Устройство для нанесения на стекло токопроводящего слоя

Изобретение относится к области нанесения на стекло токопроводящего слоя. Технический результат изобретения заключается в получении токопроводящего слоя с заданными оптическими и токопроводящими параметрами на заготовках изделий из стекла со сложной кривизной поверхности. Устройство содержит пульверизатор и сосуд с раствором, установленные в камере с вытяжкой с возможностью вертикального, горизонтального и вращательного относительно горизонтальной оси перемещения. Пульверизатор дополнительно снабжен автоматическим клапаном подачи сжатого воздуха, электрически соединенным с таймером, что позволяет подобрать давление и время подачи воздуха для получения заданных оптических и электропроводных параметров. Толщина токопроводящих слоев по фактическим данным составляет 2,5±0,2 мкм, а поверхностная электропроводность 10-6-10-4 Ом-1. Эти токопроводящие слои обеспечивают «невидимость» полученных стеклоизделий для радара. Светопропускание составляет 25%, т.е. на 11% меньше по сравнению с изделиями без нанесения токопроводящего слоя, что соответствует требованиям, предъявляемым к светофильтрам бортовых аэронавигационных огней. 2 ил.

 

Изобретение относится к промышленности стройматериалов, к стекольному производству, в частности, к области нанесения на стекло токопроводящего слоя.

Светофильтры, используемые в бортовых аэронавигационных огнях (БАНО) самолетов, имеют сложную форму типа «лодочки» с переменным радиусом кривизны, так как они устанавливаются в торцевой части крыльев и, таким образом, являются частью крыла самолета. При производстве стеклоизделий для авиационной светосигнальной техники, в частности, для светофильтров, используемых в БАНО самолетов 5-го поколения, одной из важных задач является получение светофильтров с токопроводящим слоем на их поверхности, который должен обеспечивать так называемую «невидимость» светофильтров для радара.

Известна установка для нанесения покрытия на подложки, содержащая, по меньшей мере, один распылитель для диспергирования покровного материала и нанесения его на подложку посредством распыления, по меньшей мере, первый питатель для подготовки покровного материала и подачи его к распылителю и, по меньшей мере, второй питатель для подготовки вспомогательного газа и подачи его к распылителю для распыления покровного материала, причем, второй питатель содержит генератор водяного пара, а распылитель содержит приспособление, предотвращающее образование капель воды в водяном паре по патенту РФ №2354561, МПК В60В 7/02, B05D 1/02, опубл. 10.05.2009.

Недостатком известной установки является то, что она не позволяет получать на стекле токопроводящий слой с заданными оптическими и электропроводными параметрами. Это объясняется тем, что при распылении покровного материала используется водяной пар, что нецелесообразно при нанесении токопроводящего слоя на стекло, нагретое до температуры его размягчения, порядка 610±5°С.

Наиболее близким к изобретению является устройство для моллирования стекла и одновременного нанесения на него токопроводящего слоя методом аэрозолей, включающее печи моллирования, форму с крышкой, пульверизаторы и сосуды с растворами, при этом пульверизаторы укреплены над крышкой печи на поворотном рычаге, связанном другим рычагом с сердечником электромагнитов, соединенных с электрической цепью программного устройства и осуществляющих поворот пульверизаторов по авторскому свидетельству СССР №146450, МПК СОЗВ 29/00, СОЗС 17/02, опубл. в «Бюллетене изобретений и товарных знаков» №1, 1965.

Недостатком известного устройства является то, что оно предназначено для нанесения токопроводящего слоя на заготовки изделий из стекла с одинарной (цилиндрической) кривизной поверхности и с относительно большой поверхностью, так как при этом используются два пульверизатора. Известное устройство не обеспечивает получения токопроводящего слоя с заданными оптическими и токопроводящими параметрами на заготовках изделий из стекла со сложной и относительно небольшой поверхностью, предназначенных для использования их в качестве светофильтров для БАНО. Это объясняется тем, что в известном устройстве отсутствует какая-либо регулировка направления факела от пульверизатора в зависимости от геометрических размеров и кривизны заготовок стекла.

