и установочный элемент (40) к радиатору (30). Вследствие применения теплопроводного установочного элемента, можно добиваться рассеяния тепла с РСВ, снабженной одним теплопроводным слоем, а не многослойной РСВ, требуемой в устройствах предшествующего уровня техники. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение надежности. Способ установки светодиодного (LED) модуля (100) в теплоотвод (102) содержит этапы помещения светодиодного модуля (100) в отверстие (120) в теплоотводе (102), и расширения части светодиодного модуля (100) так, чтобы светодиодный модуль (100) был прикреплен к теплоотводу (102). 13 з.п. ф-лы, 11 ил.

Предложены способы и устройства для обеспечения театрального освещения. В одном примере модульный осветительный прибор (300) имеет корпус (320), по существу, цилиндрической формы, включающий в себя первые отверстия (325) для обеспечения пути воздуха через осветительный прибор. В корпусе расположена осветительная сборка (350), которая содержит модуль (360) СИДов, включающий в себя множество источников (104) света на СИДах, первую схему (368, 370, 372) управления для управления источниками света и вентилятор (376) для обеспечения потока охлаждающего воздуха вдоль пути воздуха. С корпусом съемно соединен концевой блок (330), который имеет вторые отверстия (332). В концевом блоке расположена вторая схема (384) управления, электрически подключенная к первой схеме управления и по существу теплоизолированная от нее. Осветительная сборка сконфигурирована направлять поток охлаждающего воздуха к упомянутой, по меньшей мере, одной первой схеме управления так, чтобы эффективно отводить от нее тепло. Повышение надежности и улучшение рабочих характеристик осветительного устройства является техническим результатом заявленного изобретения. 13 з.п. ф-лы, 12 ил.

Группа изобретений относится к области сельского хозяйства и электричества. Модульная система включает корпус, который содержит: ряд светоизлучающих диодов (СИД), по меньшей мере, двух различных цветов для генерации света в пределах цветового спектра, при этом СИД смонтированы, предпочтительно с фиксацией при защелкивании, на пластине, предпочтительно теплопроводящей, или рядом с ней, которая оборудована средствами охлаждения СИД с помощью охладителя; процессор для регулирования величины тока, подаваемого на ряд СИД, так, чтобы величина подаваемого на них тока определяла цвет освещения, генерируемого рядом СИД, и плоский светопроницаемый элемент, содержащий связанные с СИД светопроницаемые линзы, для управления углом рассеяния света, излучаемого каждым СИД, для равномерного освещения поверхности; при этом корпус снабжен каналом для приема трубки для подачи питания и, как вариант, охладителя для системы СИД. Система включает закрытый фотобиореактор, освещаемый одной или несколькими модульными системами СИД по п.1. В способе экранирования для оптимального освещения растительный материал помещают в биореактор, освещаемый одной или несколькими модульными системами СИД по п.1, и измеряют скорость образования СО2 в растительном материале под действием света различной интенсивности. Система управления включает фотобиореактор, со средствами экранирования фотосинтетической активности, который освещается модульной системой СИД по п.1 в дополнение к поступающему солнечному свету; компьютер для обработки данных, полученных от средств экранирования фотосинтетической активности, который позволяет экранировать фотосинтетическую активность растительного материала фотобиореактора, освещенного светом различных длин волн и интенсивности; измерять поступающий солнечный свет и, если его интенсивность уменьшается, увеличивать интенсивность СИД; и управлять освещением растений в парнике путем освещения растений светом, имеющим состав длин волн и интенсивность, которые обеспечивают наивысшую фотосинтетическую активность в фотобиореакторе. В способе управления с помощью фотобиореактора экранируют фотосинтетическую активность растительного материала, помещенного в реактор, который освещают модульной системой СИД по п.1 в дополнение к поступающему солнечному свету; с помощью компьютера обрабатывают данные, полученные от средств экранирования фотосинтетической активности; причем фотобиореактор экранирует фотосинтетическую активность материала, освещенного светом различных длин волн и интенсивности, а компьютер управляет освещением растений в парнике, освещая растения светом, имеющим состав длин волн и интенсивность, которые обеспечивают наивысшую фотосинтетическую активность. Парниковая система включает: модульную систему СИД по любому из пп.1-11 внутри парника для роста растений; средства измерения для измерения одной или нескольких переменных величин, которые прямо или косвенно связаны с ростом, развитием растений; средства управления, выполненные с возможностью управления освещением в зависимости от выходных сигналов средств измерения. Реактор включает один или несколько отсеков для хранения жидкости, содержащей культуру фототрофных микроорганизмов; впускной патрубок для подачи потока газа, содержащего CO2, в один или несколько отсеков; выпускной патрубок для удаления газа из одного или нескольких отсеков; средства регулирования температуры культуры фототрофных микроорганизмов, и модульную систему СИД по любому из пп.1-11. Группа изобретений позволяет обеспечить равномерное освещение поверхности. 7 н. и 11 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области светотехники и касается, преимущественно, ламп светодиодных большой мощности. Техническим результатом является упрощение сборки. В лампе светодиодной, содержащей тело со светоотражающей поверхностью, светодиоды, сообщающиеся через проводники с блоком питания, винтовой цоколь, тело выполнено в виде правильной многогранной трубы, изготовленной из диэлектрического материала, имеющей в ее стенке окна для установки в них светодиодов, причем одним торцом труба надета на цоколь. Другой торец трубы снабжен перфорированной крышкой, имеющей в ее стенке окно для установки светодиода. Каждый светодиод установлен в окне с зазором, достаточным для прохода воздуха, и закреплен держателями. В работающей лампе светодиодной происходит постоянное замещение нагретого воздуха окружающей среды. Отличительной особенностью лампы является «омывание» воздушными потоками всех поверхностей светодиодов. 1 з.п. ф-лы, 6 ил.

