Способ скважинной сейсморазведки

Изобретение относится к области геофизики и может быть использовано при проведении скважинной сейсморазведки. Заявлен способ скважинной сейсморазведки, включающий регистрацию сейсмических колебаний в точках приема, расположенных в фиксированном интервале глубин, возбуждение колебаний из пунктов возбуждения, расположенных в различных азимутах от проекции на земную поверхность центра интервала глубин на расстояниях от проекции, соизмеримых с глубиной интервала глубин. Возбуждение и регистрацию колебаний проводят до и после гидроразрыва в интервале глубин. При этом регистрацию колебаний после гидроразрыва осуществляют зондом с инструментальным определением пространственной ориентации содержащихся в нем сейсмоприемников. Пункты возбуждения колебаний устанавливают на окружности, центром которой является проекция на земную поверхность центра интервала глубин. О конфигурации неоднородности судят по азимутальному изменению кинематических и динамических сейсмических параметров, определенных в интервале глубин до и после проведения гидроразрыва. Технический результат: повышение точности определения простирания трещиноватой зоны, расположенной в окрестности исследуемого интервала глубин. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области скважинной сейсморазведки и может быть использовано для изучения изменения состояния околоскважинного пространства, в частности - для определения простирания зоны трещиноватости после осуществления гидравлического разрыва пласта (ГРП), направленного на увеличение нефтеотдачи и интенсификации добычи нефти.

Сущность ГРП состоит в том, что посредством закачки жидкости под высоким давлением происходит раскрытие естественных или образование искусственных трещин в продуктивном пласте, а при дальнейшей закачке песчано-жидкостной смеси - расклинивание образованных трещин с сохранением их высокой пропускной способности после окончания процесса и снятия избыточного давления. Высокая пропускная способность обеспечивается путем заполнения сформированных трещин крупнозернистым песком (проппантом), осажденным из песчано-жидкостной смеси.

Кроме формирования трещин, при осуществлении ГРП происходит перераспределение напряженных зон, взаимоувязанных со сформированными трещинами. С ориентацией трещиноватых и напряженных зон связано пространственное распределение сейсмических параметров в окрестности интервалов скважины, в пределах которых осуществляют ГРП.

Известно, что на высоту трещин гидроразрыва влияет литологическая неоднородность пласта. По высоте наиболее распространенные при гидроразрыве вертикальные трещины распространяются в пределах слоя. Изменение механических свойств пласта, обусловленное его анизотропностью, приводит к изменению ширины раскрытия трещин по высоте и простиранию. При этом установлено теоретически и подтверждено экспериментально, что максимальная ширина раскрытия крутопадающих трещин наблюдается не у их «устья», а на некотором удалении.

Результаты экспериментального изучения механизма образования трещин показали, что ориентация трещин гидроразрыва определяется принципом энергетической выгодности процесса проникновения жидкости в слой и совпадает с плоскостями максимальной упругой напряженности в зоне гидроразрыва (Gray et al., 2012). Протяженность трещин гидроразрыва достигает сотен метров и определяется технико-технологическим обеспечением процесса, свойствами жидкости разрыва, темпами и объемами ее закачки. Ширина раскрытия трещин гидроразрыва зависит от упругих деформаций пород продуктивных пластов, технико-технологического обеспечения процесса и может составлять несколько сантиметров.

Из этого следует, что информация о свойстве трещин, получаемая путем проведения промыслово-геофизических исследований скважин (ГИС), оказывается недостаточно надежной, поскольку она дает информацию о свойствах горных пород на расстоянии от стенки скважины, не превышающем первые десятки сантиметров. Кроме того, в существенно искривленных скважинах такой эффективный метод ГИС, как акустический каротаж (АК), оказывается неработоспособным при изучении анизотропных интервалов разреза (Баюк и Рыжков, 2010). Существенно также, что в тех случаях, когда скважина не пересекает трещины, расположенные в ее окрестности, метод АК, в отличие от метода ВСП, вообще не в состоянии их обнаружить (Maultzsch S., Nawab R., Yuh S., Idrees M., 2009).

Модификации скважинной сейсморазведки (метода вертикального сейсмического профилирования (ВСП)), применяющиеся для изучения околоскважинного пространства, лишены указанных недостатков, присущих методам ГИС.

