Способ для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам. Технический результат заключается в повышении различительной способности определения трещин. 16 з.п. ф-лы, 3 ил.

 

Изобретение относится к способу для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала.

При многочисленных испытаниях материалов требуются неразрушающие методы. Например, поверхности деталей из металла часто подвергаются воздействию окружающей среды, которая обуславливает коррозию, окисление, диффузию и другие процессы старения. Механические напряжения также вызывают трещины на поверхности детали.

Это относится, в частности, к рабочим и направляющим лопаткам газовой турбины, которые из-за механических и термических нагрузок особенно подвержены трещинообразованию на своей поверхности. Чтобы иметь возможность с регулярными интервалами проверять текущее состояние таких турбин, требуются неразрушающие методы контроля.

С применением принципа вихревых токов могут реализовываться подходящие методы неразрушающего контроля. При этом на испытываемый объект воздействует электромагнитное переменное поле с регулируемой частотой. За счет этого в испытываемом объекте индуцируются вихревые токи. Созданное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется. При этом может определяться амплитуда и фазовое положение индуцированного напряжения.

Чтобы иметь возможность определять наличие трещин в поверхности детали, может применяться способ вихревых токов. Также глубина трещин может в принципе определяться способом вихревых токов. Однако не известно, каким образом можно проводить различие между простыми трещинами и несколькими очень близко расположенными соседними трещинами.

Задачей изобретения является создание улучшенного способа для определения и оценки одной или более индикаций вихревых токов, в особенности трещин, в электропроводной детали, который обеспечивает возможность надежного различения между отдельной трещиной и несколькими соседними трещинами.

Эта задача решается совокупностью признаков пункта 1 формулы изобретения.

Соответствующий изобретению способ для определения и оценки индикаций вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала включает в себя следующие этапы:

- нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой,

- определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке поверхности испытываемого объекта,

- обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути,

- преобразование сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты и положения вдоль измерительного пути,

- интерпретация преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и

- предоставление синтезированных сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.

Идея изобретения состоит в том, что поверхность или участок поверхности испытываемого объекта сканируется вдоль параллельных измерительных путей. Тем самым осуществляется эффективное сканирование поверхности или участка поверхности испытываемого объекта. При этом определяются индуцированные в испытываемом объекте вихревые токи. Полученные измеренные данные связываются с измеренными данными соседних измерительных путей. Таким способом можно полученные измеренные данные измерительного пути корректировать с учетом измеренных данных соседних измерительных путей. Также можно многозначные измеренные данные одного измерительного пути однозначно интерпретировать с учетом измеренных данных соседних измерительных путей.

Предпочтительным образом определяется напряжение, индуцированное вихревыми токами. При этом может определяться амплитуда и фаза напряжения, индуцированного вихревыми токами. Трещины в испытываемом объекте приводят к локально измененным электрическим свойствам, например, меньшей электропроводности, чем у испытываемого объекта. Таким путем оказывается воздействие на индуцированное напряжение, и обнаруживаются трещины.

Интерпретация преобразованных измеренных величин осуществляется предпочтительно на основе предварительно определенного алгоритма оценки.

Например, алгоритм оценки базируется на эмпирически определенном наборе правил. Для этого, в частности, можно проводить опорные измерения на образцах испытываемого объекта с известными свойствами и отсюда устанавливать калибровочные функции.

В качестве альтернативы или дополнительно алгоритм оценки может базироваться на самообучающемся способе, в частности, с применением нейронной сети.

С точки зрения техники измерений, для определения вихревых токов применяется многоканальный датчик, причем каждый канал ставится в соответствие измерительному пути. С помощью многоканального датчика возможно множество измерений одновременно.

В особенности, параллельные измерительные пути могут сканироваться одновременно.

В качестве альтернативы этому, для определения вихревых токов может применяться одиночный датчик, причем параллельные измерительные пути сканируются последовательно друг за другом.

Например, испытываемый объект нагружается электромагнитным переменным полем с несколькими дискретными частотами. Так как определенные свойства электрического переменного поля зависят от частоты, можно тем самым получить дополнительную информацию об испытываемом объекте.

Также испытываемый объект может нагружаться электромагнитным переменным полем с непрерывным частотным спектром. Также частотный спектр имеет характеристическую структуру и позволяет сделать выводы относительно физических свойств испытываемого объекта.

