Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и уменьшении габаритов функционального СВЧ устройства. Динамическая устойчивость частоты повышается за счет конструктивных особенностей магнитной системы, включающей теплоизолирующие элементы, демпфирующие тепловые удары окружающей среды. При этом стабильность частоты резонатора обеспечивается подбором толщин двух разнородных магнитов, которые включаются в магнитную цепь последовательно, образуя теплоизолирующий зазор с регулировочным винтом, установленным в отверстии магнитного экрана. Регулировочный винт используется только для настройки резонатора на заданную частоту термостабилизации. Дальнейшая перестройка частоты осуществляется электрической катушкой управления, установленной в боковом зазоре постоянных магнитов. Температурная стабильность частоты резонатора сохраняется во всем диапазоне электрической перестройки. Конструкция устройства допускает возможность размещения в рабочем зазоре ферритового резонатора вместе с подложкой микрополосковой интегральной микросхемы электрического устройства. Магнитный экран дополнительно выполняет функции корпуса электрического устройства. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ устройствах, содержащих пленочные ферритовые резонаторы.

Известно устройство намагничивания, состоящее из двух параллельных стальных пластин и двух одинаковых постоянных магнитов прямоугольной формы, расположенных между двумя стальными пластинами и присоединенных одноименными полюсами к одной пластине и противоположными полюсами к другой пластине. Напряженность поля в рабочем зазоре, образованном пластинами в промежутке между магнитами регулируется при помощи стальных шунтов расположенных на внешней боковой поверхности постоянных магнитов (Авторское свидетельство СССР №951208, МПК G01R 33/05).

Однако это устройство не имеет защиты от внешних магнитных полей и сильно шунтируется окружающими стальными предметами.

Известна также экранированная магнитная система с механической и электрической регулировкой поля, состоящая из цилиндрического стального экрана, внутри которого расположен стальной диск и пара кольцевых магнитов, присоединенных одноименными полюсами к стальной пластине, а противоположными полюсами к внутренним плоским поверхностям стального экрана. Между боковыми поверхностями стального диска и экраном выполнен зазор, который заполняется витками катушки электрического управления. Механическая регулировка поля в рабочем зазоре образованном плоскими поверхностями стального диска и экрана осуществляется регулировочным винтом, установленным симметрично на противоположной поверхности экрана (Авторское свидетельство СССР №1781744, МПК Н01К 33/05).

Однако это устройство не обеспечивает температурной стабильности частоты ферритового резонатора, установленного в рабочем зазоре магнитной системы.

Наиболее близким к предлагаемому изобретению является устройство намагничивания и термостабилизации ферритового резонатора, снабженное парой разнородных кольцевых магнитов с различающимися температурными коэффициентами размагничивания, удовлетворяющими условию

α M 1 < 4 π M 0 μ 0 H 0 α F < α M 2 ,                                                        ( 1 )

где αF - температурный коэффициент размагничивания феррита;

αM1 - температурный коэффициент размагничивания первого магнита;

αM2 - температурный коэффициент размагничивания второго магнита;

4πM0 - намагниченность насыщения феррита;

H0 - требуемая напряженность магнитного поля в рабочем зазоре;

µ0 - магнитная постоянная,

а отношение площадей полюсов кольцевых магнитов SM0 и SM1 удовлетворяет условию:

S M 0 S M 1 = B M 1 B M 0 4 π M 0 α F α M 0 μ 0 H 0 μ 0 H 0 α M 1 4 π M 0 α F                                      ( 2 )

где BM0 и BM1 - остаточные индукции постоянных магнитов. Устройство намагничивания содержит замкнутый цилиндрический стальной экран, стальной диск, установленный осесимметрично внутри экрана, два разнородных магнита, стальной регулировочный винт, катушку электрического управления, выполненную с возможностью подключения к источнику питания, установленную в боковом зазоре стального диска и экрана, ферритовый резонатор, выполненный с возможностью подключения к внешнему СВЧ тракту, расположенный осесимметрично между стальным диском и плоской поверхностью стального экрана (см. патент на изобретение RU №2356120, С2, МПК H01F 13/00).

Недостатком такого устройства является термодинамическая неустойчивость частоты ферритового резонатора, возникающая из-за неравномерного прогрева (охлаждения) постоянных магнитов и резонатора при резких изменениях температуры окружающей среды.

