Способ получения бутадиеновых каучуков

Изобретение относится к нефтехимической промышленности, в частности к получению бутадиеновых каучуков растворной полимеризацией, и может быть использовано в производстве пластических масс, резинотехнических изделий и шин. Способ заключается в непрерывной полимеризации бутадиена в среде углеводородного растворителя в присутствии инициирующей системы, в качестве которой используют литийорганическое соединение и модифицирующую добавку, представляющую собой смесь алкоголятов кальция, натрия и калия в молярном соотношении, равном 1:0,2-10:0,02-5, при молярном соотношении литий: модифицирующая добавка, равном 1:0,01-1,0, соответственно, при расходе литийорганического соединения 4-10 моль на тонну бутадиена. Изобретение позволяет получать полибутадиен со смешанной микроструктурой, вязкостью по Myни 40-60 ед., вязкостью (5,43% по массе раствора каучука в толуоле) 150-200 мПа·с, низким содержанием гель-фракции и пониженной хладотекучестью, 2 табл., 9 пр.

 

Изобретение относится к области получения бутадиеновых каучуков растворной полимеризацией, которые могут быть использованы в производстве пластических масс, резинотехнических изделий и шин.

Известен способ получения полимеров сопряженных диенов с содержанием не менее 60% винильных звеньев полимеризацией бутадиена-1,3 или изопрена в инертном углеводородном растворителе, например, гексане, гептане, бензоле. В присутствии анионного инициатора, состоящего из магнийорганическгого соединения общей формулы MgR2, где R-углеводородный радикал, содержащий от 1 до 10 атомов углерода и меркаптида натрия, общей формулы R′(SNa)n, где R′ - углеводородный радикал, содержащий от 1 до 10 атомов углерода, n составляет от 1 до 3, например, н-бутилмеркаптид натрия при мольном отношении Mg:Na от 0,1:1 до 10:1. В присутствии амина, например, тетраметилэтилендиамина (ТМЭДА). С последующей дезактивацией катализатора, выделением и сушкой полимера известными методами (патент США №4174431, МПК B01J 31/12; C08F 36/04; 36/00; 004/50; 004/54; 004/08, опубл. 13.11.79). Полимеризация по этому способу осуществляется последовательным добавлением к раствору мономера в углеводородном растворителе амина, диалкилмагния и меркаптида натрия, выдерживанием полимеризационной смеси при температуре 30-80°С в течение 1-18 часов.

Недостатками указанного способа являются получение полимера с неприятным запахом, образование геля и «обрастание» полимеризатора гелеобразным полимером.

Известен способ получения полимеров сопряженных диенов с содержанием 1, 2- или 3, 4- звеньев не менее 60% методом анионной полимеризации бутадиена или изопрена с использованием биметаллических инициаторов общей формулы NaMgR3, где R - алкильный радикал с содержанием атомов углерода от 2 до 14, циклоалкил или арил в присутствии олигомерного оксоланилалкана: например, димерного 2,2-бис(2-оксаланил) пропана при мольном отношении последнего к биметаллическому инициатору от 0,5:1,0 до 10:1,0, дезактивацией катализатора выделением и сушкой полимера известными методами. Молекулярная масса полимера в зависимости от условий полимеризации находится в пределах от 1000 до 500000 (Патент США 4647635, МКИ C08F 36/04; 36/00; 4/00;4/44; 004/08 опубл. 04.03.87).

Недостатком указанного способа является «обрастание» полимеризатора гелеобразным полимером, что требует частой чистки полимеризатора. При этом наблюдается большие потери полимера в виде нерастворимого геля.

Известен способ получения полидиенов полимеризацией бутадиена-1,3 или изопрена в среде инертного углеводородного растворителя в присутствии анионного инициатора - магнийорганического соединения и натрийсодержащего органического соединения общей формулы RONa, где R - С110 алкил или R′O(CH2)n, где R′ - С1-С4 - алкил, a n=2-4, а магнийорганическое соединение представляет С14 диалкилмагний или продукт взаимодействия магния с бутадиеном-1, 3 или изопреном, или пентадиеном-1, 3. Процесс полимеризации проводят с предварительным формированием в полимеризационной зоне комплекса натрийсодержащего органического соединения с изопреном или бутадиеном с последующим введением магнийорганического соединения (патент РФ №2061704, МПК C08F 136/04 приоритет 30.09.92. опубл. 10.06.96 г., Бюл. №16).

