Способ получения титансодержащих целлюлозных материалов

Изобретение относится к области получения титансодержащих целлюлозных материалов и может быть использовано для модифицирования целлюлозных и лигноцеллюлозных материалов и при получении их производных для специальных целей. Способ включает деструкцию лигноцеллюлозных материалов в результате воздействия на них титансодержащих растворов кислот Льюиса с применением органического растворителя при перемешивании, отмывку и сушку целевого продукта. В качестве лигноцеллюлозного материала используют различные виды лигноцеллюлозного сырья, получаемого из древесных полуфабрикатов в процессе его переработки на целлюлозно-бумажных предприятиях, травянистого сырьевого материала, а также из вторичного (макулатурного) сырья, любого другого источника целлюлозы. Деструкцию осуществляют при температуре 20-70°С при перемешивании в течение 2-300 мин в диапазоне концентраций раствора кислоты Льюиса 16-204 ммоль/дм3 в органическом растворителе. Изобретение позволяет получить титансодержащие порошковые целлюлозные материалы с повышенной реакционной способностью из лигноцеллюлозных материалов. 3 табл.

 

Изобретение относится к области получения титансодержащих целлюлозных материалов, отличающихся повышенной химической реакционной способностью и может быть использовано для модифицирования целлюлозных и лигноцеллюлозных материалов, например, при получении производных этих материалов для специальных целей в аналитической химии и фармацевтической промышленности.

Известен способ получения микроволокнистого полисахарида с длиной волокон приблизительно от 0,05 до 0,90 мм [Пат. RU 2404194]. Для этого волокна целлюлозы обрабатывают в водной суспензии, содержащей окислитель и, по меньшей мере, один переходный металл в ионной форме. Обработка протекает с одновременным механическим расслаиванием волокон целлюлозы на маленькие фрагменты во избежание их спутывания. Для расслоения целлюлозных волокон требуется использовать дополнительную стадию обработки, например: ферментативную, ультразвуковую, механическую и т.д., что влечет за собой наличие дополнительного оборудования, энергозатрат, и в результате приводит к значительному увеличению продолжительности обработки.

Известен способ получения модифицированных серебросодержащих целлюлозных материалов [Пат. RU 2256675], для получения которых на целлюлозные материалы воздействуют водным раствором соли серебра, реакционную смесь в присутствии дополнительных химических реагентов нагревают до 85-150°С в течение 1-4 часов. Изобретение позволяет получить целлюлозные материалы, как с низким содержанием серебра, так и с высокой его концентрацией.

В отличие от вышеприведенного способа [Пат. RU 2256675] для получения титансодержащих целлюлозных материалов по нижеприведенному способу на целлюлозные материалы воздействуют растворами кислот Льюиса, получаемых в результате взаимодействия TiCl4 с применением минимального количества органических растворителей. Реакционную смесь (в зависимости от поставленной задачи) нагревают либо до температуры 65-70°С, либо реакцию проводят при условиях комнатной температуры (20-25°С), при этом продолжительность процесса, в среднем, составляет 5-30 мин.

Наиболее близким к описываемому по технической сущности является способ получения модифицированных целлюлозно-лигнинных порошков [Пат. RU 2126774] для использования в качестве наполнителя полимерных материалов и отличающихся повышенной влагоустойчивостью, взятый нами за прототип. Для этого используют сухие или предварительно активированные обработкой разбавленными растворами кислот или щелочей целлюлозно-лигнинные порошки, которые пропитывают кремнийсодержащими соединениями при комнатной температуре, выдерживают при 100-180°С в течение 1 ч.

Задачей настоящего изобретения является получение модифицированных порошковых целлюлозных и лигноцеллюлозных материалов с заданным (регулируемым) содержанием титана путем варьирования (выбора) условий воздействия растворов кислот Льюиса, получаемых в результате взаимодействия TiCl4 и органического растворителя на лигноцеллюлозный материал из древесного, травянистого сырьевого материала, а именно соломы злаковых культур, вторичного (макулатурного) сырья, с применением органических растворителей и отличающихся от исходного сырья повышенной химической реакционной способностью получаемого продукта. Источник целлюлозы для использования в качестве сырья не ограничивается.