Технический результат изобретения заключается в повышении термодинамической устойчивости частоты ферритового резонатора, а также уменьшении габаритов интегрального устройства, элементом которого является ферритовый резонатор.

Указанный технический результат достигается тем, что миниатюрное устройство намагничивания и термостабилизации частоты ферритового СВЧ резонатора, содержащее: замкнутый цилиндрический стальной экран, стальной диск, установленный осесимметричпо внутри экрана; два разнородных магнита, стальной регулировочный винт, катушку электрического управления, выполненную с возможностью подключения к источнику питания, установленную в боковом зазоре стального диска и экрана; ферритовый резонатор, выполненный с возможностью подключения к внешнему СВЧ тракту, расположенный осесимметрично между стальным диском и плоской поверхностью стального экрана, согласно решению стальной регулировочный винт установлен в резьбовом отверстии, выполненном осесимметрично в плоской поверхности стального экрана напротив ферритового резонатора, устройство содержит второй стальной регулировочный винт, установленный в осесимметричном резьбовом отверстии на противоположной поверхности стального экрана; устройство содержит микрополосковую интегральную микросхему, подключенную к ферритовому резонатору, выполненную с возможностью подключения к источнику электропитания, первый и второй постоянные магниты выполнены в виде дисков с осевой намагниченностью; магниты соединены разноименными полюсами и присоединены одним из внешних полюсов к обратной стороне стального диска; противоположный внешний полюс образует зазор с первым регулировочным винтом; катушка электрического управления снабжена каркасом из теплоизолирующего материала. Диаметры первого и второго постоянных магнитов, стального диска, первого и второго регулировочного винта выполняются равными друг другу, а отношение толщин постоянных магнитов lM1, lM2 выбираются из условия

l M 1 l M 2 = B r 2 B r 1 4 π γ M 0 ( α F / α M 2 1 ) f s t f s t 4 π γ M 0 ( α F / α M 1 1 )                                          ( 3 )

где αF - температурный коэффициент размагничивания феррита; М0 намагниченность насыщения феррита; αM1, αM2 - температурные коэффициенты размагничивания первого и второго постоянных магнитов; Br1, Br2 - остаточные индукции первого и второго постоянных магнитов; γ - гиромагнитное отношение; fst - заданная частота температурной стабилизации. Микрополосковая интегральная микросхема выполнена на дисковой диэлектрической подложке, диаметр которой выполнен равным внутреннему диаметру стального экрана; в центре подложки выполнено отверстие, внутри которого установлен ферритовый резонатор.

Конструкция устройства представлена на фиг.1. Миниатюрное устройство намагничивания и термостабилизации частоты ферритового СВЧ резонатора, содержит замкнутый цилиндрический стальной экран 1. Внутри экрана осесимметрично установлены два разнородных постоянных магнита 2 и 3 и стальной диск 4. Магниты выполнены в виде дисков с диаметрами, равными диаметру стального диска, и имеют осевую намагниченность; магниты соединены разноименными полюсами и присоединены одним из внешних полюсов к одной плоской стороне стального диска. Устройство содержи г два стольных регулировочных винта 5 и 6, установленных в осесимметричных резьбовых отверстиях, выполненных на противоположных плоских поверхностях стального экрана. В зазоре между регулировочным винтом 6 и плоской стороной стального диска 4, обращенной от магнитов, расположен ферритовый СВЧ резонатор 7, установленный на диэлектрической подложке микрополосковой интегральной микросхемы 8, выполненной с возможностью подключения к внешнему СВЧ тракту посредством коаксиального СВЧ вывода 9 и к источнику электропитания посредством выводов 10. В боковом зазоре между стальным диском и внутренней поверхностью экрана расположена катушка электрического управления 12, снабженная диэлектрическим каркасом 11 и выполненная с возможностью подключения к источнику питания посредством выводов 13.