Главным образом, применяются синтезированные сигналы трещин для определения геометрических свойств одной или более трещин.

В частности, предусмотрено, что синтезированные сигналы трещин применяются для определения глубины одной или нескольких трещин. Глубина трещин во многих случаях является решающей для принятия решения, следует ли испытываемый объект заменять или ремонтировать.

Кроме того, сигналы вихревых токов могут применяться для определения электрической проводимости. Также из электрической проводимости можно получить косвенные информации о геометрической структуре трещин.

В предпочтительной форме выполнения изобретения применяются механические направляющие средства, чтобы установить движение датчика вихревых токов вдоль измерительной дорожки на участке поверхности испытываемого объекта. За счет этого, способ является воспроизводимым. В частности, при применении одиночного датчика механическая направляющая является предпочтительной для обеспечения определенных интервалов путей. Могут проводиться опорные измерения, чтобы, например, определять алгоритм оценки или калибровочные кривые.

Для этого предпочтительным образом механические направляющие средства были согласованы или согласовываются с геометрической формой испытываемого объекта.

В частности, предусмотрен способ для определения и оценки трещин на и/или в зоне поверхности испытываемого объекта. Поверхность испытываемого объекта в процессе работы особенно подвергается действию механических и химических нагрузок.

Наконец, предусмотрено, что способ для определения и оценки трещин может использоваться под поверхностью испытываемого объекта в зоне измерений электромагнитного переменного поля. Также трещины под поверхностью испытываемого объекта оказывают влияние на его электрические свойства и, тем самым, вихревые токи.

Другие признаки, преимущества и особые формы выполнения изобретения раскрыты в подчиненных пунктах.

В последующем описании чертежей способ, соответствующий изобретению, более подробно описан на примере предпочтительных форм выполнения и со ссылками на чертежи, на которых показано:

Фиг.1 - схематичный вид определения и оценки сигналов вихревых токов согласно предпочтительной форме выполнения способа, соответствующего изобретению,

Фиг.2 - схематичное примерное графическое представление преобразованных измеренных сигналов после преобразования сигнала согласно предпочтительной форме выполнения способа, соответствующего изобретению, перед применением алгоритма оценивания, и

Фиг.3 - схематичное примерное графическое представление синтезированных сигналов трещин после логического связывания согласно предпочтительной форме выполнения способа, соответствующего изобретению, после применения алгоритма оценивания.

На фиг.1 показан схематичный вид определения и оценки сигналов х1, х2, х3, х4 и х5 вихревых токов на участке 10 поверхности испытываемого объекта согласно предпочтительной форме выполнения способа, соответствующего изобретению. Сканирование участка 10 поверхности испытываемого объекта осуществляется с помощью датчика 12 вихревых токов.

Испытываемый объект подвергается действию электромагнитного переменного поля с регулируемой частотой f. Может быть предусмотрена одна или несколько определенных частот f. Также может применяться непрерывный частотный спектр с предварительно определенными граничными частотами. Посредством электромагнитного переменного поля в испытываемом объекте индуцируются вихревые токи. Выработанное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется датчиком 12 вихревых токов.

Датчик 12 вихревых токов может быть выполнен как одноканальный датчик или как многоканальный датчик. В этой конкретной форме выполнения датчик 12 вихревых токов выполнен как многоканальный датчик и включает в себя пять каналов cn, cn+1, cn+2, cn+3 и cn+4. За счет перемещения датчика 12 вихревых токов вдоль направления перемещения каждому отдельному датчику ставится в соответствие измерительный путь. Измерительные пути являются параллельными друг другу на участке 10 поверхности. Также каждый из каналов cn, cn+1, cn+2, cn+3 и cn+4 соответствует измерительному пути.

При альтернативном применении одноканального датчика, с помощью одного и того же датчика сканируются друг за другом параллельно проходящие измерительные пути на участке 10 поверхности.

Сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и

cn+4 обрабатываются в блоке преобразования 14 сигналов и затем обрабатываются в блоке логического связывания 16.

Прежде всего, сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и cn+4 подвергаются обработке 14 сигналов. При обработке 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются преобразованные измеренные величины u1, u2, u3, u4 и u5. Преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями каналов cn, cn+1, cn+2, cn+3 и cn+4 частоты f и измерительной позиции s. Измерительная позиция s определяет точку на соответствующем измерительном пути.

