Тяговая сеть электрифицированных железных дорог переменного тока

Изобретение относится к электрифицированным железным дорогам переменного тока и направлено на увеличение пропускной способности участка железной дороги. Тяговая сеть состоит из контактной сети и рельсовой цепи, которые являются проводниками электрического тока и разнесены в пространстве. На опорах контактной сети с полевой стороны на уровне контактной сети с использованием изоляторов подвешивается дополнительный провод и подключается параллельно рельсовой цепи путем заземления дополнительного провода к средним точкам дроссель трансформаторов рельсовых цепей. Технический результат заключается в том, что введение дополнительного проводника позволит снизить индуктивное сопротивление тяговой сети за счет сближения проводников «обратного» тока тяговой сети с проводниками «прямого» тока, усилить экранирующий эффект рельсов, снизить напряженность электромагнитного поля создаваемого контактной сетью, и уменьшить влияние электромагнитного поля контактной сети на близлежащие линии связи. 1 ил.

 

Изобретение относится к электрифицированным железным дорогам и может использоваться в системах электроснабжения тяги переменного тока, для увеличения пропускной способности участка железной дороги переменного, увеличения уровня напряжения в контактной сети в центре межподстанционной зоны, снижения потерь электрической энергии в тяговой сети и снижения влияния электромагнитного поля создаваемого контактной сетью на близ лежащие линии связи и обслуживающий персонал.

Известна система тяговой сети переменного тока с активным обратным проводом и отсасывающими трансформаторами. В данной системе с полевой стороны опор контактной сети подвешивается дополнительный проводник подключенный параллельно к рельсовому пути. В рассечку контактной сети включают первичную обмотку отсасывающего трансформатора, а в рассечку рельсов - вторичную обмотку отсасывающего трансформатора. Данный трансформатора имеет коэффициент трансформации, равный 1; во вторичной обмотке принудительно поддерживается ток, равный току первичной обмотки, поэтому в землю уходит меньший ток и экранирующий эффект увеличивается. Для повышения эффективности действия отсасывающих трансформатора,, на опорах контактной сети подвешивают присоединяемый параллельно к рельсам дополнительный (обратный) провод, в рассечку которого включают вторичную обмотку отсасывающего трансформатора, что позволяет повысить защитный эффект в 2 раза по сравнению с первой схемой включения. Отсасывающие трансформаторы устанавливают на расстоянии, обычно равном 1,5-3 км (при включении в рельс) и 3-6 км (при включении в дополнительный провод) [1].

Данная система обладает высокой стоимостью так как требует установки дополнительного оборудования (отсасывающих трансформаторов) вдоль полотна железной дороги, а так же требует обеспечения дополнительной защиты данного оборудования.

Прототипом выбрана система тяговой сети переменного тока напряжением 25 кВ. Данная система включает в себя контактную сеть находящийся под напряжением в 25 кВ, с которого происходит контактный токосъем при помощи пантографа электроподвижного состава (ЭПС), и рельсовую цепь, состоящую из двух рельсов и предназначенную для движения электроподвижного состава и передачи выходного электрического тока ЭПС к фидеру тяговой подстанции подключенному к рельсовой цепи [2].

К недостаткам прототипа относятся: высокое индуктивное сопротивление тяговой сети, большие потери электроэнергии, низкое напряжение в центре межподстанционной зоны, мощное электромагнитное поле создаваемое контактной сетью.

Большая часть потерь электроэнергии в тяговой сети электрических железных дорог переменного тока вызвана высоким индуктивным сопротивлением последней. Это объясняется самой конструкцией тяговой сети.

Тяговая сеть состоит из контактной сети и рельсовой цепи которые являются проводниками электрического тока. Два данных элемента конструктивно разнесены в пространстве и расстояние между ними составляет 6-6,5 м. Как известно индуктивность любой двухпроводной линии, чем собственно говоря и является тяговая сеть, можно определить по формуле известной из базового курса теоретических основ электротехники:

Z M = j X M j ω M О м / к м

где: ХM - сопротивление взаимной индукции, Ом/км;

ω=2πf - угловая частота;

M - коэффициент взаимной индукции двухпроводной линии. В данном выражении коэффициент взаимной индукции рассчитывается по следующей формуле:

M = ( 1 + 2 ln 10 4 1,78 α 10 π ω γ 3 j π 2 ) 10 4 Г н / к м

где: α - расстояние между осями проводов, м;

γ3 - проводимость земли;

Как видно из приведенной выше формулы величина коэффициента взаимной индукции, который и будет влиять на величину взаимоиндуктивного сопротивления, на прямую зависит от расстояния между проводниками «α».

