Устройство для измерения вибрации

Изобретения относятся к измерительной технике и могут быть использованы для вибродиагностики оборудования, оказывающегося в опасных зонах при подаче на него напряжения. По первому варианту устройство состоит из блока измерения вибрации, содержащего датчик вибрации, фильтр низких частот, процессор, включающий в себя аналогово-цифровой преобразователь, флэш-память, источник питания, индикатор, и блока управления. Блок измерения вибрации содержит приемник радиоканала и блок управления содержит передатчик радиоканала. Связь между блоком управления и блоком измерения вибрации выполнена с использованием радиоканала. По второму варианту устройства связь между блоком управления и блоком измерения вибрации выполнена с использованием оптического канала, а по третьему варианту с использованием инфракрасного канала. Технический результат заключается в возможности дистанционного запуска процесса измерений и приема данных, при исключении проводной сети. 3 н. и 9 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для вибродиагностики оборудования, оказывающегося в опасных зонах при подаче на него напряжения (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также мотор-вентиляторов, применяемых на железнодорожном транспорте.

Современные технологии требуют непрерывного контроля за многими параметрами технологического процесса и контроля состояния оборудования. Одними из важнейших являются параметры вибрации.

Известен микропроцессорный виброметр (МПК G01H 11/00, №2098777, 29.09.1995), содержащий вибропреобразователь, блок нормировки сигнала, первый и второй интеграторы, первый и второй усилители, фильтр нижних частот и пиковый детектор. Виброметр дополнительно снабжен блоком калибровки, первым, вторым и третьим коммутаторами, фильтром верхних частот, детектором среднеквадратичного значения сигнала, блоком настройки пикового детектора, последовательно соединенными аналого-цифровым преобразователем, микропроцессорным блоком управления и блоком индикации, причем вибропреобразователь, первый коммутатор, блок нормировки сигнала, первый интегратор, фильтр нижних частот, первый усилитель, второй интегратор, второй усилитель, второй коммутатор, детектор среднеквадратичного значения и третий коммутатор соединены последовательно. Вход аналого-цифрового преобразователя соединен с выходом третьего коммутатора, второй вход второго коммутатора соединен с выходом первого усилителя, третий вход с выходом блока нормировки сигнала, четвертый вход с выходом фильтра верхних частот, вход которого соединен с выходом блока нормировки сигнала, первый вход пикового детектора соединен с входом детектора среднеквадратичного значения, второй вход с выходом блока настройки пикового детектора. Далее выход пикового детектора соединен с вторым входом третьего коммутатора, второй вход первого коммутатора соединен с выходом блока калибровки, второй выход микропроцессорного блока управления соединен с третьим входом первого коммутатора и с входом блока калибровки, третий выход с вторым входом блока нормировки сигнала, четвертый выход с пятым входом второго коммутатора, пятый выход с входом блока настройки пикового детектора, шестой выход с третьим входом третьего коммутатора, седьмой выход с управляющим входом аналого-цифрового преобразователя. В указанном микропроцессорном виброметре осуществляется автокалибровка, в блоке нормировки сигнала производится измерение вибросмещения, виброскорости или виброускорения, измерение высокочастотных ударных импульсов.

Недостатком данного устройства является наличие проводов, соединяющих блоки и датчики вибрации с блоками, которые не позволяют проводить измерения в изолированных помещениях и объемах (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также доставляют неудобства в процессе измерения параметров, ограничивают области измерения и свободу перемещения оператора. В случае нахождения объекта измерения в опасной зоне, измерения делаются не возможными по требованиям техники безопасности.

Известно также устройство для измерения вибрации роторных механизмов (МПК G01M 1/22, №2073835, 14.08.1992), содержащее датчик вибрации, аналого-цифровой преобразователь, переключатель, узел управления, соединенные с ним вычислитель и индикатор. Устройство также снабжено дополнительными датчиками вибрации, подключенным к их выходам и выходу основного датчика вибрации переключателем каналов, последовательно соединенными усилителем, вход которого подключен к выходу переключателя каналов, и узлом функционального преобразования, последовательно соединенными перестраиваемым фильтром. Вход фильтра связан с выходом переключателя, соединенного входами с выходами узла функционального преобразования, нормализатором и блоком выборки-хранения. Выход блока выборки-хранения подключен к аналого-цифровому преобразователю, последовательно соединенными датчиком метки, формирователем импульсов и таймером, выход которого подключен к управляющим входам аналого-цифрового преобразователя и блока выборки-хранения. Узел управления выполнен с шинами адресов, данных и управления с узлами прямого доступа и с интерфейсом, подключенным к нормализатору, перестраиваемому фильтру, переключателям и таймеру. Данное устройство может быть использовано при вибрационных измерениях, для измерения и анализа колебаний, записи и хранения вибрационных и акустических сигналов и контроля дисбаланса роторных механизмов и балансировки роторов.