Недостатком указанного способа получения полидиена является то, что с использованием указанной инициирующей системы невозможно получить полибутадиен с низким содержанием винильных звеньев.

Известен способ получения низкомолекулярного полибутадиена полимеризацией бутадиена-1,3 в углеводородном растворителе в присутствии каталитической системы, состоящей из органического соединения магния и алкоксида щелочного металла, где в качестве органического соединения магния используют бутил-2-этилгексилмагний в количестве 15-20 моль на тонну мономера, а в качестве алкоксида щелочного металла используют тетрагидрофурфурилат натрия или калия при молярном соотношении магний: щелочной металл, равном от 1:0,25 до 1:2,0. Полимеризацию проводят в толуоле при температуре 20-80°С при непрерывной подаче бутадиена в толуол, куда загружена каталитическая система (патент РФ №2082720, МПК С08F 136/06, приоритет 14.04.95. опубл. 27.06.97, Бюл. №18).

Недостатком указанного способа получения низкомолекулярного полибутадиена является низкая скорость полимеризации и большой расход магнийорганического соединения, а также невозможность получения винильных звеньев ниже 30%.

Наиболее близким к настоящему изобретению по технической сущности и достигаемому результату является способ получения полимеров бутадиена в условиях непрерывной полимеризации бутадиена с низким (10-20%) и контролируемым содержанием винильных звеньев, узким ММР и низким содержанием гель-фракции. В качестве инициирующей системы используют литийорганическое соединение и модифицирующую добавку, представляющую собой смесь алкоголятов магния, натрия и калия в молярном соотношении, равном 1: 0,1-2: 0,2-1,5, при молярном соотношении литий: модифицирующая добавка, равном 1: 0,01-1,0, а в качестве антигелевой добавки используют α-олефины или замещенные бензолы или их смеси в массовом соотношении углеводородный растворитель: антигелевая добавка, равном 98-50:2-50 (патент РФ №2402574, МПК C08F 136/06, опубл. 27.10.2010, Бюл. №30).

Недостатками указанного способа являются высокая пластичность и хладотекучесть образующегося полибутадиена. Это затрудняет его водную дегазацию, приводит к повышенным расходам пара и антиагломератора. А на стадиях выделения и сушки происходит интенсивное налипание каучука на поверхности оборудования. Кроме того, низкая растворимость модифицирующей добавки в алифатических углеводородных растворителях и присутствие мелкодисперсных частиц магния - шлама сопровождается выпадением модификатора в осадок, забивкой трубопроводов, расходомеров и, как следствие, неравномерной подачей модифицирующей добавки в реакционную среду.

Задачей предлагаемого способа является получение полибутадиена в условиях непрерывной полимеризации бутадиена со смешанной микроструктурой, вязкостью по Муни 40-60 ед., вязкостью (5,43% по массе раствора каучука в толуоле) 150-200 мПа·с, низким содержанием гель-фракции и хладотекучестью не более 7 мм/ч.

Поставленная задача решается тем, что способом получения бутадиеновых каучуков непрерывной полимеризацией мономера в среде углеводородного растворителя в присутствии инициирующей системы, состоящей из литийорганического соединения и модифицирующей добавки, представляющей собой смесь алкоголятов кальция, натрия и калия в молярном соотношении равном 1:0,2÷10:0,02÷5 при молярном соотношении литий: модифицирующая добавка равном 1:0,01÷1,0, соответственно, при расходе литийорганического соединения 4-10 моль на тонну бутадиена.

Использование смеси алкоголятов кальция, натрия и калия в модифицирующей добавке литийорганического соединения при непрерывной полимеризации бутадиена позволяет получать полимер со стабильными, заранее заданными характеристиками. Алкоголяты натрия эффективно инициируют полимеризацию и повышают скорость процесса. Соединения калия участвуют в реакциях передачи растущей полимерной цепи, что необходимо для подавления процессов образования гель-фракции. Алкоголяты кальция увеличивают растворимость модифицирующей добавки и повышают вероятность протекания реакций передачи цепи на полимер с участием ионов калия, что увеличивает разветвленность полимера и снижает его хладотекучесть.