Обработка 14 сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 и для каждой частоты f.

В последующем блоке логического связывания 16 преобразованные измеренные величины u1, u2, u3, u4 и u5 интерпретируются по предварительно определенным критериям.

При этом для каждой измерительной позиции s значение одной или более выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 сравнивается с соответствующими величинами соседних позиций. Помимо этого, значение выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 может сравниваться с соответствующими величинами соседних позиций для различных частот f.

Путем применения алгоритма оценивания на основе эмпирически определенного набора правил или посредством самообучающегося набора при этом вырабатываются синтезированные сигналы v1, v2, v3, v4 и v5 трещин. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин скорректированы в соответствии с исследуемым путем cn и амплитудой. Скорректированные таким образом сигналы v1, v2, v3, v4 и v5 трещин улучшают вывод относительно положения и числа трещин и могут применяться для определения глубины трещины.

Посредством сканирования участка 10 поверхности испытываемого объекта вырабатывается линейное представление или плоскостное представление сигналов х1, х2, х3, х4 и х5 вихревых токов. Сигналы х1, х2, х3, х4 и х5 вихревых токов являются, таким образом, функцией позиции s вдоль измерительного пути или позиции на участке 10 поверхности.

Предусмотрено механическое направляющее устройство, чтобы датчик 12 вихревых токов перемещать вдоль предварительно определенного измерительного пути воспроизводимым образом.

Применение нескольких частот f обеспечивает дополнительную информацию о свойствах трещины, так как многие электромагнитные параметры зависят от частоты. Испытываемый объект может одновременно или последовательно нагружаться различными частотами f.

На фиг.2 схематично показано примерное графическое представление преобразованных измеренных величин u1, u2, u3, u4 и u5 после преобразования 12 сигналов и перед логическим связыванием 16, согласно предпочтительному варианту осуществления соответствующего изобретению способа. Преобразованные измеренные величины u1, u2, u3, u4 и u5 получаются из соответствующих сигналов х1, х2, х3, х4 и х5 вихревых токов.

Преобразование 14 сигналов для сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и

cn+4 и для каждой частоты f отдельно. При преобразовании 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются соответствующие преобразованные измеренные величины u1, u2, u3, u4 и u5. Получаемые в результате преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями канала cn, cn+1, cn+2, cn+3 и cn+4, частоты f и измерительной позиции s.

На фиг.3 показано схематичное примерное графическое представление синтезированных сигналов v1, v2, v3, v4 и v5 трещин после логического связывания 16 согласно предпочтительной форме выполнения способа, соответствующего изобретению. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин получаются из преобразованных измеренных величин u1, u2, u3, u4 и u5. При определении синтезированного сигнала v3 трещины применяется соответствующая преобразованная измеренная величина u3 и, по меньшей мере, также соседние преобразованные измеренные величины u2 и u4. Оценивание соседних преобразованных измеренных величин u1 и u5 приводит к результату одиночного сигнала, позиционированного между каналами.

Соответствующий изобретению способ является особенно эффективным методом для того, чтобы как установить, так и оценить трещины на поверхности испытываемого объекта. Помимо этого, могут определяться дополнительные геометрические свойства трещин за счет того, что устанавливается, имеет ли место единственная трещина, или две или более рядом расположенных трещин.

1. Способ для определения и оценки вихретоковых показателей, в частности трещин, в испытываемом объекте из электропроводного материала, причем способ содержит следующие этапы: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей (cn, cn+1, cn+2, cn+3, cn+4) на участке (10) поверхности испытываемого объекта, обеспечение сигналов (x1, x2, x3, x4, x5) вихревых токов, причем каждый сигнал (x1, x2, x3, x4, x5) вихревых токов соответствует измерительному пути (cn, cn+1, cn+2, cn+3, cn+4), преобразование (14) сигналов (x1, x2, x3, x4, x5) вихревых токов и предоставление преобразованных измеренных величин (u1, u2, u3, u4, u5) как функции измерительного пути (cn, cn+1, cn+2, cn+3, cn+4), частоты (f) и позиции (s) вдоль измерительного пути (cn, cn+1, cn+2, cn+3, cn+4), интерпретация (16) преобразованных измеренных величин (u1, u2, u3, u4, u5) с применением преобразованных измеренных величин (u1, u2, u3, u4, u5), по меньшей мере, одного соседнего измерительного пути (cn, cn+1, cn+2, cn+3, cn+4) и предоставление синтезированных сигналов (v1, v2, v3, v4, v5) трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам (u1, u2, u3, u4, u5).