Кроме этого, в известном устройстве не предусмотрена какая-либо защита помещения и людей от паров раствора, в котором обычно, наряду с хлорными соединениями олова, содержится также плавиковая кислота и этиловый спирт.

Задачей изобретения является получение изделий из стекла относительно небольших размеров со сложной кривизной поверхности, предназначенных для использования их в качестве светофильтров БАНО с заданными оптическими и электропроводными параметрами нанесенного на их поверхность токопроводящего слоя, с одновременным исключением попадания паров раствора в производственное помещение.

Для достижения задачи изобретения предложено устройство для нанесения на стекло токопроводящего слоя методом аэрозолей, включающее пульверизатор и сосуд с раствором, отличающееся тем, что пульверизатор и сосуд установлены в камере с вытяжкой с возможностью вертикального, горизонтального и вращательного относительно горизонтальной оси перемещения, при этом пульверизатор дополнительно снабжен автоматическим клапаном подачи сжатого воздуха, электрически соединенным с таймером.

Расположение пульверизатора и сосуда с раствором в камере с вытяжкой устраняет возможность попадания вредных паров раствора в производственное помещение, где находятся люди. Возможность вертикального, горизонтального и вращательного относительно горизонтальной оси перемещения пульверизатора обеспечивает точную установку выходного отверстия пульверизатора относительно поверхности заготовки изделия из стекла, на которую необходимо нанести токопроводящий слой, в зависимости от величины поверхности и ее кривизны. Автоматический клапан подачи сжатого воздуха, электрически соединенный с таймером, позволяет подобрать соответствующие давление и время подачи воздуха для получения заданных оптических и электропроводных параметров токопроводящего слоя также в зависимости от геометрических размеров и кривизны поверхности заготовки изделия из стекла.

На фиг.1 показано устройство, вид спереди.

На фиг.2 показано устройство, вид сбоку.

Устройство содержит камеру 1 с вытяжкой 2. В камере 1 установлены пульверизатор 3 с сосудом 4 раствора на стойке 5 с фиксатором 6 положения пульверизатора 3 по вертикали. На держателе 7 установлен электромагнит 8 привода курка пульверизатора 3. В корпусе фиксатора 6 установлена ось 9 с закрепленной на ней рейкой 10, по которой осуществляется перемещение пульверизатора 3 по горизонтали с помощью червяка 11. На конце оси 9 для вращательного перемещения пульверизатора 3 относительно горизонтальной оси имеется приспособление 12, при этом изменяется угол наклона выходного отверстия 13 пульверизатора 3 по отношению к заготовке 14 изделия из стекла. К пульверизатору 3 подведен рукав 15 подачи сжатого воздуха. Пульверизатор 3 снабжен регулятором 16 давления воздуха и манометром 17. На фиг.1, 2 также показаны электромагнитный клапан 18 подачи воздуха и таймер 19.

Устройство работает следующим образом. В сосуд 4, расположенный в камере 1 с вытяжкой 2, заливают воду и размещают заготовку 14 изделия из стекла на подставке (на фиг.1, 2 не показана), при этом заготовка 14 имеет комнатную температуру. Затем через рукав 15 с помощью электромагнитного клапана 18 подачи сжатого воздуха и таймера 19 подают сжатый воздух в пульверизатор 3. При этом срабатывает электромагнит 8, установленный на держателе 7 привода курка пульверизатора 3. На выходе 13 пульверизатора 3 образуется аэрозольный факел из воды. Впоследствии находят оптимальное расположение выходного отверстия 13 пульверизатора 3, регулируя его по горизонтали с помощью червяка 11 по оси 9 на закрепленной на ней рейке 10. Регулирование пульверизатора 3 по вертикали осуществляют с помощью фиксатора 6, закрепленного на стойке 5. Оптимальный угол наклона выходного отверстия 13 пульверизатора 3 устанавливают путем вращательного перемещения пульверизатора 3 относительно горизонтальной оси с помощью приспособления 12. Оптимальное положение пульверизатора 3 определяют по оптимальному (равномерному) покрытию поверхности заготовки 14 водным аэрозолем. После этого в сосуд 4 наливают раствор для получения электропроводящего слоя, содержащий хлорные соединения олова, этиловый спирт и плавиковую кислоту. На подставке из асбеста в ранее определенном месте размещают нагретую до температуры размягчения стекла заготовку 14. Затем осуществляют напыление аэрозоля из указанного раствора по оптимальному режиму, установленному при напылении водного аэрозоля, т.е. при фиксированном положении регулятора 16 давления воздуха, показаниях манометра 17 и заданном режиме таймера 19.