Недостатком данного устройства является наличие проводов, соединяющих блоки и датчики вибрации с блоками, которые не позволяют проводить измерения в изолированных помещениях и объемах (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также доставляют неудобства в процессе измерения параметров, ограничивают области измерения и свободу перемещения оператора. В случае нахождения объекта измерения в опасной зоне, измерения делаются не возможными по требованиям техники безопасности.

Наиболее близкой является система экспресс диагностики транспортных дизелей (СЭД ТД) (МПК G01M 15/00, №75743, 15.04.2008 г). СЭД ТД относится к оборудованию для испытания машин и двигателей, в том числе применяемому на железнодорожном транспорте и может быть использована для мониторинга и поиска неисправностей на других дизельных энергетических установках, а именно на локомотивах, самоходном подвижном составе и стационарных установках. Система экспресс диагностики транспортных дизелей содержит датчик вибрации, датчик давления, оптический датчик, установленные на корпусе диагностируемого дизеля во взаимно перпендикулярных плоскостях, причем каждый из датчиков соединен соответственно с первым, вторым и третьим входами платы аналого-цифрового преобразователя, расположенной в ударопрочном корпусе портативного сборщика данных, на выходе которой формируется выходной напряжение, представляемое на экране портативного сборщика данных в графической форме.

Недостатком данного устройства является наличие проводов, соединяющих блоки и датчики вибрации с блоками, которые не позволяют проводить измерения в изолированных помещениях и объемах (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также доставляют неудобства в процессе измерения параметров, ограничивают области измерения и свободу перемещения оператора. В случае нахождения объекта измерения в опасной зоне, измерения делаются не возможными по требованиям техники безопасности.

Целью изобретения является измерение вибрации, в том числе в зонах, становящимися опасными после подачи напряжения, с возможностью дистанционного запуска процесса измерения и дистанционного приема данных.

Цель достигается тем, что устройство для измерения вибрации состоит из блока измерения, содержащего датчик вибрации, фильтр низких частот, аналогово-цифровой преобразователь, процессор, флэш-память, источник питания, индикатор. Кроме того, устройство содержит приемопередатчик связи с персональным компьютером, приемник радиоканала; а блок управления имеет передатчик радиоканала.

Блок измерения может содержать оптический приемник, а блок управления - оптический передатчик, связь между блоком управления и блоком измерения может быть выполнена с использованием оптического канала.

Блок измерения может содержать инфракрасный приемник, блок управления иметь инфракрасный передатчик, а связь между блоком управления и блоком измерения может быть выполнена с использованием инфракрасного канала.

Блок измерения может содержать приемопередатчик радиоканала, блок управления может содержать приемопередатчик радиоканала, а двунаправленная связь между блоком управления и блоком измерения может быть выполнена с использованием радиоканала.

Блок измерения может содержать оптический приемопередатчик, блок управления может содержать оптический приемопередатчик, а двунаправленная связь между блоком управления и блоком измерения может быть выполнена с использованием оптического канала.

Блок измерения может содержать инфракрасный приемопередатчик, блок управления может содержать инфракрасный приемопередатчик, а двунаправленная связь между блоком управления и блоком измерения может быть выполнена с использованием инфракрасного канала.

Блок измерения может быть помещен в единый металлический корпус, что обеспечивает высокую помехозащищенность. Кроме того, устройство содержит магнит, позволяющий крепить блок измерения вибрации на объект измерения. Блок измерения включает датчик, установленный непосредственно на магните. Из набора блоков измерения может быть сформирована многоканальная измерительная система.

Сущность изобретения поясняется чертежом (фиг.1).

На чертеже представлена блок-схема устройства для измерения вибрации. Устройство для измерения вибрации включает в себя блок измерения вибрации (1) и блок управления (2).