Получение смеси алкоголятов кальция, натрия и калия можно осуществлять двумя способами:

1) В углеводородный растворитель загружают кальций, натрий и калий, спирт или смесь спиртов. Далее реакционную массу нагревают до температуры плавления щелочных металлов. При этом происходит взаимодействие гидроксильных групп спирта со щелочными металлами. Затем протекает реакция замещения натрия кальцием с выделением щелочного металла. Калий в условиях реакции не замещается на кальций. В зависимости от времени реакции получают смешанные алкоголяты с заданным содержанием алкоголятов кальция, натрия и калия. Также возможна последовательная загрузка щелочных и щелочноземельного металлов.

2) В углеводородный растворитель загружают, гидроксид калия и спирт или смесь спиртов. Смесь термостатируют при температуре более 100°С, при этом протекает реакция образования алкоголята щелочного металла и воды. Вода в виде азеотропа удаляется из зоны реакции, а растворитель возвращается в зону реакции. После завершения реакции, о чем свидетельствует выделившаяся вода, к раствору добавляют натрий и кальций и реакционную массу продолжают термостатировать. При этом натрий взаимодействует с остатками гидроксильных групп спирта, а щелочноземельный металл замещает натрий в алкоголяте с выделением щелочного металла. В зависимости от условий синтеза получают смешанные алкоголяты с заданным содержанием щелочных и щелочноземельного алкоголятов.

В качестве спиртов предпочтительно использование N,N,N′,N′-тeтpa(β-оксипропил)этилендиамина («Лапрамол-294» по ТУ 2226-010-10488057-84) и тетрагидрофурфурилового спирта.

Концентрацию модифицирующей добавки, представляющей собой смесь алкоголятов кальция, натрия и калия, определяют в пересчете на общую щелочность.

Предполагаемое изобретение иллюстрируются следующими примерами:

Пример 1

В аппарат объемом 1000 л, снабженный мешалкой, рубашкой для подвода и отвода тепла, штуцерами для загрузки реагирующих компонентов и выгрузки готового продукта, загружают в токе осушенного азота натрий 17,20 кг, калий 14,60 кг, толуол 600 л и 3 кг кальция в виде гранул размером 1-3 мм и содержимое аппарата нагревают до 105°С. Затем включают мешалку и в суспензию натрий-калий-кальций дозируют смесь, содержащую 69,00 кг «Лапрамол-294» и 8,00 кг тетрагидрофурфурилового спирта, в течение 2 часов. После завершения реакции между натрием, калием и гидроксильными группами спиртов, о чем свидетельствует прекращение выделения водорода, содержимое аппарата выдерживают при температуре 110-120°С в течение 12 часов. При этом протекает реакция замещения натрия на кальций. Затем содержимое аппарата охлаждают и отбирают пробу на анализ.

Условия приготовления смешанных алкоголятов и результаты их анализа приведены в таблице 1.

Пример 2

В аппарат №1 объемом 500 л, снабженный мешалкой, рубашкой для подвода тепла, штуцерами для загрузки реагентов и выгрузки готового продукта, в токе азота загружают 0,65 кг гидроксида калия, 230 л толуола, 70,00 кг «Лапрамол-294» и 32,00 кг тетрагидрофурфурилового спирта. Аппарат связан с теплообменником, в котором конденсируют пары азеотропа толуол-вода. Содержимое аппарата нагревают до температуры 120°С. При этом гидроксид калия реагирует с гидроксильной группой смеси спиртов с образованием алкоголята калия и воды. Вода в виде азеотропа с толуолом через теплообменник собирается в емкость, где отделяется от толуола. Толуол возвращается в зону реакции, а вода собирается и определяется ее количество. Через 4 часа после завершения реакции, о чем свидетельствует расчетное количество выделившейся воды, раствор анализируют. В аппарат №2 объемом 1000 л, снабженный мешалкой, рубашкой для подвода и отвода тепла, штуцерами для загрузки реагирующих компонентов и выгрузки готового продукта, загружают в токе азота 1,60 кг натрия, 14,00 кг кальция, 400 л толуола и содержимое аппарата нагревают до 100°С, включают мешалку и в течение 2 ч дозируют 200 л толуольного раствора смеси алкоголята калия и спиртов из аппарата №1. После завершения дозировки указанной смеси реакционную массу перемешивают еще в течение 10 часов при температуре 115-120°С. Затем содержимое аппарата охлаждают и отбирают пробу на анализ.

Условия приготовления смешанных алкоголятов и результаты их анализа приведены в таблице 1.