На практике величина взаимоиндуктивного сопротивления является весьма значительной и приводит к падению напряжения в центре любой межподстанционной зоны. Так как каждый электровоз движущийся в межподстанционной зоне является нагрузкой и нуждается в определенном уровне напряжения, падения в середине межподстанционной зоны которое может составлять до 3 кВ, значительно снижает пропускную способность участка. Так же не стоит забывать про столь не маловажный фактор как электромагнитное поле создаваемое контактной сетью. Как было сказано выше контактная сеть и рельсовая цепь являются по своей сущности проводниками электрического тока «прямого» и «обратного» направления соответственно и при работе они должны компенсировать электромагнитное поле создаваемое друг другом. Однако разнесенность в пространстве данных проводников на существенное расстояние, а так же растекание тока в земле от рельсовой цепи, приводит к тому, что «обратный» ток протекающий в рельсовой цепи будет существенно мал и не может компенсировать действия «прямого» тока. Таким образом в пространстве вокруг контактной сети существует мощное переменное электромагнитное поле сложной конфигурацию. Данное поле оказывает негативное влияние на окружающую среду обслуживающий персонал и близлежащие линии связи.

Изобретением решается задача повышения напряжения в центре межподстанционной зоны участка железной дороги электрифицированной на переменном токе, увеличения пропускной способности участка, снижения индуктивного сопротивления тяговой сети, уменьшения потерь электрической энергии в тяговой сети, снижения влияния электромагнитного поля создаваемого контактной сетью.

В предлагаемой системы тяговой сети электрифицированных железных дорог переменного тока это достигается тем, что в стандартную тяговую сеть содержащую контактную сеть и рельсовую цепь, согласно изобретению вводится дополнительный проводник, подвешиваемый на опорах контактной сети с полевой стороны с использованием изоляторов на уровне контактной сети, при этом проводник подключается параллельно к рельсовой цепи путем заземления данного проводника на средние точки дроссель трансформаторов рельсовых цепей по правилу «через два на третий».

Сущность изобретения поясняется графически.

На рисунке показана общая схема предлагаемой тяговой сети где: 1 - дополнительно введенный проводник; 2 - опора контактной сети; 3 - контактная сеть; 4 - рельсовый путь;

Данная система может быть выполнена на любом существующем участке железной дороги электрифицированной на переменном токе или на вновь электрифицируемых участках.

Дополнительный провод может быть выполнен в виде проводника стандартных сечений, рассчитанного на рабочий ток, равный 60% тока в контактной сети.

Система выполняется следующим образом.

Дополнительный провод 1 подвешивается на опорах контактной сети 2 с полевой стороны на уровне контактной сети 3 с использованием изоляторов и подключается параллельно рельсовой цепи 4 путем его заземления к средним точкам дроссель трансформаторов рельсовых цепей. Введение дополнительного проводника 1 позволит снизить индуктивное сопротивление тяговой сети за счет сближения проводников «обратного» тока тяговой сети 1, 4 с проводниками «прямого» тока 3 и за счет снижения величины тока утечки в землю. Так же введение дополнительного проводника позволит усилить экранирующий эффект рельсов 4 и снизить напряженность электромагнитного поля создаваемого контактной сетью 3. Данный способ обладает так же возможностью плавки гололеда за счет тока наводимого в дополнительном проводе контактной сетью при профилактическом подогреве контактной сети. Данное решение позволяет снизить приведеное сопротивление тяговой сети на 30-40%, повысить уровень напряжения в центре межподстанционной зоны на 0,8-1 кВ, увеличить пропускную способность участка на 1-2 пары поездов в сутки.

Новыми признаками данной системы является: введение дополнительного провода в тяговую сеть путем его подвеса на опорах контактной сети электрифицированных железных дорог переменного тока с полевой стороны и подключению параллельно рельсовой цепи путем заземления обратного провода на средние точки дроссель трансформаторов рельсовых цепей. Предложенная система тяговой сети, электрифицированных железных дорог переменного тока имеет более низкое сопротивление тяговой сети, позволяет увеличить пропускную способность участка железной дороги электрифицированной на переменном токе, снизить потери электроэнергии в тяговой сети, уменьшить влияние электромагнитного поля контактной сети на близ лежащие линии связи и обслуживающий персонал.

Система может быть реализована как на существующих участках железных дорог электрифицированных на переменном токе, так и на вновь электрифицированных. Выполняется известными техническими средствами.

Список литературы:

1. Павлов И.В., Отсасывающие трансформаторы в тяговых сетях переменного тока, М., 1965.

2. Марквардт К.Г. Электроснабжение электрифицированных железных дорог. Учебник для вузов ж.-д. транспорта, М.: Транспорт, 1965 - 464 с.