Блок измерения вибрации (1) состоит из датчика виброускорения (3), закрепленного на магните (4), фильтра низких частот (5), микроконтроллера, включающего в себя АЦП (6), приемника или приемопередатчика радио, оптического, или инфракрасного канала связи (7), флэш памяти (8), приемопередатчика USB (9), кнопок управления (10), индикатора (11), источника питания (12). Блок измерения вибрации (1) крепится на объекте измерения (13) с помощью магнита. Блок измерения вибрации (1) помещен в металлический корпус (14)

Блок управления (2) состоит из передатчика или приемопередатчика радио, оптического или инфракрасного канала связи (15), микропроцессор (16), кнопок управления (17), приемопередатчика для связи с персональным компьютером (18).

Связь между блоком управления и блоком измерения вибрации выполнена с помощью радио, оптического или инфракрасного однонаправленного или двунаправленного канала связи.

Устройство работает следующим образом: блок измерения крепится при помощи магнита на объекте измерения. При помощи кнопок управления на самом блоке, либо дистанционно, по сигналу от пульта управления производится запуск измерения вибрации. Механические колебания посредством датчика виброускорения (3) преобразуются в электрические колебания и поступают на фильтр низких частот (5) для фильтрации от высокочастотных составляющих спектра вибрации. Затем данные преобразуются в цифровой формат с помощью аналого-цифрового преобразователя микроконтроллера (6), работающего от источника питания (12). Данные сохраняются в блоке флэш-памяти (8), количество произведенных измерений отображается на индикаторе (11). При необходимости можно считать любое из проведенных измерений через USB-порт (9), а также через радиоканал, либо через оптический, либо через инфракрасный канал.

Блок управления (2) состоит из микроконтроллера (16) который формирует управляющие команды для блока измерения вибрации, по командам от кнопок (17) или от персонального компьютера, присоединенного через приемопередатчик (18). Команды передаются блоку измерения вибрации с помощью передатчика (15). При использовании приемопередатчика (15) и наличии двунаправленной связи через него считываются данные, полученные при измерении блоком измерения вибрации (1).

Причем канал связи между блоком управления и блоком измерения вибрации может быть выполнен в виде радиоканала, либо в виде оптического канала или инфракрасного канала. Может использоваться однонаправленная либо двунаправленная связь между блоком управления и блоком измерения вибрации.

С целью компактного выполнения блока измерения, все элементы блока помещены в металлический корпус (14), снабженный магнитом (4), позволяющим крепить блок измерения (1) на объекте измерения (13). Также металлический корпус (14) обеспечивает высокую помехозащищенность блока измерения вибрации (2) от воздействия электромагнитных помех промышленной частоты.

При использовании нескольких блоков измерения вибрации возможна организация многоканальной системы сбора данных с единым управлением.

Предложенное устройство для измерения вибрации с использованием радиоканала было изготовлено и испытано.

Испытания показали большое преимущество, позволившее отказаться от проводной сети, резко сократить время на подготовку для проведения замеров, а также позволило проводить замеры вибрации в опасных для нахождения человека во время измерения зонах.

1. Устройство для измерения вибрации, состоящее из блока измерения вибрации, содержащего датчик вибрации, фильтр низких частот, процессор, включающий в себя аналогово-цифровой преобразователь, флэш-память, источник питания, индикатор, и блока управления, отличающееся тем, что блок измерения вибрации содержит приемник радиоканала, и блок управления содержит передатчик радиоканала, а связь между блоком управления и блоком измерения вибрации, обеспечивающая запуск измерения, выполнена с использованием радиоканала.

2. Устройство по п.1, отличающееся тем, что блок измерения помещен в единый металлический корпус.

3. Устройство по п.1, отличающееся тем, что блок измерения вибрации содержит магнит, позволяющий крепить его на объект измерения.

4. Устройство по п.1, отличающееся тем, что содержит несколько блоков измерения вибрации.

5. Устройство для измерения вибрации, состоящее из блока измерения вибрации, содержащего датчик вибрации, фильтр низких частот, процессор, включающий в себя аналогово-цифровой преобразователь, флэш-память, источник питания, индикатор, и блока управления, отличающееся тем, что блок измерения вибрации содержит оптический приемник, блок управления имеет оптический передатчик, а связь между блоком управления и блоком измерения вибрации, обеспечивающая запуск измерения, выполнена с использованием оптического канала.

6. Устройство по п.5, отличающееся тем, что блок измерения помещен в единый металлический корпус.