Пример 3

В аппарат объемом 1000 л, снабженный мешалкой, рубашкой для подвода и отвода тепла, штуцерами для загрузки реагирующих компонентов и выгрузки готового продукта, загружают в токе осушенного азота натрий 20,07 кг, калий 9,75 кг, толуол 650 л и 5,00 кг кальция в виде гранул размером 1-3 мм и содержимое аппарата нагревают до 105°С. Затем включают мешалку и к суспензии натрий-калий-кальций дозируют смесь, содержащую 50,00 кг «Лапрамол-294» и 17,40 кг тетрагидрофурфурилового спирта, в течение 2 часов. После завершения реакции между натрием, калием и гидроксильными группами спиртов, о чем свидетельствует прекращение выделения водорода, содержимое аппарата выдерживают при температуре 110-120°С в течение 12 часов. При этом протекает реакция замещения натрия на кальций. Затем содержимое аппарата охлаждают и отбирают пробу на анализ.

Условия приготовления смешанных алкоголятов и результаты их анализа приведены в таблице 1.

Пример 4

В аппарат №1 объемом 500 л, снабженный мешалкой, рубашкой для подвода тепла, штуцерами для загрузки реагентов и выгрузки готового продукта, в токе азота загружают 7,20 кг гидроксида калия, 230 л толуола, 175,00 кг «Лапрамол-294» и 61,00 кг тетрагидрофурфурилового спирта. Аппарат связан с теплообменником, в котором конденсируют пары азеотропа толуол-вода. Содержимое аппарата нагревают до температуры 120°С. При этом гидроксид калия реагирует с гидроксильной группой смеси спиртов с образованием алкоголята калия и воды. Вода в виде азеотропа с толуолом через теплообменник собирается в емкость, где отделяется от толуола. Толуол возвращается в зону реакции, а вода собирается и определяется ее количество. Через 4 часа после завершения реакции, о чем свидетельствует расчетное количество выделившейся воды, раствор анализируют. В аппарат №2 с объемом 1000 л, снабженный мешалкой, рубашкой для подвода и отвода тепла, штуцерами для загрузки реагирующих компонентов и выгрузки готового продукта, загружают в токе азота 17,20 кг натрия, 10,00 кг кальция 400 л толуола и содержимое аппарата нагревают до 100°С, включают мешалку и в течение 2 часов дозируют 200 л толуольного раствора смеси алкоголята калия и спиртов из аппарата №1. После завершения дозировки указанной смеси реакционную массу перемешивают еще в течение 10 часов при температуре 115-120°С. Затем содержимое аппарата охлаждают и отбирают пробу на анализ.

Условия приготовления смешанных алкоголятов и результаты их анализа приведены в таблице 1.

Пример 5

Синтез полибутадиена проводят в батарее из двух реакторов, объемом 20 м3 каждый, снабженный мешалкой, системой подачи растворителя, мономеров, катализатора и рубашкой с теплоносителем. В первый по ходу реактор непрерывно подают бутадиеновую шихту в углеводородном растворителе-нефрасе с содержанием толуола 5%, из расчета 18 т/час растворителя и 2,0 т/час бутадиена и дозируют одновременно 230 л/час (161 кг/час) раствора н-С4Н9Li в нефрасе с концентрацией 0,087 моль/л и 29 л/час (38,5 кг/час) раствора модификатора в толуоле, полученного по примеру 1 и разбавленного до концентрации 0,007 моль/л. Формирование каталитического комплекса происходит в режиме «in situ». Соотношение н-С4Н9Li: модификатор равно 1:0,01. Расход активного металла 10 моль на тонну мономера. Конверсия бутадиена во втором реакторе 100%. После завершения полимеризации раствор полимера стабилизируют и направляют на дегазацию, выделение и сушку.

Полученный полибутадиен испытывают по стандартным методикам.

Свойства полимера представлены в таблице 2.

Пример 6

Синтез полибутадиена проводят, как в примере 5, но дозируют 115 л/час (80,5 кг/час) раствора H-C4H9Li в нефрасе с концентрацией 0,087 моль/л и 142,8 л/час (107,1 кг/час) раствора модификатора в толуоле, полученного по примеру 2 и разбавленного до концентрации 0,035 моль/л. Формирование каталитического комплекса происходит в режиме «in situ». Соотношение н-С4Н9Li: модификатор равно 1:0,5. Расход активного металла 5 моль на тонну мономера. Конверсия бутадиена во втором реакторе 100%. После завершения полимеризации раствор полимера стабилизируют и направляют на дегазацию, выделение и сушку.