Устройство работает следующим образом. Последовательно включенные первый 2 и второй 3 дисковые магниты создают магнитный поток, который входит в стальной диск 4 и через воздушный зазор поступает во второй регулировочный винт бив стальной экран 1. Далее через первый регулировочный винт 5 и воздушный зазор замыкается на противоположном полюсе первого магнита 2. Механическая регулировка поля в рабочем зазоре осуществляется путем ввинчивания/вывинчивания регулировочных винтов 5 и 6. Эта регулировка используется только для начальной настройки резонатора на заданную частоту температурной стабилизации. После завершения настройки положение винтов жестко фиксируется. В дальнейшем используется только электрическая регулировка поля, которая осуществляется за счет изменения величины и направления тока в обмотке катушки электрического управления 12. Подвод электропитание катушки управления осуществляется посредством изолированных вводов 13, проходящих через отверстия в экране. Коаксиальный ввод 9 используются для подключения микрополосковой интегральной микросхемы 8 к внешнему СВЧ тракту. Изолированный ввод 10 используется для подвода электропитания активных элементов микрополосковой интегральной микросхемы.

Суммарные габариты интегрального устройства, содержащего ферритовый резонатор, значительно уменьшаются за счет использования стального экрана намагничивающего устройства резонатора в качестве корпуса микрополосковой интегральной микросхемы. Конструктивные особенности предлагаемого изобретения дополнительно уменьшают габариты намагничивающего устройства за счет уменьшения диаметров дисковых магнитов, стального диска и регулировочных винтов до размеров сравнимых с размерами ферритового резонатора, а также за счет уменьшения толщин постоянных магнию» при уменьшении толщины рабочего зазора в случае расположения ферритового резонатора в отверстии подложки микрополосковой интегральной микросхемы.

Встроенная система термостабилизации не увеличивает габариты устройства намагничивания ферритового резонатора. В данной конструкции она реализована на принципе компенсации температурного дрейфа частоты резонатора адекватным изменением поля в рабочем зазоре. В случае нормального намагничивания, как показано на фиг.1, условие температурной стабильности частоты резонатора f(T)≈γ[H0(T)-4πM0(T)] приводится к виду

H 0 ( T ) T 4 π M 0 ( T ) T = 0,                                                   ( 4 )

где H0(T) - напряженность поля в рабочем зазоре, М0(Т) - намагниченность насыщения феррита, γ=2,83 МГц/Э - гиромагнитное отношение. Напряженность поля H0(Т) рассчитывается по правилам Кирхгофа для магнитной цепи, представленной на фиг.2, где ΦM1(T)=Br1(T)SM1 и ΦM2(T)=Br2(T)SM2 - магнитные потоки, создаваемые первым и вторым магнитами, Br1(Т), Br2(Т) - остаточные индукции постоянных магнитов, SM1, SM2 - площади полюсов магнитов, RM1=lM10SM1, RM2=lM20SM2 - внутренние сопротивления магнитов, lM1, lM2 - толщины магнитов, µ0 - магнитная проницаемость вакуума, EM=Iw - магнитодвижущая сила катушки с током, I - сила тока, w - число витков катушки, R0=l00S0, R1=l10S1, R2=l20S2 - магнитные сопротивления, соответственно, рабочего, регулировочного и бокового зазоров, l0, S0; l1, S1; l2, S2 - соответственно, толщины и площади рабочего, регулировочного и бокового зазоров. С учетом требования S0=S1=SM1=SM2=S напряженность поля в рабочем зазоре получается в виде

H 0 ( T ) = B r 1 ( T ) l M 1 + B r 2 ( T ) l M 2 ± I w μ 0 S μ 0 { l 0 + l 1 + ( l M 1 + l M 2 ) [ 1 + ( l 0 + l 1 ) l 2 S 2 S ] } ,               ( 5 )

где знак (±) определяется направлением протекания тока в катушке управления. С учетом (5) условие термостабилизации (4) перепишется в виде

α M 1 B r 1 ( T ) l M 1 + α M 2 B r 2 ( T ) l M 2 B r 1 ( T ) l M 1 + B r 2 ( T ) l M 2 = 4 π α F M 0 ( T ) H 0 M ( T ) ,                    ( 6 )

где H0M(Т) - напряженность поля в рабочем зазоре при отсутствии тока в катушке управления, α M 1 = 1 B r 1 ( T ) B r 1 ( T ) ( T ) , α M 2 = 1 B r 2 ( T ) B r 2 ( T ) T - температурные коэффициенты остаточной индукции первого и второго магнитов, α F = 1 B r 1 ( T ) M 0 ( T ) ( T ) - температурный коэффициент намагниченности феррита. Из условия (6) нетрудно получить соотношение толщин постоянных магнитов

l M 1 l M 2 = B r 2 B r 1 4 π γ M 0 ( α F / α M 2 1 ) f s t f s t 4 π γ M 0 ( α F / α M 1 1 ) ,                                ( 7 )