Наиболее близким прототипом к изобретению является способ скважинной сейсморазведки, включающий регистрацию сейсмических колебаний в точках приема, расположенных в фиксированном интервале глубин, и возбуждение колебаний из пунктов взрыва, расположенных по окружности в различных азимутах от проекции на земную поверхность центра интервала глубин и определение сейсмических параметров в интервале глубин (Horne S. and Bale R. Method of processing geophysical data. US 7474996B2, 06.01.2009). Модификация метода ВСП, которую при этом используют, получила название азимутального ВСП (walkaround VSP). Эту модификацию используют для изучения ориентации трещин, расположенных в окрестности скважин.

Основным недостатком прототипа, справедливо отмеченным одним из его авторов (Home S., 2003), является его ограниченность лишь простыми геологическими условиями сред с плоскими границами. Наличие структур, усложняющих геометрию сейсмических границ, существенно снижает точность определения параметров трещин по кинематическим и динамическим характеристикам сейсмических волн. К еще большему усложнению задачи приводит существенное искривление ствола скважины, в котором проводят работы.

Существенным недостатком известного способа является также его ограниченность лишь изучением трещин, возникших в результате гидроразрыва. Состояние среды до гидроразрыва в окрестности интервала, в котором был намечен гидроразрыв, остается при этом неизвестным. Тем самым трудно становится отождествить изменения в среде, произошедшие после гидроразрыва, именно с гидроразрывом. Кроме того, использование в известном способе сейсмических лучей, а не векторов смешений на фронте сейсмической волны, для определения направления подхода волн к точкам приема, расположенным в скважине, приводит к явным неточностям. Причина их состоит в том, что в случае анизотропных сред направление сейсмического луча и направление смещения частиц среду могут существенно различаться. Пространственное положение сейсмоприемников и ориентация трехкомпонентных установок в скважине определяются, тем не менее, в предположении совпадения смещения частиц и отрезка луча на подходе к установке сейсмоприемников. Однако именно в точках приема, расположенных в окрестности гидроразрыва, трещиноватость среды приводит к анизотропии, имеющей ярко выраженный аномальный характер.

Существенно при этом, что направление трещин связано с азимутальной анизотропией не только кинематических, но и динамических сейсмических параметров исследуемого интервала глубин. И если в прототипе для определения таких кинематических параметров, как скорости распространения продольных и поперечных волн, не столь существенно определение точного пространственного положения сейсмоприемников, составляющих трехкомпонентную расстановку в каждой точке приема, то для определения таких тонких динамических параметров, как поляризация волн и направление смещения частиц среды в точке приема, знание пространственного положения сейсмоприемников очень важно. Однако в условиях анизотропных моделей направление смещения частиц среды может существенно отличаться от направления подхода сейсмического луча, распространяющегося от источника к приемнику колебаний. Отождествление в прототипе этих двух направлений по поляризации прямой продольной волны, неизбежное в условиях регистрации колебаний зондом без инструментального определения пространственной ориентации содержащихся в нем сейсмоприемников, может привести к грубым ошибкам при расчете требуемых компонент волнового поля.

Цель изобретения - повышение точности определения пространственного положения неоднородностей, образовавшихся в пределах интервала глубин в результате гидравлического разрыва пласта.

Поставленная цель достигается тем, что в способе скважинной сейсморазведки, включающем регистрацию сейсмических колебаний в точках приема, расположенных в фиксированном интервале глубин, возбуждение колебаний из пунктов возбуждения, расположенных по окружности в различных азимутах от проекции на земную поверхность центра интервала глубин, возбуждение и регистрацию колебаний проводят до и после гидроразрыва. О конфигурации неоднородности судят по азимутальному изменению кинематических и динамических сейсмических параметров, определенных в интервале глубин до и после проведения гидроразрыва. В одном из воплощений изобретения регистрацию колебаний осуществляют зондом с инструментальным определением пространственной ориентации содержащихся в нем сейсмоприемников. При этом по записям трехкомпонентных сейсмоприемников с известной пространственной ориентацией компонент определяют направление смещения частиц среды в точках приема, по модели околоскважинного пространства определяют направление подхода луча к точкам приема, и по различию направлений смещения и направлений луча, приходящего в точку приема, судят об анизотропии среды между точками приема, обусловленной напряженным состоянием среды до и после гидроразрыва пласта.