Светофильтры, полученные с использованием предлагаемого устройства, предназначенные для БАНО самолетов 5-го поколения, соответствуют современным требованиям, предъявляемым по наличию на их поверхности токопроводящего слоя. Толщина токопроводящих слоев по фактическим данным составила 2,5±0,2 мкм, а поверхностная электропроводность 10-6-10-4 Ом-1. Эти токопроводящие слои обеспечивают «невидимость» полученных стеклоизделий для радара. Кроме этого, получены хорошие результаты по оптическим показателям, в частности, светопропускание составило величину 25%, т.е. на 11% меньше по сравнению с изделиями без нанесения токопроводящего слоя, что соответствует требованиям, предъявляемым к светофильтрам БАНО.

Источники информации

1. Патент РФ №2354561, МПК В60В 7/02, B05D 1/02, опубл. 10.05.2009.

2. Авторское свидетельство СССР №146450, МПК С03В 29/00, С03С 17/02, опубл. в «Бюллетене изобретений и товарных знаков» №1, 1965 - прототип.

Устройство для нанесения на стекло токопроводящего слоя методом аэрозолей, включающее пульверизатор и сосуд с раствором, отличающееся тем, что пульверизатор и сосуд установлены в камере с вытяжкой с возможностью вертикального, горизонтального и вращательного относительно горизонтальной оси перемещения, при этом пульверизатор дополнительно снабжен автоматическим клапаном подачи сжатого воздуха, электрически соединенным с таймером.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению и может быть использовано при изготовлении оптических компонентов, состоящих из двух и более склеенных оптических элементов.
Изобретение относится к области химической технологии получения лакокрасочных материалов. .
Изобретение относится к производству стеклянной декоративно-облицовочной плитки. .

Изобретение относится к технологии получения тары для пищевых продуктов. .

Изобретение относится к прозрачному пленочному композитному материалу для наружной поверхности окон. .

Изобретение относится к прозрачному пленочному композитному материалу для наружной поверхности окон. .

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Изобретение относится к способу формирования покрытия и покрытию из диоксида титана, содержащему кристаллы с размером кристаллитов менее 35 нм. .

Изобретение относится к покрытому изделию, включающему по меньшей мере один отражающий инфракрасное (ИК) излучение слой материала, такого как серебро или подобное, в низкоэмиссионном покрытии. Покрытое изделие включает первый диэлектрический слой, например нитрид кремния, первый контактный слой, например нихром, отражающий ИК-излучение слой, содержащий серебро, второй контактный слой, содержащий Ni и/или Cr, расположенный над и контактирующий с отражающим слоем, второй диэлектрический слой, содержащий нитрид кремния. Покрытое изделие включает по меньшей мере один наружный слой, содержащий оксид циркония (например, ZrO2) или цирконий-кремний оксинитрид (например, ZrSiOxNγ). Техническим результатом изобретения является улучшенная химическая и тепловая стабильность при тепловой обработке изделий. Покрытые изделия могут быть использованы в качестве изоляционного стекла в окнах стеновых панелей, окнах транспортного средства или в других подходящих применениях, таких как монолитные окна, окна из ламинированного стекла и/или подобного. 2 н. и 8 з.п. ф-лы, 2 ил., 3 табл.
Способ по данному изобретению предлагает изготавливать изделие из стекла с гидрофобной поверхностью. На поверхность стекла, например поверхности ветровых стекол, наносят стойкое гидрофобное покрытие. Сначала поверхность стекла обрабатывают любым подходящим способом для повышения ее способности длительно и практически постоянно удерживать покрытие из хитозанового покрытия. После нанесения хитозанового покрытия на поверхность стекла обычное гидрофильное хитозановое покрытие превращают в гидрофобное путем соответствующей обработки, например, комбинацией ферментативной и химической обработки. Альтернативно хитозан можно сделать гидрофобным перед нанесением его на поверхность стекла, но эта методика менее предпочтительна. Техническим результатом изобретения является повышение стойкости и долговечности гидрофобных покрытий на стекле. 3 н. и 12 з.п. ф-лы.