Предлагаемый способ позволяет получать титансодержащие порошковые целлюлозные материалы с повышенной химической реакционной способностью из лигноцеллюлозных материалов, получаемых в результате основного технологического процесса переработки древесного сырья на целлюлозно-бумажных предприятиях (не подвергая его предварительной дополнительной активации с сохранением большей части лигнинной составляющей); из травянистого сырьевого материала, а именно соломы злаковых культур; вторичного (макулатурного) сырья. Для получения титансодержащих целлюлозных материалов процесс деструкции используемого сырья возможно осуществлять в диапазоне концентраций раствора кислоты Льюиса 16-204 ммоль/дм3. В этом состоит технический результат.

Технический результат достигается тем, что способ получения титансодержащих целлюлозных материалов, включающий деструкцию лигноцеллюлозных материалов путем воздействия на них растворов кислот Льюиса с применением органического растворителя при перемешивании и последующей отмывкой и сушкой целевого продукта, согласно изобретению в качестве лигноцеллюлозного материала используют различные виды лигноцеллюлозного сырья, получаемого из древесных полуфабрикатов в процессе его переработки на целлюлозно-бумажных предприятиях; травянистого сырьевого материала, а именно соломы злаковых культур; а также из вторичного (макулатурного) сырья, процесс деструкции осуществляют при температуре 20-70°С при перемешивании в течение 2-300 мин. В диапазоне концентраций раствора кислоты Льюиса 16-204 ммоль/дм в органическом растворителе.

Предложенный способ осуществляется следующим образом.

Для установления оптимальных условий получения титансодержащих порошковых целлюлозных материалов варьируют величину концентрации и вид растворов кислот Льюиса, получаемых в результате взаимодействия TiCl4 и различных органических растворителях, жидкостной модуль, температуру и продолжительность обработки лигноцеллюлозного материала (исходного сырья) деструктирующим раствором, интенсивность перемешивания, а также условия сушки получаемого продукта деструкции (см. таблицу 1).

Пример 1. Навеску абсолютно-сухой хвойной сульфатной целлюлозы (СП=850, содержание лигнина по Комарову - 0,9%) массой 28,80 г заливали 610 мл раствора TiCl4 в гексане с концентрацией 17,5 ммоль/дм3 (жидкостной модуль 21:1) и выдерживали при перемешивании 30 мин при температуре 23°С, после чего полученный продукт переносили на стеклянный фильтр, отжимали, промывали гексаном и высушивали. Получаемый продукт бледно-кремового цвета. Содержание в нем Ti (IV) составляет 16,5 мг/г, СП=260. Размер частиц не превышает 100 мкм.

Пример 2. Навеску воздушно-сухого образца хвойной сульфатной целлюлозы (СП=1240, содержание лигнина по Комарову - 3,5%) массой 5,14 г заливали 51,15 мл раствора TiCl1 в гексане с концентрацией 204,3 ммоль/дм3 (жидкостной модуль 10:1) и выдерживали при температуре кипения растворителя 60 мин. Продукт (в виде порошка) переносили на стеклянный фильтр, отжимали, промывали гексаном, инклюдировали этанолом и высушивали. Продукт деструкции - тонкодисперсный порошок бежевого цвета, отличается сыпучестью без дополнительного размола. Содержание в нем Ti (IV) составляет 71,5 мг/г, СПер.=160.

Пример 3. Навеску воздушно-сухого образца химико-термомеханической массы (ХТММ) с содержанием лигнина по Комарову 31,2%, массой 5,04 г заливали 101,15 мл раствора TiCl4 в гексане с концентрацией 102 ммоль/дм3 (жидкостной модуль 20:1) и выдерживали при температуре кипения 60 мин. Продукт (в виде порошка) переносили на стеклянный фильтр, отжимали, промывали гексаном и высушивали. Содержание в нем Ti (IV) составляет 86,67 мг/г, СП=70. Размер частиц не превышает 50 мкм.

Пример 4. Навеску воздушно-сухого образца термомеханической массы (ТММ) с содержанием лигнина по Комарову 31,9%, массой 5,00 г заливали 101,15 мл раствора TiCl4 в гексане с концентрацией 102 ммоль/дм3 (жидкостной модуль 20:1) и выдерживали при температуре кипения 60 мин. Продукт (в виде порошка) переносили на стеклянный фильтр, отжимали, промывали гексаном и высушивали. Содержание в нем Ti (IV) составляет 91,06 мг/г, СП=60. Размер частиц не превышает 50 мкм.