Полученный полибутадиен испытывают по стандартным методикам.

Свойства полимера представлены в таблице 2.

Пример 7

Синтез полибутадиена проводят, как в примере 5, но дозируют 183,8 л/час (128,7 кг/час) раствора H-C4H9Li в нефрасе с концентрацией 0,087 моль/л и 160 л/час (120 кг/час) раствора модификатора в толуоле, полученного по примеру 3 и разбавленного до концентрации 0,01 моль/л. Формирование каталитического комплекса происходит в режиме «in situ». Соотношение Н-С4Н9Li: модификатор равно 1:0,1. Расход активного металла 8 моль на тонну мономера. Конверсия бутадиена во втором реакторе 100%. После завершения полимеризации раствор полимера стабилизируют и направляют на дегазацию, выделение и сушку.

Полученный полибутадиен испытывают по стандартным методикам.

Свойства полимера представлены в таблице 2.

Пример 8

Синтез полибутадиена проводят как в примере 5, но дозируют 91,9 л/час (64,3 кг/час) раствора н-С4Н9Li в нефрасе с концентрацией 0,087 моль/л и 228,5 л/час (171,4 кг/час) раствора модификатора в толуоле, полученного по примеру 4 и разбавленного до концентрации 0,035 моль/л. Формирование каталитического комплекса происходит в режиме «in situ». Соотношение н-С4Н9Li: модификатор равно 1:1. Расход активного металла 4 моль на тонну мономера. Конверсия бутадиена во втором реакторе 100%. После завершения полимеризации раствор полимера стабилизируют и направляют на дегазацию, выделение и сушку.

Полученный полибутадиен испытывают по стандартным методикам.

Свойства полимера представлены в таблице 2.

Пример 9 (по прототипу).

Синтез полибутадиена проводят в батарее из двух реакторов, объемом 20 м3 каждый, снабженный мешалкой, системой подачи растворителя, мономеров катализатора и рубашкой с теплоносителем. В первый по ходу реактор непрерывно подают бутадиеновую шихту в углеводородном растворителе-нефрасе, с содержанием толуола 6%, из расчета 13 т/час растворителя и 1,5 т/час бутадиена и дозируют одновременно 60 л/час (40,2 кг/час) раствора н-С4Н9Li в нефрасе с концентрацией 0,1 моль/л и 12 л/час (10,4 кг/час) раствора модификатора в толуоле, представляющего собой смесь алкоголятов магния, натрия и калия в молярном соотношении равном 1:2:1,5 и разбавленного до концентрации 0,005 моль/л. Формирование каталитического комплекса происходит в режиме «in situ». Соотношение н-С4Н9Li: модификатор равно 1:0,2. Расход активного металла 6 моль на тонну мономера. Конверсия бутадиена во втором реакторе 100%. После завершения полимеризации раствор полимера стабилизируют и направляют на дегазацию, выделение и сушку.

Полученный полибутадиен испытывают по стандартным методикам.

Свойства полимера представлены в таблице 2. Из приведенных примеров следует, что предложенный способ позволяет получать полибутадиен в условиях непрерывной полимеризации бутадиена со смешанной микроструктурой, вязкостью по Муни 40-60 ед., вязкостью (5,43% по массе раствора каучука в толуоле) 150-200 мПа·с, низким содержанием гель-фракции и хладотекучестью не более 7 мм/ч.

Таблица 2
Свойства полимеров по заявляемому способу и прототипу
№ примера №5 №6 №7 №8 №9 по прототипу
Вязкость по Муни, усл. ед. 52 57 40 60 45
Микроструктура, % мас.
1,2- 11 30 14 41 12
1,4-цис, 38 32 35 24 37
1,4-транс. 51 38 51 35 51
Вязкость (5,43% по массе раствора каучука в толуоле), мПа·с 200 165 150 177 170
Массовая доля гель-фракции, % 0,02 0,01 0,01 0,01 0,015
Хладотекучесть, мм/ч 7 3 4 5 10

Способ получения бутадиеновых каучуков непрерывной полимеризацией мономера в среде углеводородного растворителя в присутствии инициирующей системы, отличающийся тем, что в качестве инициирующей системы используют литийорганическое соединение и модифицирующую добавку, представляющую собой смесь алкоголятов кальция, натрия и калия в молярном соотношении, равном 1,0:0,2-10,0:0,02-5,0 при молярном соотношении литий: модифицирующая добавка, равном 1,0:0,01-1,0 соответственно при расходе литийорганического соединения 4-10 моль на тонну бутадиена.