Изобретение относится к остеклению, используемому в авиации. Технический результат изобретения заключается в ослаблении электромагнитного излучения и солнечного тепла, снижении коэффициента отражения при сохранении высокой адгезии материалов композиции, как к поверхности стекла, так и относительно друг друга, высокой абразивостойкости и атмосферостойкости. На поверхность ориентированного органического стекла наносят слой бесцветного лака толщиной 5-6 мкм на основе полиметилфенилсилсесквиоксана, привитого к наноразмерным глобулам двуокиси кремния. Далее размещают два слоя из сплава оксидов индий-олово, между которыми расположен слой золота. Затем на слой из сплава на основе оксидов индий-олово наносят грунтовочный слой толщиной 4-5 мкм на основе хлорированных полиолефинов, который покрывают полимерным материалом. 1 табл., 1 ил.

Изобретение относится к защитным слоям, наносимым на оптические покрытия, находящиеся на прозрачных подложках. Предложено оптическое покрытие на прозрачной подложке с временным углеродным слоем, предназначенным для защиты от царапин и корродирующих сред во время изготовления. Когда оптическое покрытие и/или подложка подвергаются закалке в атмосфере, реакционноспособной по отношению к углероду, такой как воздух, слой углерода удаляется в виде углеродсодержащего газа. Для оптического покрытия с хрупким стеклообразным наружным слоем, самым дальним от подложки, дополнительная защита обеспечивается препятствующим распространению трещин слоем, расположенным между наружным слоем и углеродным слоем. Способ получения прозрачного изделия включает формирование на наружном слое препятствующего распространению трещин слоя, имеющего толщину от 2 до 8 нм, в котором препятствующий распространению трещин слой является однородным слоем, содержащим материал, выбранный из группы, состоящей из Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; оксидов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; нитридов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; и их смесей. Техническим результатом изобретения является уменьшение количества царапин и других поверхностных дефектов на поверхности прозрачного изделия. 2 н. и 12 з.п. ф-лы, 6 ил., 2 табл., 4 пр.
Изобретение относится к области технологии силикатов и касается производства художественных изделий из стекла. Способ включает изготовление сосуда и баночки, вдувание баночки в сосуд и сплавление ее с внутренней стенкой сосуда. Перед вдуванием баночки на ее поверхность напыляют молотый до удельной поверхности 4000-6000 см2/г обсидиан и/или перлит. Для изготовления сосуда и баночки можно использовать бесцветное или цветное стекло. В результате выполнения способа получают изделия, содержащие между двумя слоями газовые пузырьки. Технический результат изобретения - расширение ассортимента художественных изделий из стекла. 3 пр.

Изобретение относится к суспензии для пиролитического покрытия. Технический результат изобретения заключается в повышении долговечности пиролитических покрытий. Суспензия пиролитического покрытия содержит жидкость или полужидкость и частицы двух металлоорганических предшественников. Частицы двух предшественников имеют различное распределение среднего размера частиц. Предшественник с более высоким средним значением распределения размера частиц имеет более низкую температуру плавления, чем другой предшественник. Предшественник с более высоким средним значением распределения размера частиц имеет более высокую растворимость в жидкости или полужидкости, чем другой предшественник. Покрытие, полученное на основе суспензии, обладает кристаллической структурой, причем размер кристаллов кристаллической структуры находится в диапазоне от 15 до менее 25 нанометров. 4 н. и 24 з.п. ф-лы, 2 ил., 1 табл.