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи. Достигается тем, что система охлаждения светодиодного модуля состоит из теплоотводящего основания, совмещенного с радиатором, выполненного из микропористого материала с микроканалами и заполненного жидким теплоносителем, и установленных на нем светодиодов, Микроканалы расположены в теплоотводящем основании под светодиодами перпендикулярно плоскости установки светодиодов, причем их торцы, прилегающие к светодиодам, образуют в максимальной близости к р-n переходам светодиодов поверхность, интенсифицирующую кипение и испарение за счет нанесенного между каждым светодиодом и торцом прилегающего микроканала слоя микропористого материала, размер пор которого существенно меньше размера пор материала, заполняющего теплоотводящее основание светодиодного модуля, причем размер пор слоя микропористого материала уменьшается по направлению к светодиоду. Система требует одноразового заполнения жидкостью и менее чувствительна к вариациям первоначального объема жидкости. 1 з.п. ф-лы, 1 ил.

Изобретение относится к грушевидному светодиодному осветительному устройству, обеспечивающему эффективное рассеивание тепла, сохранение компактного размера и расширение угла излучения света. Светодиодное осветительное устройство содержит множество светодиодов, имеющих металлическую печатную плату, на которой установлено множество светодиодов; резьбовой цоколь; устройство рассеивания тепла; и колбу. Устройство рассеивания тепла содержит главный корпус и множество ребер рассеивания тепла. Главный корпус содержит цилиндрическую часть, в центре которой расположена цилиндрическая часть с открытым верхом, кольцевой фланец, вертикально выступающий от дна цилиндрической части, и выступ, диаметр которого постепенно уменьшается от кольцевого фланца по направлению к нижней поверхности осветительного устройства, на которой установлено множество светодиодов. Ребра рассеивания тепла имеют внутренний вертикальный участок и нижнюю часть, соединенные с цилиндрической частью и с фланцем главного корпуса соответственно и расположены радиально в направлениях вверх и вниз. 4 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к источникам света, работающим на основе полупроводниковых светоизлучающих диодов. Радиатор отвода тепла выполнен из набора пластин или -образной формы, контактирующих одна с другой плоской горизонтальной частью. Длина горизонтальной части каждой последующей по мере приближения к светодиоду пластины радиатора больше предыдущей. Концы пластин загнуты в сторону, противоположную от теплоотводящего основания. Теплоотводящее основание размещено под радиатором отвода тепла. По второму варианту длина горизонтальной части каждой из пластин радиатора увеличивается от крайних из них к средним, а теплопроводящее основание размещено под радиатором отвода тепла между концами загнутых пластин. По третьему варианту теплопроводящее основание размещено с торцевой части радиатора между концами загнутых пластин. Техническим результатом изобретения является снижение габаритов светильника, оптимизация тепловой площади и воздействия потока воздуха в зоне рассеивания тепла. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области светотехники и предназначено для использования при освещении летного поля. Техническим результатом является увеличение срока службы, путем обеспечения эффективного рассеяния тепла, защиты от воздействия реактивной струи и упрощение технического обслуживания, сборки и регулировки. Устройство содержит корпус (11), выполненный с возможностью прикрепления к опоре (14), обеспечивающей фиксацию указанного корпуса в положении над поверхностью земли (15), и по меньшей мере одну световую головку (12, 13), содержащую по меньшей мере один светодиод (17). В корпусе (11) размещена электронная схема питания и возбуждения светодиода (17), содержащая первый теплоотвод (110), находящийся в тепловом контакте с указанной электронной схемой. Световая головка содержит второй теплоотвод (322, 422). Технический результат достигается за счет того, что световая головка (12, 13) выполнена в виде элемента, отдельного от корпуса (11), и содержит переднюю часть (122, 132), предназначенную для передачи испускаемого светодиодом света, и заднюю часть, содержащую заднюю поверхность (120, 130), на которой находится второй теплоотвод (322, 422). Световая головка (12, 13) прикреплена с возможностью присоединения к корпусу (11), причем в прикрепленном положении задняя поверхность (120, 130) расположена между передней частью (122, 132) и корпусом (11), а между корпусом (11) и световой головкой (12, 13) образован канал для прохождения текучей среды, через который проходит окружающий воздух так, что указанный второй теплоотвод обеспечивает рассеивание тепла в окружающем воздухе путем естественной конвекции. 2 н. и 21 з.п.ф-лы, 8 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение теплоотвода, который достигается за счет того, что лампа, включающая в себя источник (54) света на основе СИД, сконфигурированный с возможностью излучения света, содержит себя оптически проницаемое окно (50), взаимодействующее оптически и с возможностью теплопередачи с источником света, причем оптически проницаемое окно выполнено для излучения тепла, создаваемого источником света, в окружающее пространство. Лампа может дополнительно включать в себя оптическую систему, оптически взаимодействующую с источником света и сконфигурированную с возможностью перенаправления света к оптически проницаемому окну. 3 н. и 17 з.п. ф-лы, 9 ил.
Наверх