7. Устройство по п.5, отличающееся тем, что блок измерения вибрации содержит магнит, позволяющий крепить его на объект измерения.

8. Устройство по п.5, отличающееся тем, что содержит несколько блоков измерения вибрации.

9. Устройство для измерения вибрации, состоящее из блока измерения вибрации, содержащего датчик вибрации, фильтр низких частот, процессор, включающий в себя аналогово-цифровой преобразователь, флэш-память, источник питания, индикатор, и блока управления, отличающееся тем, что блок измерения вибрации содержит инфракрасный приемник, блок управления имеет инфракрасный передатчик, а связь между блоком управления и блоком измерения вибрации, обеспечивающая запуск измерения, выполнена с использованием инфракрасного канала.

10. Устройство по п.9, отличающееся тем, что блок измерения помещен в единый металлический корпус.

11. Устройство по п.9, отличающееся тем, что блок измерения вибрации содержит магнит, позволяющий крепить его на объект измерения.

12. Устройство по п.9, отличающееся тем, что содержит несколько блоков измерения вибрации.



 

Похожие патенты:

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры. .

Изобретение относится к испытательной технике и может быть использовано при испытании объектов машиностроения, стройиндустрии, бытовой техники и других изделий на вибропрочность и виброустойчивость.

Изобретение относится к области исследования зданий и сооружений с расположенными внутри или в непосредственной близости механизмами или агрегатами, являющимися источниками сейсмических колебаний, и анализа для интерпретации полученных сейсмических данных.

Изобретение относится к способам вибрационной диагностики дефектов подшипников качения турбомашин в эксплуатационных условиях и может найти применение в авиадвигателестроении и энергомашиностроении для выявления наличия дефекта смазки подшипника качения.

Изобретение относится к области измерительной техники, в частности к технике высокоточных измерений, и может быть использовано для измерения перемещений и вибраций.

Изобретение относится к горному делу, в частности к методам неразрушающего контроля. .

Изобретение относится к способам дистанционного диагностирования состояния машин и механизмов. .

Изобретение относится к виброизмерительной технике и может быть использовано в приборостроении и машиностроении для диагностики измерения частоты вибрации объекта в процессе его эксплуатации.

Изобретение относится к испытательной технике, а именно к стендам для испытаний на комбинированное воздействие вибрационных и линейных ускорений. .

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала. Система обработки сигналов, содержащая перестраиваемый по частоте фильтр, характеризующаяся тем, что в систему введены виброиспытательный комплекс, анализатор, прибор визуального контроля, формирователь нестационарного процесса, источник управляющего сигнала и блок стробирования, при этом фильтр своим первым входом подключен к выходу виброиспытательного комплекса, а выходом соединен с входом прибора визуального контроля, первый и второй выходы которого подключены соответственно к первому и второму входам анализатора, третьим входом соединенного с первым выходом формирователя нестационарного процесса, одновременно подключенного также ко входу виброиспытательного комплекса, причем анализатор своим четвертым входом соединен с первым входом системы, а выходом подключен к ее выходу, причем второй выход формирователя нестационарного процесса соединен с первым входом блока стробирования, выходом подключенного к второму входу фильтра, а вторым входом соединенного с выходом источника управляющего сигнала, входом подключенного к второму входу системы. Технический результат заключается в повышении точности обработки. 3 з.п. ф-лы, 16 ил.

Группа изобретений относится к частотному анализу данных. В частности, к анализу данных испытаний самолетов на допуск к области полетных режимов. Способ частотного анализа данных, отличающийся тем, что содержит: этап (310) ввода сигналов, поступающих от первого датчика, этап (315) ввода сигналов, поступающих, по меньшей мере, от второго датчика, при этом каждый второй датчик расположен вблизи первого датчика, чтобы сигналы, поступающие от каждого второго датчика, были сильно коррелированными с сигналами, поступающими от первого датчика, этап оценки для каждого датчика передаточной функции или модели, реализуемой на основании совокупности сигналов от первого датчика и от каждого второго датчика, и этап (320) извлечения структурных свойств системы на основании каждой из оценочных моделей. Также заявлен компьютерный программный продукт, реализующий способ. 2 н. и 17 з.п. ф-лы, 10 ил.