На рисунке 1 схематически показано осуществление способа при регистрации сейсмических колебаний с одного из пунктов возбуждения (ПВ), расположенных на окружности, в центре которой находится проекция на земную поверхность центра исследуемого интервала глубин, расположенного в скважине.

Цифрами на рис.1 показаны: пункт возбуждения (ПВ) 1; скважина 2; точка приема 3 в скважине; измененный после гидроразрыва интервал слоя 4; граница 5 между измененной после гидроразрыва частью слоя и неизмененной его частью 6; луч 7 прямой волны, соединяющий ПВ 1 и точку приема 8, расположенную на кровле слоя 4; луч преломленной волны 9, проходящий через граничную точку 10 измененной части 4 слоя и точку приема 3; годограф прямой волны 11; аномальный участок годографа 12, возникающий после гидроразрыва.

Способ осуществляют следующим образом.

После отработки скважины вдоль всего вертикального профиля из ПВ, расположенных в различных азимутах от скважины, определяют известными способами толстослоистую и (или) тонкослоистую скоростную модель среды (Шехтман, 2011). Затем в интервал глубин, намеченный для последующего проведения в пределах него гидроразрыва пласта, помещают зонд ВСП, перекрывающий этот интервал по меньшей мере в двух точках. Зонд ВСП, по крайней мере после проведения гидроразрыва, должен обеспечиваться системой инструментального определения пространственной ориентации содержащихся в нем сейсмоприемников путем, например, гироскопических устройств известного типа (Ментюков А.А., Суздальницкий Ф.М., 1987). Качество контакта каждого из приборов зонда со стенками скважины должно быть настолько высоким, чтобы исключались паразитные вращательные колебаний корпусов приборов на контакте (Шехтман Г.А., Нарский Н.В., 2011). Достигается это путем использования в скважинных приборах башмаков, жестко прикрепленных к корпусу каждого прибора (Шехтман Г.А., Касимов АН.О., Редекоп В.А., 2012).

ПВ рассредоточивают равномерно по окружности, центр которой совпадает с проекцией на земную поверхность центра исследуемого интервала глубин, а радиус окружности берут соизмеримым с глубиной центра интервала глубин. Такое расположение ПВ в условиях бурения искривленных скважин при субгоризонтальном залегании отложений покрывающей толщи, характерном, например, для Западной Сибири, позволит свести к минимуму искажающее влияние наклона скважины на результаты сейсмических наблюдений.

Количество ПВ рекомендуется брать не менее шести, чтобы обеспечить надежное определение азимута трещиноватой зоны, расположенной в окрестности скважины до проведения гидроразрыва и сформированной после его проведения. В пределах секторов, представляющих наибольший интерес, описываемый круговой профиль целесообразно дополнительно отрабатывать с малым шагом. Для этого источник колебаний перемещают вдоль окружности с таким шагом, который принят в исследуемом районе при проведении детальных наземных сейсмических наблюдений. На этапе обработки это позволит путем осреднения наблюдений получить более устойчивые азимутальные диаграммы направленности. Возбуждение колебаний с каждого ПВ при фиксированном интервале глубин (он может быть не один) осуществляют, по крайней мере, дважды: до проведения ГРП и после него.

Обработка полученных записей состоит в определении из каждого ПВ кинематических и динамических параметров. При этом учитывают ориентацию трехкомпонентной расстановки сейсмоприемников, расположенной в каждом из скважинных приборов, а также данные инклинометрии скважины. В качестве кинематических параметров определяют интервальные скорости распространения продольных и поперечных волн. Сопоставление волновых полей, зарегистрированных в пределах интервалов глубин, с волновыми полями, зарегистрированными из отдельных ПВ вдоль всего ствола скважины, позволяет уверенно судить о типах волн, по которым определяют скорости. В качестве динамических параметров определяют траекторию смещения частиц среды, преобладающее направление смещения частиц среды, затухание сейсмических волн в пределах интервала глубин, а также отношение сейсмической энергии, регистрируемой на тангенциальной компоненте, к энергии, регистрируемой на радиальной компоненте. Последний из перечисленных динамических параметров наиболее предпочтительный, поскольку он характеризуется относительной величиной, не зависящей от изменения условий возбуждения при переходе от одного ПВ к другому.

По каждому из определенных параметров строят диаграмму, аналогичную розе трещиноватости.