2. Способ по п.1, отличающийся тем, что определяется амплитуда и фаза напряжения, индуцированного вихревыми токами.

3. Способ по п.1, отличающийся тем, что интерпретация (16) преобразованных измеренных величин (u1, u2, u3, u4, u5) осуществляется на основе предварительно определенного алгоритма оценки.

4. Способ по п.3, отличающийся тем, что алгоритм оценки базируется на эмпирически определенном наборе правил.

5. Способ по п.3 или 4, отличающийся тем, что алгоритм оценки базируется на самообучающемся способе, в частности, с применением нейронной сети.

6. Способ по п.1, отличающийся тем, что для определения вихревых токов применяется многоканальный датчик (12), причем каждый канал ставится в соответствие измерительному пути (cn, cn+1, cn+2, cn+3, cn+4).

7. Способ по п.6, отличающийся тем, что параллельные измерительные пути (cn, cn+1, cn+2, cn+3, cn+4) сканируются одновременно.

8. Способ по п.1 или 2, отличающийся тем, что для определения вихревых токов применяется одиночный датчик, причем параллельные измерительные пути (cn, cn+1, cn+2, cn+3, cn+4) сканируются последовательно друг за другом.

9. Способ по п.1 или 2, отличающийся тем, что испытываемый объект нагружается электромагнитным переменным полем с несколькими дискретными частотами (f).

10. Способ по п.1 или 2, отличающийся тем, что испытываемый объект нагружается электромагнитным переменным полем с непрерывным частотным спектром.

11. Способ по п.1 или 3, отличающийся тем, что применяются синтезированные сигналы (v1, v2, v3, v4,v5) трещин для определения геометрических свойств одной или более трещин.

12. Способ по п.1 или 3, отличающийся тем, что синтезированные сигналы (v1, v2, v3, v4,v5) трещин применяются для определения глубины одной или нескольких трещин.

13. Способ по п.1, или 3, или 6, отличающийся тем, что сигналы (x1, x2, x3, x4, x5) вихревых токов применяются для определения электрической проводимости.

14. Способ по п.6, отличающийся тем, что применяются механические направляющие средства, чтобы установить движение датчика (12) вихревых токов вдоль измерительного пути на участке (10) поверхности испытываемого объекта.

15. Способ по п.14, отличающийся тем, что механические направляющие средства были согласованы или согласовываются с геометрической формой испытываемого объекта.

16. Способ по п.1, или 3, или 6, отличающийся тем, что способ предусмотрен для определения и оценки трещин на и/или в зоне поверхности испытываемого объекта.

17. Способ по п.1, или 3, или 6, отличающийся тем, что способ предусмотрен для определения и оценки трещин под поверхностью испытываемого объекта.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р.

Изобретение относится к неразрушающему контролю методом вихревых токов и может быть использовано для дефектоскопии и контроля электрических, магнитных и геометрических свойств объектов из электропроводящих материалов.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано в промышленности для контроля осевого смещения и поперечного биения валов. .

Изобретение относится к определению реперов интересующих точек в зоне (10, 20) поверхности детали (100), включающему в себя установление плотного контакта в упомянутой зоне поверхностного контрольного образца (11, 21), представляющим собой тонкий и достаточно эластичный слой, чтобы соответствовать форме зоны; при этом тонкий слой содержит трассы электропроводящего материала; при этом при проходе зонда (30) с токами Фуко по трассе подается значащий и характерный сигнал трассы; при этом данный характерный сигнал соответствует реперу интересующей точки, определяемым таким образом в упомянутой зоне.

Изобретение относится к неразрушающему контролю и может быть использовано при диагностике трубопроводов из ферромагнитных материалов. .

Изобретение относится к магнитографической дефектоскопии. .

Изобретение относится к средствам неразрушающего контроля продольно-протяженных изделий типа проволоки, прутков или труб. .