Пример 5. Навеску воздушно-сухого образца хвойной сульфатной целлюлозы (СП=1310, содержание лигнина по Комарову -5,7%) массой 3,38 г заливали 21,1 мл раствора TiCl4 в ацетоне с концентрацией 51,9 ммоль/дм3 (жидкостной модуль 6,2:1) и выдерживали при температуре кипения 300 мин. Продукт переносили на стеклянный фильтр, отжимали, промывали этанолом. Содержание в нем Ti (IV) составляет 3,65 мг/г, СП=250. Размер частиц около 200 мкм.

Пример 6. Навеску воздушно-сухого образца соломы ржи, обессмоленную этанолом (содержание лигнина по Комарову -19,4%) массой 5,15 г заливали 95,75 мл раствора TiCl4 в гексане с концентрацией 33,39 ммоль/дм3 (жидкостной модуль 18,6:1) и выдерживали при температуре кипения 30 мин. Продукт переносили на стеклянный фильтр, отжимали, промывали гексаном. Содержание в нем Ti (IV) составляет 32,2 мг/г, СП=280. Размер частиц не превышает 100 мкм.

Оценку реакционной способности титансодержащих порошковых целлюлозных материалов для применения их в качестве основы для синтеза разнообразных производных, представляющих интерес для исследовательских и коммерческих целей, проводили по результатам их сульфатирования и карбоксиметилирования. Предлагаемый способ позволяет получать из лигноцеллюлозных материалов титансодержащие порошковые целлюлозные материалы с повышенной химической реакционной способностью.

В таблице 2 приведена характеристика сульфат-производных, полученных в результате разного по продолжительности воздействия на целлюлозу раствора TiCl4 (с концентрацией 36,0 ммоль/дм3) в органических растворителях - С6Н14 и CCl4. В результате модифицирования титансодержащих целлюлозных материалов хлорсульфоновой кислотой химическая реакционная способность полученных из лиственной целлюлозы материалов при кратковременном воздействии TiCl4 (5 мин) превышает почти в два раза реакционную способность МКЦ, получаемой в соответствии с классическим (гидролитическим) способом в течение 120 мин (см. табл.2).

В таблице 3 приведены результаты карбоксиметилирования титансодержащих целлюлозных материалов на примере хвойной целлюлозы, которые свидетельствуют о повышении растворимости получаемого продукта с увеличением в нем содержания Ti(IV) после обработки по описываемому способу.

Таблица 1
Условия получения титансодержащих порошковых целлюлозных материалов
Объект исследования Конц. Ti (IV), ммоль/дм3 Использу
емый растворитель
τ, мин Температура Продукт деструкции
Вид исходного сырья, значение СП его целлюлозной составляющей Содержание лигнина (по Комарову),% обработки °С сушки °С СП Содержание Ti (IV), мг/г
Лиственная целлюлоза, СП 580 0,6 36,0 Гексан 5 69 22 230 6,50
52,3 Гексан 30 69 22 190 12,30
Хвойная целлюлоза, СП 850 0,9 33,3 Гексан 16 22 22 180 15,80
Хвойная целлюлоза, СП 1240 3,5 16,0 Гексан 5 69 100 290 9,40
Хвойная целлюлоза, СП 1310 5,7 18,0 Гексан 2 20 20 270 17,09
51,9 Ацетон 300 22 22 250 3,65
82,2 Тетра-хлорметан 30 22 22 150 52,50
ХТММ 31,2 33,3 Гексан 30 69 23 150 29,62
102,0 Гексан 60 69 23 70 86,67
ТММ 31,9 33,3 Гексан 30 69 23 170 29,09
102,0 Гексан 60 69 23 60 91,06
Солома ржи 19,4 33,3 Гексан 30 69 23 280 32,2
Газетная бумага, СП 800 22,9 36,0 Гексан 30 23 20 270 27,01
Таблица 2
Характеристика сульфат-производных порошковых титансодержащих целлюлозных материалов (на примере лиственной целлюлозы)
Способ получения ПЦ СП Степень замещения по сульфатным группам Выход, % Растворимость Na-СЦ(×103), г/100 гH2O
H2SO4 (120 мин) 240 0,95 87 4,9
TiCl4 в С6Н14 (5 мин) 350 1,53 71 2.4
TiCl4 в С6Н14 (15 мин) 280 1,57 78 Не раств.
TiCl4 в CCl4 (5 мин) 320 1,56 75 2,3
TiCl4 в CCl4 (15 мин) 220 1,76 83 Не раств.
Таблица 3
Получение карбоксиметилированных производных целлюлозы из титансодержащих целлюлозных материалов (на примере хвойной целлюлозы)
Условия обработки целлюлозы Растворимость продукта в воде, % Содержание Ti (IV) в образце после обработки, мг/г:
TiCl4 - С6Н14 Карбоксиметилирование
C(TiCl4), моль/дм3 t, °C t, мин Соотношение веществ (моль: моль) Целлюлоза:NaOH:CH2ClCOOH
TiCl4 CH2ClCOOH
3,6 23 30 1:2,3:1 36,7 3,5 1,0
18,1 76,4 17,0 2,2
36,2 97,4 33,0 6,2