 

Похожие патенты:

Изобретение относится к области получения синтетических каучуков, в частности диеновых (со)полимеров, таких как полибутадиен, полиизопрен и бутадиен-стирольный каучук (БСК), применяемых при производстве шин, резинотехнических изделий, модификации битумов, в электротехнической и других областях.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы.
Изобретение относится к способу получения полидиенового полимера. .

Изобретение относится к способу получения эпоксидированных 1,2-полибутадиенов. .

Изобретение относится к способу получения полимеров формулы (1), содержащих дихлорциклопропановые группы в основной цепи и боковых звеньях макромолекул Способ заключается во взаимодействии атактического 1,2-полибутадиена с хлороформом и водным раствором щелочного металла в присутствии четвертичной аммониевой соли в качестве катализатора межфазного переноса при температуре 40-50°С в течение 2-6 ч, отличающийся тем, что синтез проводят при мольном соотношении 1,2-полибутадиен: CHCl3:NaOH: катализатор, равном 1:4-14:1,5-2:0,001-0,002.

Изобретение относится к способу получения эпоксидированных 1,2-полибутадиенов. .

Изобретение относится к созданию новых структур фосфатов неодима и катализаторов полимеризации сопряженных диенов с их использованием и может найти применение при производстве 1,4-гомополимеров и 1,4-сополимеров в промышленности синтетических каучуков.

Изобретение относится к области получения синтетических каучуков, конкретно к способу получения полидиенов с повышенным содержанием винильных звеньев. .

Изобретение относится к области получения синтетических каучуков, в частности диеновых (со)полимеров, таких как полибутадиен, полиизопрен и бутадиен-стирольный каучук (БСК), применяемых при производстве шин, резинотехнических изделий, модификации битумов, в электротехнической и других областях. Способ получения разветвленных функционализированных диеновых (со)полимеров с содержанием винильных звеньев более 60% осуществляют путем полимеризации диенов или сополимеризации их между собой и/или с альфа-олефинами в углеводородном растворителе в присутствии литийорганического инициатора, электронодонорной добавки, функционализирующего и разветвляющего агентов, в качестве электронодонорных добавок используют смесь соединения, содержащего гетероатом, с алкоксидами щелочных и/или щелочноземельных металлов или продукты их взаимодействия, в качестве разветвляющего агента добавляют одновременно или последовательно как каждый в отдельности, так и в различных сочетаниях следующие соединения: ЭНаl2R2, 3Hаl3R, Э'Наl4 где Э и Э' выбраны из группы Sn, Ge, Si; Hal - F, Cl, Br, I; R - алкил C1-C20, или арил; и С6Н6, у которого, по крайней мере, два атома водорода замещены на группу, выбранную из следующего ряда: -Hal, -CH=CH2, -C(O)Alk, в качестве функционализирующего агента соединение, выбранное из группы N,N-ди-замещенные аминоалкилакриламиды и N,N-ди-замещенные аминоалкилметакриламиды, N,N-дизамещенные аминоароматические соединения. Технический результат - получение разветвленных функционализированных (со)полимеров диенов, характеризующихся статистическим распределением мономерных звеньев, высоким содержанием виниловых звеньев (1,2-бутадиеновых и/или 3,4-изопреновых звеньев (более 60%)) и узким молекулярно-массовым распределением. 7 з.п. ф-лы, 5 табл., 4 ил., 43 пр.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы. Описан способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим карбоновую кислоту и пероксид водорода, отличающийся тем, что в качестве полимера используют нетканый материал, состоящий из волокон 1,2-полибутадиена, диаметром волокон 1,1-3,5 мкм, поверхностной плотностью нетканого материала 40-80 г/см2, в качестве карбоновой кислоты используют муравьиную кислоту при мольном соотношении 1,2-полибутадиен : муравьиная кислота 1,0:0,2-1,0, 1,2-полибутадиен : пероксид водорода 1,0:0,5-2, синтез проводят при температуре 10-30°С, в течение 1-4 ч. Технический результат - получение эпоксидированных 1,2-полибутадиенов способом, характеризующимся более высоким уровнем безопасности, исключением использования в процессе синтеза органических растворителей, снижение энергетических затрат, повышение качества целевого продукта.1 з.п. ф-лы, 1 табл., 27 пр.