Тяговая сеть электрифицированных железных дорог переменного тока, содержащая контактную сеть и рельсовую цепь, отличающаяся тем, что тяговая сеть дополнительно содержит проводник, подвешиваемый на опорах контактной сети с полевой стороны с использованием изоляторов на уровне контактной сети, при этом проводник подключается параллельно к рельсовой цепи путем заземления данного проводника на средние точки дроссель-трансформаторов рельсовых цепей по правилу «через два на третий».



 

Похожие патенты:

Изобретение относится к электрифицированным железным дорогам переменного тока, а именно к устройствам электроснабжения однофазных тяговых потребителей и трехфазных районных нагрузок.

Изобретение относится к области электрифицированного железнодорожного транспорта и может найти применение в устройствах для автоматического регулирования напряжения в контактной сети.

Изобретение относится к области электрифицированного железнодорожного транспорта и направлено на совершенствование системы учета электроэнергии в тяговых сетях.

Изобретение относится к области электрифицированного железнодорожного транспорта и направлено на повышение эффективности системы электроснабжения. .

Изобретение относится к устройствам для автоматического регулирования напряжения в контактной сети на электрифицированном железнодорожном транспорте. .

Изобретение относится к электроэнергетике, в частности к устройствам поперечной емкостной компенсации в тяговой сети переменного тока системы 25 кВ. .

Изобретение относится к электротехнике, в частности к регулированию напряжения, и может найти применение в устройствах для автоматического регулирования напряжения в контактной сети на электрифицированном железнодорожном транспорте.

Изобретение относится к системе электроснабжения электрических железных дорог, а именно, к устройствам автоматизации постов секционирования контактной сети переменного тока с установками поперечной емкостной компенсации (КУ).

Изобретение относится к способам перевода участков железных дорог, электрифицированных на постоянном токе 3,3 кВ, на переменный ток 27,5 кВ и может быть использовано при переводе всех существующих участков ж.д.

Изобретение относится к области электроснабжения электрических железных дорог переменного тока и предназначено для использования при необходимости ограничения токов короткого замыкания и регулирования напряжения на фидерах контактной сети.

Изобретение относится к области электротехники и может быть использовано в городских электрических сетях коммунального хозяйства и городского электрифицированного транспорта. Технический результат - снижение потерь в объединенной системе городского электроснабжения, увеличение срока службы трансформаторных подстанций и электрооборудования на транспорте и улучшение условий для управления городским электрифицированным транспортом, повышение комфортности пассажирских перевозок. Способ направленного обмена энергией между коммунальными сетями и транспортными сетями городского электрифицированного транспорта заключается в том, что на участках с повышенным (пониженным) напряжением в транспортной сети механические переключатели отпаек на высокой стороне главных трансформаторов коммунальных подстанций устанавливают на пониженное (повышенное) выходное напряжение, заставляя тем самым стабилизаторы напряжения на высокой или на низкой стороне коммунальных трансформаторных подстанций работать в режиме вольтоприбавления (вольтовычитания), потребляя энергию из транспортной сети (отдавая энергию в транспортную сеть) через инверторы напряжения и вольтодобавочные трансформаторы. Степень потребления или отдачи электрической энергии обеспечивается соответствующей установкой уровня понижения или повышения выходного напряжения у коммунальных подстанций. 1 ил.

Способ подключения тяговых трансформаторов в системе переменного тока 25 кВ относится к области электрифицированных железных дорог и может быть использован для питания как тяговой, так и нетяговой нагрузки. Способ подключения тяговых трансформаторов в системе переменного тока 25 кВ заключается, по крайней мере, в двухразовом изменении порядка подключения вводов обмоток тягового трансформатора каждой тяговой подстанции в зависимости от износа изоляции обмоток тягового трансформатора в течение полного срока его службы. Первый раз переключение обмоток вводов тягового трансформатора осуществляют при достижении износа изоляции наиболее изношенных обмоток в диапазоне 0,30-0,40, второй раз - при достижении износа изоляции наиболее изношенных обмоток в диапазоне 0,55-0,70. При этом тяговую обмотку с наибольшим износом подключают к нейтральной вставке контактной сети, обмотку с наименьшим износом изоляции к плечу питания тяговой подстанции. Технический результат заключается в увеличении срока службы тягового трансформатора. 2 ил., 3 табл.