Группа изобретений относится к области измерительной техники и может быть использована для контроля состояния вращающихся лопаток газотурбинных двигателей. Настоящее изобретение раскрывает способ определения событий вибраций с резонансной частотой в узле вращающихся лопаток, установленных на роторе, и ряд отстоящих друг от друга по периферии стационарных зондов таймирования, связанных с лопатками, обнаруживают моменты, когда лопатки проходят соответствующие зонды. Способ включает следующие этапы: получение тайминга лопаток, обнаруженного зондами, определение для последовательных вращений (оборотов) узла соответствующих факторов корреляции для одной или более лопаток, причем каждый фактор корреляции определяет величину степени корреляции между таймированием лопаток, обнаруженным зондами для конкретной лопатки на конкретном вращении, и таймированием лопаток, обнаруженным зондами на предыдущем вращении, и определение события резонансной вибрации, когда один или более факторов корреляции пересекает установленный порог. Второй аспект изобретения заключается в способе обработки таймирования лопаток стационарным зондом таймирования, связанного с узлом вращающихся лопаток, установленных на роторе, причем зонд обнаруживает моменты, когда лопатки проходят зонд, включающий следующие этапы: получение таймирования лопаток, обнаруженного зондом, определение одного или нескольких событий резонансной вибрации в данных таймирования, подбор усредняющей кривой к таймированию лопаток вне определенных событий резонансной вибрации, интерполирование секций для усредняющей кривой у таймирования лопаток внутри определенных событий резонансных вибраций, дополнение усредняющей кривой с интерполированными секциями и вычитание увеличенной усредняющей кривой из таймирования лопаток для получения обнуленного таймирования лопаток. Третий аспект изобретения заключается в способе фильтрации таймирования лопаток, обнаруженного стационарным зондом таймирования, связанного с узлом вращающихся лопаток, установленных на роторе, причем зонд обнаруживает моменты, когда лопатки проходят зонд, причем способ включает следующие этапы: получение таймирования лопаток, обнаруженного зондом, идентификация одного или нескольких событий резонансной вибрации в данных таймирования, преобразование таймирования лопатки в частотную область, причем преобразованное таймирование выдает отслеженные разряды в событиях резонансных частот в графике частоты относительно времени, определение интегральных положений выборки как частот, соответствующих частоте вращения ротора и их кратных до кратного, соответствующего количеству лопаток в узле, для идентифицированных событий резонансной вибрации определение отслеженных положений разряда относительно интегральных положений выборки; и фильтрация таймирования лопаток для идентифицированных событий резонансных вибраций в области времени, причем изменяющаяся характеристика фильтра зависит от соответствующих отслеженных положений разрядов в частотной области. Четвертый аспект изобретения заключается в компьютерной системе для выполнения способа любым из трех аспектов изобретения. Технический результат заключается в повышении объективности контроля и возможности его осуществления в реальном времени. 4 н. и 15 з.п. ф-лы, 19 ил.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е. в условиях априорной неопределенности относительно предельно допускаемых значений вибрации машин. Заявленный способ заключается в измерении вибрации в информативной точке корпуса механизма машины, выделении составляющей вибрации, присущей диагностируемому механизму, определении безразмерного инварианта вибросостояния механизма, контроле его параметров, по которым судят о техническом состоянии механизма, при этом безразмерный инвариант представляют характеристической функцией вибрации механизма, пошагово задают величину ее параметра или модуля, определяют текущее значение модуля или параметра, контролируют тенденцию их уменьшения к нулю при деградации механизма при фиксированном значении модуля или параметра и по диапазону текущих значений параметра или модуля характеристической функции вибрации оценивают техническое состояние механизма. Технический результат, достигаемый от реализации заявленного способа, заключается в повышении достоверности результатов диагностики при одновременном упрощении диагностической аппаратуры, в снижении продолжительности диагностирования, обеспечение простоты и точности реализации способа. 2 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями. При реализации способа измеряют вибрацию в информативной точке корпуса машины, выделяют составляющую вибрации, присущую диагностируемому механизму машины, оценивают ее параметры, по которым судят о техническом состоянии данного механизма машины. При этом измеряют характеристическую функцию вибрации, оценивают ее интегральную характеристику - площадь под кривой модуля характеристической функции, и по ее близости к 0 определяют степень деградации состояния механизма. Технический результат заключается в повышении достоверности результатов диагностики. 3 ил., 1 табл.