Способ получения титансодержащих целлюлозных материалов, включающий деструкцию лигноцеллюлозных материалов в результате воздействия на них растворов кислот Льюиса, получаемых в результате взаимодействия TiCl4 и органического растворителя при перемешивании и с последующей отмывкой и сушкой целевого продукта, в качестве лигноцеллюлозного материала используют различные виды лигноцеллюлозного сырья, получаемого из древесных полуфабрикатов в процессе его переработки на целлюлозно-бумажных предприятиях; травянистого сырьевого материала, а именно соломы злаковых культур, а также из вторичного (макулатурного) сырья, процесс деструкции осуществляют при температуре 20-70°С при перемешивании в течение 2-300 мин в диапазоне концентраций раствора кислоты Льюиса 16-204 ммоль/дм3 в органическом растворителе.



 

Похожие патенты:
Изобретение относится к получению низковязкой натриевой соли карбоксиметилцеллюлозы, которую используют в качестве агента стабилизации буровых растворов в нефте- и газодобывающих производствах.

Изобретение относится к технологиям получения композиционных бактерицидных препаратов, обладающих бактерицидной и фунгицидной активностью. .

Изобретение относится к области получения порохов для стрелкового оружия и артиллерии. .

Изобретение относится к способу получения целлюлозы для химической и биотехнологической переработок из быстровозобновляемого сырья и может быть использовано в целлюлозно-бумажном производстве, химической, пищевой, парфюмерной, топливной промышленности, технологии получения простых и сложных эфиров целлюлозы, а также при производстве нитрата целлюлозы и продуктов на их основе.

Изобретение относится к области органической химии, фармакологии и медицины и касается способа получения сополимера натрийкарбоксиметилцеллюлозы и госсипола формулы (I) и его применения в комплексной терапии пациентов с аутистическими расстройствами и когнитивными нарушениями, где а:b:с=1:(3-6):(5-7), n=40-50; молекулярной массы 120000-130000.
Изобретение относится к области получения высокомолекулярных соединений и предназначено для получения целлюлозы, используемой в качестве сырья в химической промышленности, а также в текстильной, бумажной, строительной и других отраслях, и для получения карбоксиметилцеллюлозы, используемой в качестве стабилизатора растворов при бурении нефтяных и газовых скважин, в горно-химической промышленности, в качестве антиресорбентов в составе синтетических моющих средств, а также в других отраслях промышленности.
Изобретение относится к области получения высокомолекулярных соединений и предназначено для получения целлюлозы, используемой в качестве сырья в химической промышленности, а также в текстильной, бумажной, строительной и других отраслях, и для получения карбоксиметилцеллюлозы, используемой в качестве стабилизатора растворов при бурении нефтяных и газовых скважин, в горно-химической промышленности, в качестве антиресорбентов в составе синтетических моющих средств, а также в других отраслях промышленности.
Изобретение относится к области получения высокомолекулярных соединений и предназначено для получения целлюлозы, используемой в качестве сырья в химической промышленности, а также в текстильной, бумажной, строительной и других отраслях, и для получения карбоксиметилцеллюлозы, используемой в качестве стабилизатора растворов при бурении нефтяных и газовых скважин, в горно-химической промышленности, в качестве антиресорбентов в составе синтетических моющих средств, а также в других отраслях промышленности.
Изобретение относится к способу карбоксиметилирования торфа с получением карбоксиметиловых эфиров торфа для использования их в качестве гуминовых ростостимулирующих препаратов и поверхностно-активных веществ, в частности буровых и флотационных реагентов.

