Способ изготовления термостабильных редкоземельных магнитов



Владельцы патента RU 2493628:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (RU)
Общество с ограниченной ответственностью "Научно-производственный комплекс "Магниты и магнитные системы" (RU)

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают предварительному прессованию и спеканию при температуре на 30-100 К ниже температуры спекания с последующим помолом полученной заготовки совместно с 0.5-2.0 мас.% гидрида редкоземельного металла. После чего проводят прессование в магнитном поле, спекание прессовок и термическую обработку. Полученные магниты обладают высокими магнитными свойствами и обеспечиваеют повышение точности и стабильности работы навигационного оборудования и систем авиационной автоматики. 5 табл., 1 пр.

 

Изобретение относится к области электротехники, в частности к изготовлению термостабильных редкоземельных постоянных магнитов для использования в системах автоматики, промышленном оборудовании, автомобилях, ветряных генераторах, и т.д.

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 1175К, 7.2 кс (килосекунд), с последующим медленным охлаждением со скоростью (1-2) К/мин до температуры 775К, выдержку при этой температуре в течение 1 часа с последующей закалкой (Глебов В.А., Лукин А.А. Нанокристаллические редкоземельные магнитотвердые материалы. М. ФГУП ВНИИНМ. 2007. С.179). Недостатком данного способа является невысокий уровень достигаемых свойств магнитов, в частности, магнитной индукции.

Известен также способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением путем гидридного диспергирования, прессования полученного порошка в магнитном поле, спекания и термическую обработку (Патент РФ 1457277, B22F 1/00, 3/02, 3/12, H01F 1/08. 04.06.86). Недостатком данного способа также являются невысокие свойства получаемых магнитов.

Наиболее близким по технической сущности является способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле 10 кЭ, спекание в вакуумной печи (Патент РФ 2368969). Недостатком способа является тот факт, что при заданном обратимом температурном коэффициенте магнитной индукции достигаются относительно невысокие магнитные свойства магнита.

Технической задачей изобретения является увеличение магнитных свойств магнитов, а именно индукции Br и коэрцитивной силы по намагниченности jHc при сохранении обратимого температурного коэффициенте магнитной индукции (ТКИ), что определяет повышенную термовременную стабильность магнитов.

Технический результат достигается за счет того, что в отличие от известного способа изготовления термостабильных редкоземельных магнитов, включающем операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термической обработки, согласно изобретению, перед операцией прессования порошка в магнитном поле, дополнительно вводят последовательные операции предварительного прессования, предспекания при температуре на 30-100К ниже температуры спекания и последующего помола заготовки после предспекания совместно с гидридом редкоземельного металла или редкоземельных металлов, который добавляется в количестве 0.5-2 масс.% от общей массы сплава.

Установлено, что магниты, полученные по предложенному способу, содержат менее 1 об.% балластных магнитомягких фаз типа RM2, RM3, RM4B (где R - редкоземельный металл) в отличие от магнитов, полученных по методу-прототипу, в которых содержание магнитомягких фаз достигает 2-4 об.%. Снижение содержания балластных магнитотвердых фаз позволяет реализовать более высокие магнитные свойства, такие как магнитная индукция Вr и коэрцитивная сила по намагниченности jHc при сохранении температурного коэффициента магнитной индукции, обусловливающего повышенную температурную стабильность магнитов.

Примеры реализации способа.

Базовые сплавы получают из исходных компонентов (РЗМ, Fe, Co, Al, Ga, Re, Cu, Al В, Sc, W, Sn, V, Si) или их лигатур путем плавления в вакуумной индукционной печи в среде инертного газа (особочистого аргона) с последующей закалкой в водоохлаждаемую изложницу. Контроль химического состава осуществляют с помощью атомно-эмиссионной спектроскопии. Тидридное диспергирование слитков и редкоземельных металлов Nd, Pr, Tb, Dy или их сплавов осуществляют в протоке сухого водорода при (375-475) К в течение 3.6-10 кс (килосекунд) с последующей пассивацией в среде газообразного азота. После охлаждения до комнатной температуры полученные порошки базового сплава подвергают тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 2.4 кс до среднего размера частиц 3-4 мкм. После прессования и предварительного спекания в интервале температур T1=1220-1340K (7.2 кс) образцы повторно подвергают гидридному диспергированию, смешивают с порошком гидрида РЗМ (на 100 массовых долей сплава приходилось до 3 масс.% гидрида РЗМ) и подвергают совместному тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 2.4 кс до среднего размера частиц 3-4 мкм. После повторного прессования в магнитном поле и окончательного спекания при Т2=1340К (7.2 кс) с последующей обработкой по режиму: 1175К (7.2 кс) охлаждение со скоростью (0.01-0.03) К/с+675К (10-16 кс)+775К (7.2 кс)+закалка. После механической шлифовки алмазным инструментом и намагничивания до насыщения измеряют магнитные свойства образцов при комнатной температуре на гистериографе в замкнутой магнитной цепи в полях до 3 Тл. После магнитных измерений для проведения структурных исследований образцы термически размагничивают в вакууме при 775К, для восстановления исходного состояния. Микроструктуру исследуют с помощью оптической и растровой электронной микроскопии. Используют также локальный рентгеновский анализа.