при котором частота резонатора fst стабилизируется во всем диапазоне рабочих температур, в пределах которого температурное размагничивание феррита и постоянных магнитов имеет линейный и обратимый характер, а частота стабилизации удовлетворяет условию

f s t 1 f s t f s t 2 ,                                                                     ( 8 )

где fst1=4πγM0FM1-1), fst2=4πγM0FM2-1) - граничные частоты диапазона стабилизации, соответствующие нулевой толщине одного из магнитов. Существенно, что ток, протекающий в катушке управления, не входит в выражение (6). Это означает, что температурная стабилизация частоты резонатора сохраняется во всем диапазоне электрической перестройки. Однако это не исключает сдвигов частоты, при возникновении градиентов температур постоянных магнитов и резонатора.

В данном изобретении причины возникновения температурных градиентов устраняются конструктивными особенностями устройства. Диэлектрическая подложка микрополосковой схемы, каркас катушки электрического управления 11 и воздушные зазоры образованные первым 5 и вторым 6 регулировочным винтом дополнительно выполняют функции теплоизоляторов демпфирующих тепловые удары окружающей среды. Теплоизоляция обуславливает более медленный и, соответственно, более равномерный прогрев (охлаждение) постоянных магнитов и резонатора, исключающий возможность возникновение градиентов температур.

Следует отметить, что расчеты частот температурной стабилизации fst по правилам Кирхгофа для магнитных цепей дают лишь приближенный результат, поскольку в них не учитываются поля рассеяния, а магниты рассматриваются в приближении прямоугольности петли гистерезиса. В реальном устройстве частота стабилизации может отличаться от расчетной, но это не мешает реализации изобретения.

Ниже приведен пример реализации изобретения. Для наглядности рассматривалась математическая модель реального устройства, как на фиг.2, с последовательно включенными неодим-железо-боровым (Nd-Fe-B) и самарий-кобальтовым (Sm-Co) магнитами, предназначенного для намагничивания и термостабилизации пленочного ЖИГ резонатора в диапазоне температур (-40, +60)ºС. Моделирование топологии поля осуществлялось методом конечных элементов, реализованным в пакете программ Ansoft Maxwell SV. Исходными данными расчета являлись заданные толщины: Nd-Fe-B магнита lM1=2 мм; Sm-Co магнита lM2=1 мм; стального диска d0=0,5 мм, рабочего зазора l0=1 мм и регулировочного зазора l1=0; 0,5; 1; 1,5; 2 мм. Радиусы Nd-Fe-B и Sm-Co магнитов, стального диска и регулировочных винтов выбирались равными r0=2,5 мм. Внутренний радиус стального экрана составлял r1=7 мм, а внешний радиус - r2=8 мм. Толщина торцевых стенок магнитного экрана составляла d1=1,5 мм. При этом габариты устройства составляли ⌀16×10 мм. Для расчетов использовались справочные данные: для ЖИГ - αF=0.23%/ºС, 4πM0=1.75 КГс; для Nd-Fe-B - αM1=0.12%/ºС, Br1=11.2 КГс; для Sm-Co - αM2=0.05%/ºС, Br2=7.5 КГс.

Ниже приведены результаты численных расчетов. На графике фиг.3 представлена радиальная зависимость напряженности поля в рабочем зазоре H0(r), рассчитанная в плоскости расположения пленочного резонатора при толщине регулировочного зазора l1=0,5 мм. Пунктиром на графике отмечен радиус полюсных наконечников r0=2,5 мм. Видно, что в радиусе расположения пленки ЖИГ rF~1,5 мм поле однородно, что необходимо для эффективного возбуждения ЖИГ резонатора, а его напряженность составляет H0=3754 Э, что соответствует возбуждению резонатора на частоте f(T0)=5674 МГц. На фиг.3 видно, что силовые линии поля не выходят за пределы стального корпуса, что свидетельствует о хорошей экранировке магнитной системы.