Изобретение относится к неразрушающему контролю и может быть использовано для контроля отверстия, не являющегося прямолинейным и/или имеющего сечение, не являющееся круглым, в частности отверстия в диске ротора газотурбинного двигателя.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб. Способ заключается в излучении зондирующих импульсов с помощью генераторного соленоида, расположенного внутри исследуемых труб, ось которого совпадает с осью исследуемых труб, и измерении ЭДС, наведенной в приемных катушках процессом спада электромагнитного поля. При этом измеряют магнитный поток, вызванный зондирующими импульсами генераторного соленоида, с помощью датчиков, расположенных по периметру прибора на расстоянии r от оси зонда, напротив торца генераторного соленоида, по N секторам, в радиальном направлении. Технический результат заключается в расширении области применения и повышении качества дефектоскопии труб. 10 ил.

Настоящее изобретение относится к датчику (6) для мониторинга с помощью вихревых токов поверхности круговой канавки (2), сформированной в диске (1) турбореактивного двигателя. Датчик содержит стержень (7), прикрепленный к опоре (8), и первый многоэлементный сенсор (9), ограниченный для движения вместе со стержнем (7) и предназначенный для вставки в круговую канавку (2), для осуществления проверки, и второй многоэлементный сенсор (9). Два многоэлементных сенсора (9) располагаются задними сторонами друг к другу, и стержень (7) датчика (6) устанавливается с возможностью поворота вокруг своей оси, чтобы позволить вставку двух многоэлементных сенсоров (9) в канавку (2). Также предложен способ проверки, осуществляемый с помощью описанного выше датчика. Изобретение обеспечивает повышение точности измерений. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах. Способ электромагнитной дефектоскопии в многоколонных скважинах включает измерение ЭДС самоиндукции, наведенной в катушке вихревыми токами, возбуждаемыми в исследуемых металлических барьерах процессом спада электромагнитного поля, вызванного импульсами тока намагничивания катушки. На каждую из приемно-генераторных катушек в отдельности подают серию импульсов фиксированной длительности из диапазона 0,1-1000 мс, намагничивая последовательно все металлические барьеры, начиная с ближайшего, причем длительность импульсов возрастает для каждого последующего металлического барьера. Полученные данные сохраняют и обрабатывают путем сравнения с модельными данными, по результатам обработки судят о наличии дефекта в металлических барьерах. Электромагнитный скважинный дефектоскоп содержит корпус, катушки, расположенные вдоль оси устройства, магнитная ось которых совпадает с осью устройства, блок электроники, по меньшей мере, две приемно-генераторных катушки, каждая из которых состоит из генераторной и приемной катушек с единым сердечником. Причем приемно-генераторные катушки выполнены разного размера, разнесены друг от друга на оси устройства на расстояние не меньше длины большей приемно-генераторной катушки. 2 н. и 36 з.п. ф-лы, 7 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей. Способ контроля качества неразъемных соединений заключается в том, что первоначально на минимальном удалении от бездефектного участка неразъемного соединения размещают устройство нагрева и вихретоковый преобразователь. Включают нагрев и фиксируют показания вихретокового преобразователя. Затем переставляют устройство нагрева и вихретоковый преобразователь на контролируемый участок неразъемного соединения. Положения нагревательного устройства и вихретокового преобразователя относительно паяного соединения должны быть идентичны их положениям относительно бездефектного участка. Включают нагрев и фиксируют показания вихретокового преобразователя. После чего производят сравнение показаний вихретокового преобразователя, полученных на бездефектном участке и на контролируемом участке, и по разности показателей судят о качестве неразъемного соединения. Технический результат - повышение точности диагностирования качества паяных соединений изделий. 1 ил.

Использование: для диагностики устройств контроля схода подвижного состава (УКСПС). Сущность изобретения заключается в том, что контроль производят методом магнитной памяти металла (МПМ) и вихретоковым методом (ВТМ), о непригодности элементов судят при обнаружении дефектов в элементе одним из методов, при этом дефектом при контроле методом МПМ является наличие локальных зон с измененной структурой материала, имеющих высокие механические напряжения, градиент напряженности собственных магнитных полей рассеяния которых не превышает эталонное значение 5*104 А/м2 на разрушаемых элементах цилиндрической формы, а на элементах плоской формы - 13*104 А/м2, а дефектом при контроле ВТМ является наличие микротрещин в разрушаемом элементе с раскрытием более 0,05 мм. Технический результат: повышение надежности выявления дефектных контрольных элементов УКСПС, имеющих различную геометрическую форму, находящихся в процессе эксплуатации. 1 з.п. ф-лы, 5 ил.