На начальном этапе обработки данных ВСП сопоставление вертикальных годографов, полученных до гидроразрыва и после него, позволяет выделить аномальные участки; соответствующие измененной зоне слоя, в котором осуществляют гидроразрыв. На рис.1 показан такой аномальный участок 12. Нижняя точка аномального участка на годографе соответствует точке приема 3, расположенной под подошвой слоя 4. Зная геометрию наблюдений (координаты ПВ и точек приема в скважине) и скоростную модель, изученную до гидроразрыва, можно методом оптимизации получить координаты точки 10, расположенной на границе 3 измененной зоны 4 и неизмененной зоны 6 слоя, в котором осуществляют гидроразрыв.

Интерпретацию азимутальных диаграмм рассмотрим на примере энергетического параметра, являющегося отношением энергии на тангенциальной и радиальной компонентах. На этих диаграммах направление простирания трещин и ортогональное к нему направление будет характеризоваться минимумом значения данного параметра. На диаграммах интервальных продольных скоростей направление трещиноватости будет характеризоваться максимальными значениями (вдоль плоскости трещиноватости), в то время как ортогональное к трещинам направление будет характеризоваться минимальными значениями. Для поперечных волн, расщепляющихся на трещиноватом участке, имеет место две волны: одна, с максимальной скоростью, поляризована вдоль плоскостей трещиноватости, а другая, с минимальной скоростью, поляризована ортогонально к плоскостям трещиноватости. Комплексное использование различных сейсмических параметров позволяет более надежно определить пространственное положение зоны трещиноватости.

Сопоставление диаграмм направленности, полученных до и после гидроразрыва, позволяет судить о направлении трещиноватости в околоскважинном пространстве, имевшем место до проведения ГРП и после него. Кроме того, диаграммы направленности позволяют судить о распределении упругих напряжений в околоскважинном пространстве в пределах исследуемого интервала глубин. Направление, соответствующее максимальному упругому напряжению, совпадает, как правило, с простиранием трещиноватости. Вдоль этого направления скорость распространения продольных волн в пределах трещиноватой зоны максимальна (или, что то же, время распространения волны минимально), а из двух расщепившихся квазипоперечных волн волна, испытывающая колебаний вдоль трещин, имеет большую скорость, а волна, испытывающая колебания поперек трещин (в более податливом направлении), имеет меньшую скорость. При использовании ненаправленных сейсмических источников основную информацию о поперечных волнах, испытывающих расщепление на трещиноватых коллекторах углеводородов, содержат обменные проходящие волны типа PS, обмен которых с продольных на поперечные волны происходит на резких сейсмических границах, расположенных над исследуемым интервалом глубин.

Определение по данным ВСП таких параметров, как модуль Юнга Е, коэффициент Пуассона σ и податливости (величины, обратной к жесткости) ZN, направленной по нормали к направлению максимального упругого напряжения, позволяет количественно определить относительное значение горизонтального упругого напряжения (ОГУН) по следующей формуле (Gray D., 2012):

ОГУН=(E ZN/(1+EZN+σ)).

Эта величина является весьма важным параметром при прогнозировании того, в каком направлении могут развиться трещины при гидроразрыве. В том случае, когда ОГУН имеет большое значение, развитие трещин происходит параллельно направлению максимального напряжения. Напротив, когда величина ОГУН мала, то трещины при гидроразрыве развиваются во множестве направлений, имея тенденцию пересекаться. Такая сеть трещин является предпочтительной для повышения эффективности извлечения углеводородов из залежи.

Положительный эффект от применения изобретения обеспечивается сверхсуммарным эффектом, достигаемым путем нового сочетания известных признаков.

Применение предлагаемого изобретения позволяет получать более надежные и точные результаты в условиях бурения искривленных скважин при изучении трещиноватых зон, содержащих скопления углеводородов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Баюк И.О., Рыжков В.И., 2010. Определение параметров трещин и пор карбонатных коллекторов по данным волнового акустического каротажа: Технологии сейсморазведки, 3, 32-42.

2. Ментюков А.А., Суздальницкий Ф.М. Способ получения сейсмических записей, ориентированных по азимуту в скважине: Авторское свидетельство СССР №1325393, кл. G01V 1/40, 1987.