На фиг.4 представлен расчет температурной зависимости частот возбуждения ЖИГ резонатора f(T), при двух толщинах регулировочного зазора l1=0 и l1=0,5 мм. Видно, что зависимость f(T) имеет строго линейный характер, причем частота возбуждения резонатора и наклон температурной характеристики частоты ∆f/∆T существенно зависят от положения регулировочного винта. Расчет значений ∆f/∆T для ряда толщин регулировочного зазора l1=0; 0,5; 1; 1,5; 2 мм представлен на фиг.5. Здесь на оси абсцисс отмечены частоты возбуждения ЖИГ резонатора при комнатной температуре T0=20ºС.

Частота стабилизации fst, соответствующая условию ∆f/∆T=0, расположена в интервале частот 5673,98…6621,95 МГц, на котором функция ∆f/∆T меняет знак (на фиг.5 частота fst отмечена стрелкой). Используя правило подобия прямоугольных треугольников, рассчитывается требуемая толщина регулировочного зазора l1=0,3 8 мм и частота стабилизации ЖИГ резонатора fst=5892,46 МГц. Требуемый зазор устанавливается вращением первого регулировочного винта.

На практике параметром настройки системы термостабилизации является частота ЖИГ резонатора, измеряемая в заданном диапазоне температур. При этом процедура определения частоты стабилизации fst и настройки резонатора на эту частоту в точности повторяет действия, описанные выше. По окончании настройки положение обоих регулировочных винтов жестко фиксируют. В дальнейшем перестройку резонансной частоты осуществляют электрической регулировкой.

1. Миниатюрное устройство намагничивания и термостабилизации частоты ферритового СВЧ резонатора, содержащее замкнутый цилиндрический стальной экран, стальной диск, установленный осесимметрично внутри экрана; два разнородных магнита, стальной регулировочный винт, катушку электрического управления, выполненную с возможностью подключения к источнику питания, установленную в боковом зазоре стального диска и экрана, ферритовый резонатор, выполненный с возможностью подключения к внешнему СВЧ тракту, расположенный осесимметрично между стальным диском и плоской поверхностью стального экрана, отличающееся тем, что стальной регулировочный винт установлен в резьбовом отверстии, выполненном осесимметрично в плоской поверхности стального экрана напротив ферритового резонатора, устройство содержит второй стальной регулировочный винт, установленный в осесимметричном резьбовом отверстии на противоположной поверхности стального экрана, устройство содержит микрополосковую интегральную микросхему, подключенную к ферритовому резонатору, выполненную с возможностью подключения к источнику электропитания, первый и второй постоянные магниты выполнены в виде дисков с осевой намагниченностью, магниты соединены разноименными полюсами и присоединены одним из внешних полюсов к обратной стороне стального диска, противоположный внешний полюс образует зазор с первым регулировочным винтом, катушка электрического управления снабжена каркасом из теплоизолирующего материала.

2. Устройство по п.1, отличающееся тем, что диаметры первого и второго постоянных магнитов, стального диска, первого и второго регулировочного винта выполнены равными друг другу, а отношение толщин постоянных магнитов lМ1, lМ2 выбраны из условия
l M 1 l M 2 = B r 2 B r 1 4 π γ M 0 ( α F / α M 2 1 ) f s t f s t 4 π γ M 0 ( α F / α M 1 1 )   ,
где αF - температурный коэффициент размагничивания феррита; М0 - намагниченность насыщения феррита; αМ1, αМ2 - температурные коэффициенты размагничивания первого и второго постоянных магнитов; Вr1, Вr2 - остаточные индукции первого и второго постоянных магнитов; γ - гиромагнитное отношение; fst - заданная частота температурной стабилизации.

3. Устройство по п.1, отличающееся тем, что электрическая схема выполнена на дисковой диэлектрической подложке, диаметр которой выполнен равным внутреннему диаметру стального экрана; в центре подложки выполнено отверстие, внутри которого установлен ферритовый резонатор.



 

Похожие патенты:

Изобретение относится к электротехнике, к размагничиванию ферромагнитных материалов и изделий и может быть использовано для снятия остаточной магнитной индукции труб, сортового и листового проката в производственных линиях металлургических заводов.

Изобретение относится к физике магнетизма и может быть использовано при изготовлении постоянных магнитов с большим энергетическим произведением (ВН)max в форме намагниченных колец или полых цилиндров.