Настоящее изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы. Описан способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим перекись водорода и фосфорную кислоту, отличающийся тем, что в качестве полимера используют нетканый материал, состоящий из волокон 1,2-полибутадиена с диаметром волокон 1,1-3,5 мкм, поверхностная плотность нетканого материала 40-80 г/м2, при этом эпоксидирующий агент дополнительно содержит молибдат натрия при мольном соотношении 1,2-полибутадиен:перекись водорода 1:0,4-1,1 и молибдат натрия:фосфорная кислота 1:1-4, а взаимодействие полимера с эпоксидирующим агентом производят при температуре 10-30°C в течение 1-4 ч и показатель pH реакционной среды 2-3 поддерживают путем введения 0,1 М водного раствора гидрофосфата натрия. Технический результат - получение эпоксидированных 1,2-полибутадиенов способом, характеризующимся более высоким уровнем безопасности, исключением использования в процессе синтеза органических растворителей и межфазного катализатора, снижением энергетических затрат и повышением качества целевого продукта. 1 з.п. ф-лы, 1 табл., 31 пр.
Изобретение относится к высокомолекулярным линейным полибутадиенам с высоким содержанием цис-1,4-единиц. Предложен высокомолекулярный, линейный, катализируемый неодимом полибутадиен с высокой долей цис-1,4-единиц, превышающей 95%, и малой долей 1,2-виниловых единиц (менее 1%), а также малым индексом распределения по молярной массе, имеющий вязкость по Муни (ML1+4 100°С) 70-90 и индекс распределения по молярной массе менее 10, соответствующий частному от деления Mw(90%) на Mw(10%), причем распределение по молярной массе характеризуется показателями Mw(90%)<1000000 г/моль и Mw(10%)>100000 г/моль. Предложены также способ получения заявленных полибутадиенов, каучуковые смеси, содержащие заявленные полибутадиены, и варианты их использования. Технический результат - предложенный полибутадиен обладает улучшенными эксплуатационными характеристиками (гелеобразование, эластичность, упругость и пр.), позволяющими получать шины и мячи для гольфа отличного качества. 7 н. и 17 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к способу получения диеновых (со)полимеров. Способ получения диеновых полимеров или виниларен-диеновых статистических сополимеров включает анионную (со)полимеризацию в углеводородных растворителях, по меньшей мере, одного мономера сопряженного диена, необязательно в присутствии виниларильного мономера, и использование соединения, принадлежащего к группе алкиллитиевых соединений, в качестве инициатора, способ отличается тем, что весь алкиллитиевый инициатор модифицируют на месте использования посредством реакции с соединением, имеющим общую формулу (I): , где R представляет собой (C2-C20)-(цикло)алкильный или (C6-C20)-ароматический радикал, X представляет собой гетероатом, принадлежащий к группе VIA периодической системы, n представляет собой целое число, превышающее или равное 1, m представляет собой целое число ≥1, которое зависит от валентности гетероатома X. Технический результат - повышается устойчивость активного конца цепи, обеспечивается регулирование макроструктуры (со)полимеров в отношении уменьшения полидисперсности и уменьшения разветвления. 11 з.п. ф-лы, 5 табл., 14 пр.

Изобретение относится к способу получения бутадиенового каучука. Способ получения бутадиенового каучука осуществляют путем полимеризации бутадиена в присутствии йодсодержащей каталитической системы с последующим стопперированием процесса полимеризации подщелоченной водой в присутствии четвертичных солей аммония, дегазацией полимеризата, выделением каучука и регенерацией йода, способ отличается тем, что четвертичные соли аммония используют в виде 1% водного раствора в количестве из расчета от 0,005 до 0,015% мас. солей на каучук, водную фазу, образующуюся в ходе водной дегазации полимеризата, подвергают дополнительной очистке на установке мембранной фильтрации с получением чистой воды и концентрата йодсодержащих солей, из которого выделяют йод. Заявлен также способ получения концентрата йодсодержащих солей. Технический результат - способ позволяет увеличить степень извлечения йода из водной фазы до 99%, снизить расходы четвертичных солей аммония (ЧСА) за счет использования 1%-ного раствора ЧСА и снизить расход воды за счет ее возврата в рецикл от 85 до 90%. 2 н. и 12 з.п. ф-лы, 1 табл., 15 пр.