В таблицах 1-2 приведены данные по магнитным свойствам для образцов девяти составов базового сплава, полученных по предложенному способу (T1=1290K, Т2=1340К, ΔТ=T2-T1=50K, гидрид РЗМ - 1.0 масс.% NdH2) и по способу-прототипу (Т2=1340К, ΔТ=0.0К, гидрид РЗМ - 0 масс.% NdH2).

Как видно из таблиц 1 и 2, магнитные свойства образцов, полученных по предложенному способу существенно выше, чем полученных в соответствии с прототипом. При использовании химических составов при реализации способа по прототипу, которые соответствовали результирующему составу (базовый сплав+гидридная добавка) по предложенному способу, магнитные свойства изменялись незначительно.

Таблица 1
Химические составы базовых сплавов
№ образца Химический состав, ат.%
1 (Nd0.2Pr0.2Dy0.5Tb0.1)14.5(Fe0.8Co0,2)ост.Cu0.1Al0.2Re0.1F0.05B7
2 (Nd0.2Pr0.2Dy0.4Tb0.15Hd0.05)15(Fe0.8Co0,24)ост.Cu0.1Al0.2Sc0.04B7.5
3 (Dd0.4Dy0.3Tb0.2Gd0.10)15(Fe0.8Co0,27)ост.Cu0.1Al0.2Re0.1B8
4 (Nd0.15Pr0.25Dy0.4Tb0.2)14(Fe0.8Co0,2)ост.Cu0.1Al0.2W0.1B8
5 (Nd0.2Pr0.2Dy0.2Tb0.2Ho0.1)14.5(Fe0.8Co0,24)ост.Cu0.1Al0.1Sn0.1B8
6 (Dd0.4Dy0.3Tb0.15Ho0.15)15(Fe0.8Co0,27)ост.Cu0.1Al0.1Ga0.05B8
7 (Dd0.4Dy0.4Tb0.2)15(Fe0.8Co0,2)ост.Cu0.1Al0.2V0.1B8
8 (Nd0.75La0.05Tb0.2)15(Fe0.8Co0.2)ост.Cu0.1Al0.1Si0,1B8.5
9 (Nd0.8Tb0.2)15(Fe0.8Co0.2)ост.Cu0.1Al0.2B8.5
Таблица 2
Сравнительные магнитные свойства магнитов, полученных по способу-прототипу (Т2=1340К, ΔТ=0К, гидрид РЗМ - 0 масс.% NdH2) и по предложенному способу (T1=1290K, T2=1340К, ΔТ=Т21=50К, гидрид РЗМ - 1 масс.% NdH2)
№ образца Предложение Прототип
Br, Тл jHc, кА/м ТКИ, %/К Br, Тл jHC, кА/м ТКИ, %/К
1 1.06 1680 -0.02 1.0 1360 -0.02
2 1.06 1690 -0.02 1.0 1380 -0.02
3 1.06 1710 -0.02 1.0 1400 -0.02
4 1.06 1700 -0.02 1.0 1390 -0.02
5 1.09 1705 -0.03 1.03 1410 -0.03
6 1.06 1700 -0.02 1.0 1400 -0.02
7 1.12 1680 -0.04 1.06 1385 -0.04
8 1.14 1690 -0.05 1.08 1395 -0.05
9 1.16 1750 -0.06 1.10 1430 -0.06

В таблицах 3 и 4 приведены данные по магнитным свойствам образцов с различным количеством и различного химического состава добавок. Как следует из таблицы 3 при меньшем или большем содержании относительно оптимальных значений добавок магнитные свойства существенно ниже. При частичной замене в гидриде РЗМ неодима на празеодим, диспрозий или тербий (см. таблицу 4) незначительно уменьшается Br, однако увеличивается jHc,. Это объясняется различием в значениях поля магнитной анизотропии магнитотвердой фазы типа PЗM2Fe14B.