Изобретение относится к электротехнике, к физике магнетизма и может быть использовано для изготовления ферромагнитных тороидов с большой коэрцитивной силой - постоянных магнитов, векторы намагничивания которых являются разнонаклонно ориентированными к вертикалям к плоскости граней ферромагнитного тороида в одну и ту же сторону по окружностям, проходящим через точки пересечения этих вертикалей с плоскостью граней ферромагнитного тороида.

Изобретение относится к электротехнике, к размагничиванию длинномерных ферромагнитных материалов и изделий. .
Изобретение относится к электротехнике, к размагничиванию ферромагнитных тонкостенных кольцевых деталей больших диаметров (более 1500 мм) с 3-10 полюсами и степенью намагниченности 8-140 А/см.

Изобретение относится к физике магнетизма и может быть использовано при намагничивании стержневых постоянных магнитов, выполненных из магнитожестких ферромагнетиков, например, из материала SmCo3.

Изобретение относится к технике размагничивания труб, стыков труб промысловых и магистральных газопроводов всех категорий. .

Изобретение относится к электротехнике и может быть использовано для изготовления ферритовых тороидов с большой коэрцитивной силой - постоянных магнитов, векторы намагничивания которых являются косокруговыми, то есть когда из любой i-ой точки на торцевой поверхности тороида можно провести вектор, лежащий в плоскости уi zi под некоторым углом относительно оси zi, где ось уi является касательной к окружности с центром в начале координатной системы xi уi zi, проходящей через данную точку i на данной окружности.

Изобретение относится к электротехнике и может быть использовано для изготовления постоянных магнитов в виде ферромагнитных тороидов с большой коэрцитивной силой, векторы намагничивания которых являются косокруговыми, для магнитных амортизаторов вместо поршневых амортизаторов колебательных движений на основе двух совмещенных одноименными магнитными полюсами тороидов с косокруговой намагниченностью, вращение одного из которых относительно другого в одном направлении осуществляется легко, а в противоположном - с усилиями.

Изобретение относится к электротехнике и может быть использовано в интегральных СВЧ устройствах, содержащих ферритовые элементы. .

Изобретение относится к области магнетизма и предназначено для намагничивания ферромагнитных параллелепипедов, векторы намагниченности которых наклонены под некоторым острым углом по отношению к противолежащим двум граням параллелепипеда в направлении их более длинных сторон, и эти грани являются магнитными полюсами ферромагнитного параллелепипеда. Заявлен способ намагничивания ферромагнитных параллелепипедов, основанный на помещении ферромагнитного параллелепипеда в соленоид перпендикулярно его оси симметрии и использовании насыщающего магнитного поля, отличающийся тем, что на ферромагнитный параллелепипед наматывают катушку индуктивности, ось симметрии которой перпендикулярна оси симметрии соленоида, катушку индуктивности соединяют последовательно с соленоидом к источнику импульса тока намагничивания до насыщения ферромагнитного параллелепипеда, после чего снимают катушку индуктивности с ферромагнитного параллелепипеда. Технический результат - осуществление намагничивания ферромагнитного параллелепипеда, векторы магнитной индукции в котором образуют некоторый острый угол к его двум противоположным граням, а их проекции на эти грани направлены вдоль более длинных их сторон. Заявляемый способ позволяет создавать магнитные системы с продольным неоднородным магнитным полем, что может найти применение в магнитной энергетике для повышения энергетической эффективности магнитных генераторов. 8 ил.