Изобретения относятся к контрольно-измерительной технике и могут быть использованы на объектах, оснащенных системами вибрационного контроля. Способ включает использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта. Дополнительно синхронно регистрируют вибрации на исследуемом объекте и на расстоянии от исследуемого объекта. В качестве датчиков целостности исследуемого объекта и удаленного датчика используют датчики вибрации с эквивалентными техническими характеристиками. Расстояние от исследуемого объекта до удаленного датчика выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Систему вибрационного контроля выполняют учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Комплекс включает датчики целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте и удаленный датчик, который расположен на расстоянии от исследуемого объекта, а также систему вибрационного контроля исследуемого объекта. Датчики целостности объекта и удаленный датчик выполнены в виде датчиков вибрации с эквивалентными техническими характеристиками, осуществляющими регистрацию вибраций синхронно. При этом удаленный датчик выполнен расположенным от исследуемого объекта на расстоянии не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Система вибрационного контроля выполнена учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Технический результат заключается в увеличении надежности работы систем вибрационного контроля, в возможности исключения ложных срабатываний, в простоте реализации. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к области акустики и предназначено для создания акустических волн в газовой среде. Способ генерирования акустических волн осуществляется путем образования колебательного тела из облака ионизированного газа в электростатическом поле с последующим моделированием колебательного тела высокочастотным электрическим полем, при этом в качестве электростатического поля используется переменное электрическое поле. Устройство для осуществления способа содержит два звукопроницаемых электрода 1, разделенные диэлектрическим корпусом 2, содержащим полость 3, которая образует в совокупности с электродами 1 ионизационную камеру, ионизирующий электрод 4, источник постоянного напряжения 5 и модулятор напряжения 6. Изобретение позволяет осуществить генерацию акустических волн в широком частотном и мощностном диапазоне. 2 ил.

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые трансформаторы). Волоконно-оптический преобразователь вибрации содержит несущее основание, элемент вибрации, оптические световоды, относительно торцов которых на расстоянии сформирована отражающая поверхность, каждый из оптических световодов выполняет одновременно функцию подвода и отвода светового потока, несущее основание из пластины монокристалла изготовлено за одно целое с элементом вибрации, сверху и снизу несущего основания закреплены световоды, оси которых перпендикулярны отражающей поверхности, причем продолжения осей указанных световодов пересекают ее верхнюю и нижнюю границы. Технический результат - повышение точности, надежности и срока эксплуатации волоконно-оптического преобразователя вибрации и датчиков/измерителей, в составе которых он используется. 2 з.п. ф-лы, 7 ил.

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях. Устройство содержит вибратор со столом, на котором установлено приспособление для закрепления в нем испытываемого изделия. Приспособление имеет возможность производить переориентацию и фиксацию изделия в трех взаимно перпендикулярных положениях без снятия его с приспособления. В корпусе приспособления установлены две, одна в другой, подвижные рамки с взаимно перпендикулярными осями вращения, вокруг которых рамки могут поворачиваться на 90°, причем каждая из них имеет свое устройство фиксации после переориентации, выполненное в виде дискового тормоза и клинового зажима. Внутренняя рамка имеет механизм передачи крутящего момента от привода к изделию. На основании вибратора установлен портал в виде стойки и опоры, на горизонтальной балке которой на специальных кронштейнах установлены два валика, шкив выходного вала их поочередно соединяется резиновым пассиком с рабочим шкивом приспособления при испытаниях в динамическом режиме изделия. Технический результат заключается в возможности проведения испытания изделий на виброустойчивость по трем взаимно перпендикулярным направлениям за одну установку изделия в приспособление, а также обеспечивающего возможность проведения испытания изделий в статическом и динамическом режимах состояния изделия. 13 ил.

Изобретение относится к области механики сплошных сред и предназначено для оценки напряженно-деформированного состояния объектов механических систем. Способ заключается в измерении пространственной вибрации, накапливании массива векторных величин деформаций и воспроизведении пространственного годографа измерительной точки. При этом синхронно с измерениями осуществляют аналитический синтез 3D-суперпозиции спектра измерений и накапливают массив векторных величин напряжений. Диагностику напряженно-деформированного состояния объекта осуществляют по визуальному образу, представленному в виде пространственной трехмерной диаграммы физического состояния объекта мониторинга в измерительной точке, представляющей в связанном виде законы Гука и Пуассона. Технический результат заключается в реализации возможности отражения в реальном времени текущего ресурса конструкционной прочности объекта мониторинга, повышении достоверности оценки физического состояния объектов мониторинга. 5 ил.
Наверх