Изобретение относится к новым веществам для покрытий офсетных печатных форм и к покрывающему раствору офсетной печатной формы, содержащему указанные вещества. .

Изобретение относится к медикаментам для ограничения потребления калорий на основе полимерных гидрогелей. Предложен медикамент для ограничения потребления калорий у нуждающегося в этом пациента, включающий эффективное количество полимерного гидрогеля, приготовленного способом, включающим стадии получения водного раствора, включающего полисахарид и лимонную кислоту; и нагревания этого раствора для удаления воды и осуществления поперечной сшивки полисахарида лимонной кислотой с образованием полимерного гидрогеля. Предложены также варианты медикамента, в которых в качестве полисахарида используют карбоксиметилцеллюлозу. 4 н. и 33 з.п. ф-лы, 2 ил., 8 табл., 4 пр.

Изобретение относится к химической переработке целлюлозосодержащего сырья, в частности к способам получения гидрогеля нанокристаллической целлюлозы, и может быть использовано при производстве полифункциональных композиционных материалов, реологических модификаторов в буровых и цементных растворах, биоразлагаемых полимерных материалов, загустителей, регуляторов вязкости, стабилизаторов красок и эмульсий, в фармацевтической, медицинской, пищевой, парфюмерной и в других областях промышленности. Способ включает деполимеризацию исходного сырья обработкой кислотным гидролизом при повышенной температуре с одновременным его механическим диспергированием в водной среде, очисткой от остатков кислоты и последующей механической обработкой высоким усилием сдвига с образованием гидрогеля линейных частиц нанокристаллической целлюлозы (вискеров). Перед кислотным гидролизом целлюлозосодержащий компонент на основе небеленой и беленой технической целлюлозы доводят до влажности 20-85% и подвергают радиационной деструкции при дозе ионизирующего излучения 3-17 Мрад. Кислотный гидролиз осуществляют при следующем соотношении компонентов, масс.%: сырье 5-10, кислота 2-20, вода остальное, до жидкостного модуля 5-30 (м3/т). Изобретение обеспечивает получение гидрогеля нанокристаллической целлюлозы в виде одномерных наноструктур (вискеров) с длиной 700-900 нм и шириной 60-80 нм. Изобретение обеспечивает получение целевого продукта с низкими технологическими затратами. 5 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области фармакологии и медицины и касается конъюгата госсипола с натрийкарбоксиметилцеллюлозой с молекулярной массой 780-180000 Да при соотношении госсипол: натрийкарбоксиметилцеллюлоза (1-5):(99-95) масс.% и содержанием низкомолекулярной фракции с молекулярной массой от 780 Да до 1500 Да до 20% и высокомолекулярной фракции с молекулярной массой от 1500 Да до 180000 Да до 80%, конъюгата госсипола с натрийкарбоксиметилцеллюлозой с молекулярной массой от 780 до 1500 Да при соотношении госсипол: натрийкарбоксиметилцеллюлоза (0,35-1,76):(99,65-98,24) масс.%, конъюгата госсипола с натрийкарбоксиметилцеллюлозой с молекулярной массой от 1500 Да до 180000 Да при соотношении госсипол: натрийкарбоксиметилцеллюлоза (0,65-3,23):(99,35-96,77) масс.% и способов их получения. Кроме того, изобретение относится к противовирусным средствам на основе указанных конъюгатов и фармацевтическим композициям, содержащим конъюгаты. 12 н. и 9 з.п. ф-лы, 5 табл., 3 ил.