Изобретение относится к электротехнике и может быть использовано для научных исследований, в частности по взаимодействию тороидального магнитного поля с однополярными магнитными жидкостями. Технический результат состоит в создании тороидального магнитного поля без использования электрической энергии. Cогласно изобретению склеивают между собой две пары соосно установленных магнитотвердых ферромагнитных тороидов с прямоугольной формой сечения так, что в первой паре тороиды одинаковой толщины вставляют друг в друга с зазором. Одинаковые тороиды второй пары перекрывают своими плоскими гранями зазор первой пары тороидов с обеих сторон, образуя тороидальную полость между четверкой тороидов. На все четыре тороида предварительно наматывают катушки их намагничивания. Катушку первого тороида первой пары соединяют с катушкой первого электромагнита, образующего радиально-кольцевое магнитное поле, в которое помещают первый тороид первой пары, и производят его намагничивание постоянным током. Аналогичные операции осуществляют со вторым тороидом первой пары, используя второй электромагнит с габаритами кольцевого зазора, соответствующими габаритам второго тороида первой пары. Затем катушки намагничивания первого и второго тороидов второй пары соединяют последовательно между собой и с катушкой третьего электромагнита, образующего однородное соленоидальное магнитное поле, ортогональное плоским граням первого и второго тороидов второй пары, помещенных в магнитное поле третьего электромагнита, и производят намагничивание второй пары тороидов. После намагничивания со всех четырех тороидов снимают катушки намагничивания. Склеивание тороидов между собой производят так, что все одноименные магнитные полюсы обращают в образующуюся тороидальную полость с одинаковыми направлениями тангенциальных составляющих векторов намагниченности всех четырех тороидов. 5 ил.

Изобретение относится к области железнодорожного транспорта, к способу размагничивания рельсового изолирующего стыка. Согласно способу размагничивания рельсового изолирующего стыка объект подвергают воздействию магнитного поля, возбуждаемого индуктором, обмотка которого подключена к блоку конденсаторов. Обмотку индуктора подключают к блоку конденсаторов через блок электронных ключей, управляемых с помощью датчика Холла, таким образом, чтобы магнитный импульс, возбуждаемый обмоткой индуктора при разрядке конденсаторов, имел направление вектора магнитной индукции, противоположное вектору магнитной индукции, создаваемому магнитным полем изолирующего стыка. Блок конденсаторов заряжают от пьезоэлектрического генератора, при этом для деформации пьезоэлектрических элементов генератора используют механические колебания рельсов, возбуждаемых проходящим подвижным составом. Разрядку блока конденсаторов на обмотку индуктора производят посредством силового ключа, при достижении номинального напряжения блока конденсаторов, контролируемого посредством порогового элемента. Изобретение относится также к устройству для осуществления указанного способа. В результате обеспечивается постоянное размагничивание рельсового изолирующего стыка за счет энергии проходящего подвижного состава. 2 н.п. ф-лы, 2 ил.

Изобретение относится к судовым средствам магнитной защиты подводного или надводного объекта, в частности к автоматическим регуляторам его магнитного поля. Автоматический регулятор магнитного поля подводного или надводного объекта включает блок приема сигналов от датчиков его магнитного поля, от навигационного комплекса и сигналов о токах компенсаторов магнитного поля объекта, блок формирования алгоритма управления системы автоматического управления магнитным полем объекта, блоки управления компенсаторами магнитного поля объекта и блок распределения сигналов управления эффективностью компенсаторов магнитного поля объекта. В него введен блок контроля магнитного состояния объекта, соединенный с выходом блока формирования алгоритма управления, и блок сигнализации о превышении предельных значений параметров его магнитной защиты, соединенный с выходом блока контроля магнитного состояния объекта. В результате обеспечивается возможность оценивать магнитное состояние объекта в процессе плавания и сигнализировать о снижении требуемого уровня его магнитной защиты. 1 ил.

Изобретение относится к электротехнике, к средствам для использования эффекта сверхпроводимости, и может быть использовано в установках для активации высокотемпературных сверхпроводников (ВТСП). Технический результат состоит в повышении технологичности и качества процесса намагничивания. После замыкания клемм 1, 2 переключателя к ВТСП 9 подается транспортный ток от внешнего источника постоянного тока. Транспортный ток, протекая через ВТСП 9, взаимодействует с квантованными нитями магнитного потока 7 и создает силу Лоренца, которая перемещает квантованные нити магнитного потока 7 в направлении, перпендикулярном направлению течения транспортного тока. После размыкания клемм 1, 2 переключателя магнитный поток в ВТСП 9 остается захваченным центрами пиннинга. Запасаемая в ВТСП 9 электромагнитная энергия и возникающие в режиме вязкостного движения квантованных нитей магнитного потока 7 потери компенсируются внешним источником постоянного тока. Таким образом, в процессе активации происходит преобразование тепловой энергии в электрическую, ответственную за движение квантованных нитей магнитного потока 7, и в электромагнитную, ответственную за наличие положительной остаточной намагниченности ВТСП 9. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, к размагничиванию магнитных контуров индуктивности части объема веществ или полного объема, характеризуемого потерей магнитного момента. Технический результат состоит в обеспечении возможности создания условий размагничивания биометрических характеристик живой ткани за счет потери магнитного момента в катушках индуктивности и взаимного размещения этих индуктивных контуров вблизи тела человека, не менее чем в 2-3 см в зоне взаимодействия. магнитного контура катушек индуктивности и тканью живого организма, воспринимающего процесс размагничивания. Это способствует нормализации правильного настроя живых клеток в организме человека при ориентации на состав 3-4,5% железа в крови и водном составе здоровой ткани, способствующей ускоренному заживлению ран и повреждений кожного покрова. 1 ил.