Группа изобретений относится к покрытиям, стойким к царапанью и травлению. Технический результат изобретения заключается в повышении стойкости стекла с покрытием к травящим агентам. На стеклянную подложку наносят антитравящий слой, выполненный на основе, по меньшей мере, одного из таких соединений, как легированный фтором оксид олова и оксид церия. Далее осуществляют ионно-лучевое осаждение стойкого к царапанью слоя, содержащего алмазоподобный углерод (DLC), на стеклянную подложку поверх антитравящего слоя. Между антитравящим слоем и слоем на основе алмазоподобного углерода формируют затравочный слой, который облегчает адгезию слоя на основе алмазоподобного углерода и/или защищает антитравящий слой от повреждения во время ионно-лучевого осаждения слоя, содержащего алмазоподобный углерод. Затравочный слой выполнен на основе нитрида кремния. 3 н. и 17 з.п. ф-лы, 15 ил.

Изобретение относится к солнцезащитным покрытиям. Техническим результатом изобретения является создание покрытия и изделия с покрытием, особенно полезного для архитектурного остекления для северного климата. Покрытие обеспечивает высокий коэффициент солнечного теплопоступления (SHGC) и низкий коэффициент теплопередачи (U-величина) для улавливания и сохранения солнечного тепла в северном климате. Покрытие включает первый диэлектрический слой; сплошной металлический слой толщиной менее 8 нм, сформированный, по меньшей мере, на части первого диэлектрического слоя; грунтовочный слой, сформированный, по меньшей мере, на части металлического слоя; второй диэлектрический слой, сформированный, по меньшей мере, на части грунтовочного слоя; и внешнее покрытие, сформированное, по меньшей мере, на части второго диэлектрического слоя. При использовании на поверхности №3 базового стеклопакета, покрытие обеспечивает SHGC, более или равный 0,6, и U-величину, менее или равную 0,35. 3 н. и 12 з.п. ф-лы, 4 ил., 3 табл., 5 пр.
Изобретение относится к тонкопленочным просветляющим покрытиям на стекле и может быть использовано в стекольной промышленности и в электронике. Техническим результатом изобретения является получение антиотражающих покрытий на основе наночастиц SiO2, имеющих высокую адгезию к поверхности стекла. Способ получения стекла с антиотражающим мезопористым покрытием на основе наночастиц SiO2 включает предварительную подготовку стеклянной подложки, приготовление силиказоля со средним диаметром частиц 100 нм и низкой полидисперсностью, нанесение наночастиц SiO2 на стеклянную подложку, термообработку стекла с покрытием. Для улучшения адгезии покрытия к стеклу за счет функционализации и создания электростатического взаимодействия между подложкой и покрытием стекла выдерживают в 1% растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%) в течение 5-15 часов, сушат в атмосфере аргона, а слои наночастиц SiO2 наносят из силиказоля, синтезированного из тетраэтоксисилана в этиловом спирте в присутствии щелочного катализатора при молярном соотношении компонентов ТЭОС/C2H5OH/NH4OH/H2O=0,25/8/0,1/1,3. 2 пр.

Способ формирования серебряных наночастиц в стекле относится к технологии оптических материалов и может быть использован в интегральной оптике и биосенсорных технологиях. Способ включает нанесение серебряной пленки на поверхность силикатного стекла, допированного церием, выдерживание полученной структуры при температуре 400-600°C в течение 2-10 часов, облучение структуры ультрафиолетовым излучением и последующее выдерживание при температуре 400-600°C в течение 2-10 часов. Способ позволяет получать стеклокомпозиты с высокой концентрацией наночастиц серебра в приповерхностной области стекла, т.е. задачу изготовления планарных волноводов в стеклокомпозитах. 5 з.п. ф-лы, 1 ил., 3 пр.
Наверх