Изобретение направлено на обеспечение электроснабжения тяговых потребителей. Предложенная система содержит реле направления мощности, расположенные на тяговых подстанциях и своими выходами соединенные с блоками управления выключателями, а входами - с блоками определения тока плеча питания тяговых подстанций и трансформаторами напряжения распределительных устройств 27,5 кВ. Каждый трансформатор напряжения фидеров контактной сети тяговой подстанции одним выводом первичной обмотки подключен к фидеру контактной сети тяговой подстанции, а выводами вторичной обмотки - к блоку сравнения напряжений, эти трансформаторы напряжения соединяется только с одним из фидеров контактной сети каждого плеча питания тяговых подстанций, смежные блоки управления выключателями каждых межподстанционных зон соединены друг с другом посредством каналов связи устройств управления выключателями, блоки сравнения напряжений соединены с блоками управления выключателями, блоки управления выключателями связаны посредством каналов связи с устройствами управления выключателями, которые также связаны через каналы связи с выключателями дополнительных пунктов параллельного соединения, блоки определения тока плеча питания тяговых подстанций соединены своими входами с трансформаторами тока фидеров контактной сети тяговых подстанций, дополнительные пункты параллельного соединения с выключателями подключены к контактным подвескам соседних путей вблизи мест подключения фидеров распределительных устройств 27,5 кВ к контактным подвескам контактной сети. Технический результат заключается в повышении качества электроэнергии в питающей энергосистеме. 2 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Предложен способ управления системой электроснабжения железных дорог, которая включает в себя датчики электрических и неэлектрических величин, локальные контроллеры исполнительных устройств и управляющие контроллеры, содержащие вычислительные средства. Управляющие контроллеры содержат средства прогнозирования изменений параметров режима и средства обучения на основе оперативной оценки результатов управления и разделены по функциональному назначению. При этом управляющие контроллеры, локальные контроллеры исполнительных устройств, центр управления и блок данных оценивания состояния электрической сети подключены по своим протоколам к среде обмена данными, которая содержит обновляемую виртуальную модель электрической сети с изменяемой зоной ответственности на основе заданной чувствительности действий исполнительных устройств к параметрам режима. Через среду обмена данными осуществляется координация управляющих и локальных контроллеров между собой. Технический результат заключается в повышении эффективности и расширении функциональных возможностей управления системой электроснабжения железных дорог. 3 ил.

Способ относится к системе электроснабжения переменного тока электрических железных дорог, а именно к регулированию напряжения с помощью трансформатора с устройством регулирования напряжения под нагрузкой (УРПН) и с установкой продольной емкостной компенсации (УПК) с нерегулируемой и регулируемой секциями, включенной в отсасывающую линию. Технический результат - повышение эффективности совместной работы УПК и УРПН с учетом симметрирующего свойства УПК. Для достижения технического результата измеряют входное индуктивное сопротивление подстанции до шин 110 (220) кВ и при токе отсасывающей линии менее номинального тока нерегулируемой секции УПК определяют целесообразность включения (отключения) регулируемой секции УПК для приближения сопротивления УПК к сопротивлению подстанции. 1 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Система электроснабжения электрифицированных железных дорог переменного тока содержит систему внешнего электроснабжения, систему районного электроснабжения, тяговые подстанции, тяговую сеть, тяговые нагрузки, диспетчерский пункт, каналы связи, блоки анализа графика движения поездов, нагрузок системы внешнего электроснабжения и районных нагрузок, блок определения времени схемы коммутации по графику движения поездов, по системе внешнего электроснабжения, по районным нагрузкам и питания тяговых нагрузок и блок определения рациональной схемы коммутации питания тяговых нагрузок. Диспетчерский пункт включает в себя поездного диспетчера и энергодиспетчера. Тяговые подстанции содержат силовые трансформаторы с устройством регулирования напряжения под нагрузкой, распределительные устройства высшего, районного и тягового напряжения. Технический результат заключается в обеспечении выполнения графика движения поездов при минимальных потерях электрической энергии с учетом графика нагрузок систем внешнего и районного электроснабжения. 1 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Система для контроля и регулирования мощности и энергии, расходуемой транспортной системой, содержит тяговые подстанции, соединенные по радиоканалу связи с бортовыми радиомодемами на электровозах. Каждая тяговой подстанции содержит датчик напряжения и датчик тока. Датчики напряжения и тока соединены с устройством контроля и управления тяговой подстанции, которое подключено к центральному устройству сбора и обработки данных энергодиспетчера. На борту электровозов установлены датчики напряжения и тока, подключенные к бортовому блоку контроля и управления, который через бортовую шину соединен с бортовым приемником спутниковой навигации и бортовым радиомодемом. К бортовому блоку контроля и управления подключены модуль формирования сигнала регистрации и модуль хранения номеров временных слотов. На каждой тяговой подстанции введен блок управления радиомодемной связью, состоящий из микропроцессора, приемника сигнала регистрации, блок памяти номеров поездов, блока определения номера временного слота, блока обработки данных. Технический результат изобретения заключается в расширении функциональных возможностей системы для контроля и регулирования мощности. 1 ил.
Наверх