Изобретение относится к электротехнике, к первичным источникам электроэнергии. Технический результат состоит в обеспечении полного промагничивания намагничиваемых элементов в радиальном направлении и повышении тем самым их магнитных характеристик. По первому варианту электромагнит выполнен в виде n-полюсного сердечника, между полюсами которого намотаны дополнительные обмотки на намагничиваемом элементе. По второму варианту электромагнит выполнен в виде n-проводников в защитных капсулах, расположенных по внешнему и внутреннему радиусу намагничиваемого элемента, между проводниками электромагнита намотаны дополнительные обмотки на намагничиваемом элементе.2 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано при исследовании физической природы так называемого магнитного трения и его связи с магнитной восприимчивостью ферромагнетика, помещенного в изменяющееся внешнее магнитное поле. Технический результат - обеспечение возможности исследовании магнитного трения в ферромагнетиках, в частности зависимости магнитного трения от величины приложенного к ферромагнетику внешнего магнитного поля. Устройство для исследования магнитного трения содержит намагниченные вращающийся ротор и неподвижный статор, выполненные из исследуемого ферромагнитного вещества, катушку подмагничивания, высокочастотный трансформатор, регулируемый источник постоянного тока, электромагнитный датчик угловой скорости вращения ротора с противовесом, измеритель частоты, блок управления и обработки информации, широкополосный малошумящий усилитель и спектроанализатор, синхронный двигатель, регулируемый по частоте источник переменного тока, прибор измерения потребляемой синхронным двигателем мощности. Вращающийся ротор выполнен в виде симметричной конструкции с двумя одинаковыми цилиндрическими полюсами, зазор которых относительно цилиндрического статора не менее чем на два порядка меньше радиуса цилиндрических полюсов ротора. Указанные элементы соединены между собой так, как указано в материалах заявки. 4 ил.

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в упрощении намагничивания. Способ включает сборку массива ненамагниченных анизотропных сегментов постоянного магнита вокруг шпинделя ротора, заключенного в металлическое кольцо. Затем определяют оптимальные направления намагничивания указанных сегментов, позиционируют собранные сегменты вокруг шпинделя ротора так, чтобы оптимальные направления ориентации намагничивания анизотропных сегментов постоянного магнита выровнены в направлении линий магнитного потока, созданного намагничивающим устройством. Возбуждение намагничивающего устройства для намагничивания сегментов осуществляют импульсным постоянным током в течение оптимальной длительности импульса, которая зависит от толщины, магнитной проницаемости и удельного электрического сопротивления стопорного кольца. 3 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано для создания вращательного движения механической системы на постоянном токе. Технический результат - создание магнитного двигателя постоянного тока с использованием косокруговой конфигурации ротор-статорного или ротор-роторного магнитных полей (в зависимости от конструктивного исполнения). Двигатель содержит вращающиеся во взаимно противоположных направлениях относительно неподвижной оси два ротора, соосно установленные между собой и выполненные с обмотками, создающими встречно ориентированные косокруговые магнитные поля соответственно по правому и левому кругам, создаваемые постоянным током в этих обмотках, расположенных вблизи друг от друга, витки которых наклонены к плоскостям роторов, ортогональных неподвижной оси вращения роторов, и равномерно распределены по их кольцевым (тороидально подобным) объемам, а подсоединение этих обмоток к источнику постоянного тока через скользящие токосъемники осуществлено так, что образующиеся косокруговые магнитные поля являются взаимно встречными с одноименными магнитными полюсами. 5 ил.
Наверх