Изобретение относится к оксо-азотсодержащему комплексу лантанидов с общей формулой (I) или (II): Значения радикалов следующие: Ln представляет неодим, R1 и R2 одинаковые и их выбирают из линейных или разветвленных С1-С20 алкильных групп, R3 выбирают из необязательно замещенных арильных групп; или R3 представляет кетоиминную группу с формулой: где R' и Rʺ одинаковые и представляют атом водорода, Y представляет атом кислорода; или -N-R4 группу, где R4 выбирают из необязательно замещенных арильных групп, X1, Х2 и Х3 одинаковые и представляют атом галогена, такой как, например, хлор, бром, йод. Также предложены каталитическая система для (со)полимеризации конъюгированных диенов, способ (со)полимеризации конъюгированных диенов и способ полимеризации 1,3-бутадиена или изопрена. Указанный бис(имино)пиридиновый комплекс лантанидов с общей формулой (I) может быть использован в каталитической системе, позволяющей получить (со)полимеры конъюгированных диенов, в частности полибутадиен и полиизопрен, с высоким содержанием 1,4-цис единиц. 4 н. и 3 з.п. ф-лы, 17 ил., 2 табл., 46 пр.

Изобретение относится к бис-имин пиридиновому комплексу лантанидов с общей формулой (I) где Ln представляет неодим (Nd), R1 и R2 одинаковы и выбираются из линейных или разветвленных С1-С20 алкильных групп, R3 и R4 одинаковы или отличаются друг от друга и выбираются из необязательно замещенных циклоалкильных групп, необязательно замещенных арильных групп, Х1, Х2 и Х3 одинаковы и представляют атом галогена, такой как хлор, бром, йод. Также предложены каталитическая система для (со)полимеризации конъюгированных диенов, способ (со)полимеризации конъюгированных диенов и способ полимеризации 1,3-бутадиена или изопрена. Указанный бис-имин пиридиновый комплекс лантанидов с общей формулой (I) позволяет получить (со)полимеры конъюгированных диенов, в частности полибутадиен и полиизопрен с высоким содержанием 1,4-цис единиц. 4 н. и 3 з.п. ф-лы, 12 ил., 2 табл., 42 пр.

Изобретение относится к бис-иминовому комплексу лантанидов. Комплекс имеет общую формулу (I): в которой Ln представляет металл ряда лантанидов, выбранный из неодима (Nd), лантана (La), празеодима (Pr); n является 0; R1 и R2 одинаковые или отличаются друг от друга и представляют атом водорода; или их выбирают из линейных или разветвленных С1-С20 алкильных групп; R3 и R4 одинаковые и их выбирают из линейных или разветвленных С1-С20 алкильных групп, необязательно замещенных циклоалкильных групп, необязательно замещенных арильных групп; или R1 и R3 необязательно могут быть связаны друг с другом с образованием вместе с другими атомами, с которыми они связаны, насыщенного, ненасыщенного или ароматического цикла, содержащего от 3 до 6 атомов углерода, необязательно замещенных линейными или разветвленными С1-С20 алкильными группами, указанный цикл необязательно содержит другие гетероатомы, такие как кислород, сера, азот, кремний, фосфор, селен; Х1, Х2 и Х3 одинаковые, представляют атом галогена, такой как хлор, бром, йод. Также предложены каталитическая система для (со)полимеризации конъюгированных диенов, способ (со)полимеризации конъюгированных диенов и способ полимеризации 1,3-бутадиена или изопрена. Указанный бис-иминовый комплекс лантанидов может быть использован в каталитических системах, позволяющих получить (со)полимеры конъюгированных диенов с высоким содержанием 1,4-цис единиц. 4 н. и 3 з.п. ф-лы, 9 ил., 3 табл., 97 пр.

Изобретение относится к способу получения разветвленного полибутадиена с высоким содержанием 1,4-цис звеньев. Способ включает полимеризацию бутадиена в присутствии органического растворителя, каталитической системы и по меньшей мере одного органического сложного эфира, содержащего по меньшей мере один атом галогена. Каталитическая система включает по меньшей мере один (а1) карбоксилат неодима, (а2) алкильное соединение алюминия, (а3) алкильное соединение алюминия, содержащее по меньшей мере один атом галогена. Также описана вулканизируемая эластомерная композиция и конечный продукт. Технический результат – получение разветвленного полибутадиена с высоким содержанием 1,4-цис звеньев с различными степенями ветвления, а также расширение диапазона полимеров с конкретными характеристиками. 3 н. и 13 з.п. ф-лы, 1 пр.
Наверх