Таблица 3
Магнитные свойства образцов №9 в зависимости от количества гидридной добавки (NdH2)
Тип магнита Кол-во NdH2, масс.% Магнитные свойства
Br, Тл jHc, кА/м ТКИ, %/К
- 0.00 1.10 1430 -0.06
- 0.25 1.11 1490 -0.06
Предложение 0.50 1.14 1680 -0.06
Предложение 1.00 1.16 1700 -0.06
Предложение 1.50 1.15 1750 -0.06
Предложение 2.00 1.14 1810 -0.06
- 2.50 1.10 1640 -0.06
- 3.00 1.08 1650 -0.06
Таблица 4
Магнитные свойства образцов №3 в зависимости от химического состава гидридной добавки (1 масс.%)
Тип добавки RH2 Магнитные свойства
Br, Тл jHC, кА/м ТКИ, %/К
NdH2 1.06 1710 -0.02
PrH2 1.05 1810 -0.02
(Nd0.5Pr0.5)H2 1.05 1760 -0.02
(Nd0.8Dy0.2)H2 1.04 1780 -0.02
(Nd0.8Tb0.2)H2 1.04 1820 -0.02
Прототип 1.00 1400 -0.02

Как следует из таблицы 5, уменьшение или увеличение температуры предварительного спекания относительно оптимального соотношения (ΔТ=30-100К) приводит к снижению магнитных свойств.

Таблица 5
Магнитные свойства образцов №3 в зависимости от температуры предварительного спекания (T1) и ΔТ (1 масс.% NdH2)
T1, K ΔT, K Магнитные свойства
Br, Тл jHc, кА/м ТКИ, %/K
1340 0 1.00 1480 -0.02
1325 15 1.01 1510 -0.02
1310 30 1.05 1760 -0.02
1290 50 1.06 1710 -0.02
1270 70 1.05 1700 -0.02
1240 100 1.04 1680 -0.02
1220 120 1.00 1490 -0.02

Предложенный способ изготовления термостабильных редкоземельных магнитов позволяет реализовать более высокие магнитные свойства, такие как индукция Br и коэрцитивная сила jHc при сохранении температурного коэффициента магнитной индукции, обусловливающего повышенную температурную стабильность.

Применение предложенного способа позволяет повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики.

Способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термическую обработку, отличающийся тем, что перед операцией прессования порошка в магнитном поле дополнительно проводят предварительное прессование и предспекание при температуре на 30-100 К ниже температуры спекания с последующим помолом заготовки после предспекания совместно с гидридом редкоземельного металла или редкоземельных металлов, добавляемого в количестве 0,5-2,0 мас.% от общей массы сплава.



 

Похожие патенты:
Изобретение относится к области черной металлургии, конкретнее к обработке лент из аморфно-нанокристаллических сплавов, и может быть использовано, например, при изготовлении деталей в электронике и приборостроении.

Изобретение относится к способам получения магнитоактивных соединений. .
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.

Изобретение относится к области металлургии, а именно к получению неориентированной магнитной листовой стали, используемой для изготовления сердечников двигателей электромобилей.

Изобретение относится к области металлургии, а именно к получению неориентированной магнитной листовой стали, используемой для изготовления сердечников двигателей электромобилей.

Изобретение относится к порошковой металлургии, а именно к обработке металлических порошков, предназначенных для изготовления композитных изделий и покрытий, работающих в высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) диапазонах.

Изобретение относится к физике магнетизма и может быть использовано при изготовлении постоянных магнитов с большим энергетическим произведением (ВН)max в форме намагниченных колец или полых цилиндров.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий на основе железа из порошковой композиции, содержащей распыленный водой предварительно легированный стальной порошок.
Изобретение относится к порошковой металлургии, в частности к получению спеченных деталей из порошковой композиции на основе распыленного водой порошка на основе железа.

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы.

Изобретение относится к машиностроению, а именно к армированным элементам для уплотнения зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Изобретение относится к машиностроению, а именно к композиционным уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Изобретение относится к машиностроению, а именно к изготовлению уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий из распыленного водой предварительно легированного стального порошка. .

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам и способам их получения. .

Изобретение относится к порошковой металлургии, в частности к металлическим порошковым смесям, в том числе твердосплавным, пригодным для изготовления спеченных изделий.

Изобретение относится к порошковой металлургии, в частности к формированию корпусов буровых долот и другого инструмента. .

Изобретение относится к порошковой металлургии, в частности к изготовлению прирабатываемых уплотнений турбомашин. Может использоваться в машиностроении, в частности в качестве уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент уплотнения заданной формы и размеров формируют размещения армирующего элемента заданных размеров и формы, выполненного из металлической сетки с возможностью деформирования совместно с порошком прирабатываемого материала в процессе его сжатия при прессовании. В качестве металлической сетки используют гофрированную металлическую сетку, а при размещении ее в пресс-форме ориентируют гофры элемента поперек направления прессования. Заполняют пресс-форму порошком прирабатываемого материала, прессуют до образования формоустойчивой заготовки и спекают заготовку в вакууме или защитной среде. 23 з.п. ф-лы, 15 ил., 1 пр.
Наверх