Использование: для дефектоскопии технологических трубопроводов. Сущность изобретения заключается в том, что комплекс дефектоскопии технологических трубопроводов состоит из: подвижного модуля, бортовой электронной аппаратуры, бортового компьютера; датчиков дефектов; одометров; троса; наземной лебедки с барабаном для троса; бортового источника электропитания; наземного компьютера; при этом в него ведены: первый и второй направляющие конусы, несколько опорно-ходовых манжет, несколько групп ходовых пружинных узлов (ХПУ), несколько групп прижимных пружинных узлов (ППУ), несколько групп ультразвуковых датчиков системы неразрушающего контроля (УДСНК), несколько групп толкателей, несколько ультразвуковых эхолокаторов, несколько контроллеров управления прижимными пружинными узлами, несколько контроллеров управления ходовыми пружинными узлами, первый радиомодем, второй радиомодем, несколько контроллеров управления ультразвуковыми датчиками системы неразрушающего контроля (КУУДСНК). Технический результат: обеспечение возможности создания простого с точки зрения механики комплекса для внутритрубного контроля состояния технологических трубопроводов произвольной ориентации, открытых с одного конца, а также контроля труб-отводов произвольной пространственной ориентации при удаленном расположении отвода от открытого конца основного трубы. 7 ил.

Использование: для обнаружения трещин на деталях вращения. Сущность изобретения заключается в том, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом деталь вращают, а вихретоковый преобразователь скользит по поверхности детали в окружном направлении, получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля. Технический результат: возможность обнаружения определенной минимально-выявляемой величины трещины на начальном этапе ее появления, а также снижение времени, затрачиваемого на осуществление способа. 6 ил.

Использование: для неразрушающего контроля изделий посредством вихревых токов. Сущность изобретения заключается в том, что установка для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов содержит катушку возбуждения (14), на которую может подаваться сигнал (SE) возбуждения для воздействия на проверяемое изделие (16) переменным электромагнитным полем, аналого-цифровой преобразователь (21), фильтрующее устройство (22), вход которого соединен с аналого-цифровым преобразователем (21) и которое выполнено с возможностью осуществления полосовой фильтрации, демодулятор (27), вход которого соединен с выходом указанного фильтрующего устройства (22), приемную катушку (17), предназначенную для формирования сигнала (SP) катушки, зависящего от дефекта в проверяемом изделии (16), причем вход аналого-цифрового преобразователя (21) соединен с приемной катушкой (17), причем фильтрующее устройство (22) выполнено с возможностью уменьшения частоты сканирования. Технический результат: повышение точности определения дефектов в проверяемом изделии. 2 н. и 13 з.п. ф-лы, 10 ил.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним. Устройство может быть использовано для измерения толщины трубы и содержит излучающую рамку и множество симметрично расположенных приемных устройств по противоположным сторонам излучающей рамки, схему для возбуждения излучающей рамки, схему для приема сигнала от каждого приемного устройства и для обработки указанного сигнала с исключением двойной индикации дефектов. Сигнал является свернутым сигналом, пропорциональным толщине трубы вблизи каждого из приемных устройств. Множество симметрично расположенных приемных устройств представляют собой две пары рамок. Каждая пара расположена по каждую сторону излучающей рамки на расстоянии L1=k1×dz и L2=k2×dz, где k1 и k2 не имеют общего делителя и dz является длиной шага вдоль продольной оси установки. Удаление ложных дефектов из измерений содержит определение линейной комбинации сигналов множества симметрично размещенных приемных рамок. Технический результат: возможность удаления ложных артефактов. 2 н. и 7 з.п. ф-лы, 8 ил., 1 табл.

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики. Способ электромагнитного контроля полой детали типа лопатки 1 газотурбинного двигателя заключается в том, что на поверхность лопатки устанавливают электромагнитный преобразователь 2, заполняют внутренние полости 7 лопатки 1 средой 9, содержащей равномерно распределенные ферромагнитные частицы, например магнитной жидкостью, перемещают электромагнитный преобразователь 2 по поверхности лопатки 1, регистрируют с помощью электронного блока 3 изменяющиеся в процессе перемещения выходные сигналы электромагнитного преобразователя 2 и по ним судят о наличии дефектов со стороны внутренней поверхности полостей 7 и о толщине оболочки. 5 з.п. ф-лы, 5 ил.
Наверх