Изобретение относится к способу растворения целлюлозы и к целлюлозному продукту, полученному из раствора, содержащего растворенную целлюлозу. Способ включает: введение целлюлозосодержащего сырья, обработку целлюлозосодержащего сырья ферментами, смешивание целлюлозосодержащего сырья после ферментной обработки в воде для получения промежуточного продукта с концентрацией целлюлозосодержащего сырья не менее 3,5 масс.%, гидроксида щелочного металла от 3,5 до 7 масс.% и оксида цинка, замораживание промежуточного продукта до твердого состояния и его размораживание. Изобретение позволяет достичь хорошей растворимости целлюлозы. 2 н. и 7 з.п. ф-лы, 1 табл., 1 пр., 21 ил.
Изобретение относится к производству целлюлозы, в частности к способу удаления экстрактивных веществ при производстве целлюлозы. Способ включает получение варочного раствора добавлением мыльно-масляной смеси к варочному щелоку и нагревание целлюлозного материала в присутствии варочного раствора. При удалении экстрактивных веществ в присутствии мыльно-масляной смеси получают обессмоленную целлюлозу. Изобретение обеспечивает снижение затрат энергии на переработку отходов для повторного использования, снижается концентрация смол, а выпадение их в осадок миниминируется, снижается расход серной кислоты. 4 н. и 15 з.п. ф-лы, 1 табл., 2 пр.
Изобретение относится к способу получения микрофибриллярных целлюлозных волокон из растительного сырья различного происхождения и может быть использовано в пищевой и непищевой отраслях промышленности. Способ включает фракционирование растительного сырья, запаривание фракции, кислотный гидролиз, первый и второй щелочные гидролизы и отбелку. Процесс отличается щадящими условиями обработки сырья с сохранением однородности структуры конечного вещества, не требует высокого уровня энергозатрат и других затрат на производство. 2 з.п. ф-лы.
Изобретение относится к способу получения микрофибриллярных целлюлозных волокон из растительного сырья различного происхождения и может быть использовано в пищевой и непищевой отраслях промышленности. Способ включает фракционирование растительного сырья, запаривание фракции, кислотный гидролиз, первый и второй щелочные гидролизы и отбелку. Процесс отличается щадящими условиями обработки сырья с сохранением однородности структуры конечного вещества, не требует высокого уровня энергозатрат и других затрат на производство. 2 з.п. ф-лы.
Изобретение относится к способу получения наноцеллюлозы, в частности нанофибриллярных целлюлозных волокон из растительного сырья различного происхождения, и может быть использовано в непищевых отраслях промышленности. Способ включает фракционирование растительного сырья, запаривание фракции с трехкратной отмывкой, первый кислотный гидролиз с трехкратной отмывкой, щелочной гидролиз с трехкратной отмывкой, второй кислотный гидролиз с трехкратной отмывкой, первую отбелку с трехкратной отмывкой; вторую отбелку с четырехкратной отмывкой. Возможна дополнительная стадия гомогенизации. Способ по изобретению не требует использования дорогостоящего оборудования, не предполагает использования высокотоксичных реагентов, включает несложные технологические операции, отличается масштабируемостью производства. 1 з.п. ф-лы.
Изобретение относится к способу получения наноцеллюлозы, в частности нанофибриллярных целлюлозных волокон из растительного сырья различного происхождения, и может быть использовано в непищевых отраслях промышленности. Способ включает фракционирование растительного сырья, запаривание фракции с трехкратной отмывкой, первый кислотный гидролиз с трехкратной отмывкой, щелочной гидролиз с трехкратной отмывкой, второй кислотный гидролиз с трехкратной отмывкой, первую отбелку с трехкратной отмывкой; вторую отбелку с четырехкратной отмывкой. Возможна дополнительная стадия гомогенизации. Способ по изобретению не требует использования дорогостоящего оборудования, не предполагает использования высокотоксичных реагентов, включает несложные технологические операции, отличается масштабируемостью производства. 1 з.п. ф-лы.
Высокотемпературный способ отделения лигнина применяется при конверсии целлюлозы и сахаров из биомассы в другие органические соединения. Способ отделения лигнина от водной смеси, имеющей значение pH больше 3,5, включает стадии: a) нагревания смеси до температуры больше, чем критическая температура, в диапазоне от 45оС до 98оС, b) отделения твердого вещества лигнина от смеси при температуре отделения, которая равна критической температуре или превышает ее. Смесь получают из исходного сырья на основе биомассы, а стадии нагревания смеси предшествует стадия обработки водяным паром, проводимая для исходного сырья на основе биомассы. Обеспечивается эффективное отделение лигнина от водной смеси, полученной в ходе способа конверсии биомассы в спирт. 11 з.п. ф-лы, 5 табл.
Наверх