3. Шехтман Г.А. Пути повышения точности при изучении сейсмических скоростей методом вертикального сейсмического профилирования: Технологии сейсморазведки, 2, 23-31, 2011.

4. Шехтман Г.А., Касимов А.Н.О., Редекоп В.А. Скважинный сейсмический прибор: Патент РФ №2444030, 2012.

5. Шехтман Г.А., Нарский Н.В., 2011, Факторы, влияющие на качество данных вертикального сейсмического профилирования: Технологии сейсморазведки, 2, 59-69.

6. Усачев П.М. Гидравлический разрыв пласта. - М.: Недра, 1986, 165 с.

7. Economides M.J., Nolte K.G. Reservoir stimulation. - Prentici Holl, 1989.

8. Gray D., Anderson P., Logel J., Delbecq F., Schmidt D., Schmid R., 2012, Estimation of stress and geomechanical properties using 3D seismic data: First Break, 3, 59-68.

9. Home S.A., 2003, Fracture characterization from walkaround VSPs: Geophysical Prospecting, 51,493-499.

10. Home S. and Bale R. Method of processing geophysical data. US 7474996 B2, 06.01.2009 (прототип).

11. Maultzsch S., Nawab R., Yuh S., Idrees M., 2009, An integrated multi-azimuth VSP study for fracture characterization in the vicinity of a well: Geophysical Prospecting, 57, 263-274.

1. Способ скважинной сейсморазведки, включающий регистрацию сейсмических колебаний в точках приема, расположенных в фиксированном интервале глубин, возбуждение колебаний из пунктов возбуждения, расположенных по окружности в различных азимутах от проекции на земную поверхность центра интервала глубин, отличающийся тем, что, с целью повышения точности определения пространственного положения неоднородностей, образовавшихся в пределах интервала глубин в результате гидравлического разрыва пласта, возбуждение и регистрацию колебаний проводят до и после гидроразрыва, при этом о конфигурации неоднородности, образовавшейся в результате гидроразрыва пласта, судят по азимутальному изменению кинематических и динамических сейсмических параметров, определенных с каждого пункта возбуждения в интервале глубин до и после проведения гидроразрыва.

2. Способ по п.1, отличающийся тем, что по крайней мере после гидроразрыва регистрацию колебаний осуществляют зондом с инструментальным определением пространственной ориентации содержащихся в нем сейсмоприемников.

3. Способ по п.1 или 2, отличающийся тем, что по записям трехкомпонентных сейсмоприемников с известной пространственной ориентацией компонент определяют направление смещения частиц среды в точках приема, по модели околоскважинного пространства определяют направление подхода луча к точкам приема и по различию направлений смещения и направлений луча, приходящего в точку приема, судят об анизотропии среды между точками приема, обусловленной состоянием среды до и после гидроразрыва пласта.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. .

Изобретение относится к области геофизики и может быть использовано в процессе мониторинга подземных хранилищ углеводородов. .

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин. .

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин, в частности осуществления контроля искривления ствола скважины.

Изобретение относится к области геофизики и может быть использовано при контроле параметров гидроразрыва пласта. .

Изобретение относится к области геофизики и может быть использовано при исследовании подземных формаций. .

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. .

Изобретение относится к области нефтегазодобычи, в частности к методам и средствам мониторинга текущего состояния технологического процесса добычи углеводородов.

Изобретение относится к области геофизики и может быть использовано в процессе мониторинга подземных хранилищ углеводородов. .

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, например, для определения качества цементирования скважин. .

Изобретение относится к области геофизики и может быть использовано при контроле параметров гидроразрыва пласта. .

Изобретение относится к нефтяной промышленности, в частности к бурению скважин, и может быть использовано для контроля осевой нагрузки на долото при турбинном бурении и для управления процессом бурения.

Изобретение относится к получению информации о функционировании скважинной системы и свойствах подземной формации посредством детектирования и анализирования (интерпретирования) акустических сигналов, сгенерированных компонентами скважинной системы, содержащей, например, ствол скважины, пробуренный к подземной формации, и/или установленное в нем оборудование (например, заканчивающую колонну, один или более инструментов, связанных с этой колонной, обсадную колонну, пакеры, управляющие системы и/или другие компоненты).

Изобретение относится к нефтяной промышленности, в частности к бурению скважин, и может быть использовано для контроля частоты вращения вала турбобура и для управления процессом бурения.
Наверх