Способ депарафинизации нефтедобывающей скважины

Изобретение относится к нефтегазовой промышленности, а именно к способам борьбы с асфальтено-смоло-парафиновыми отложениями при добыче парафинистой нефти. Способ депарафинизации нефтедобывающей скважины включает создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб. Предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно формуле: tнi=tнд+A1·Pi/Pнас-A2Гi0, где tнi - температура насыщения нефти парафином в скважине; tнд - температура насыщения дегазированной нефти; Pi - ряд последовательных значений давления в заданном интервале, МПа; Pнас - давление насыщения нефти газом; Гi - газонасыщенность нефти при соответствующих значениях давления Pi и температуре Ti, м33; Г0 - газосодержание нефти при давлении Pнас; A1 и A2 - корреляционные коэффициенты, зависящие от состава и свойств нефти. По построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином определяют глубину и термодинамические условия интенсивной парафинизации в скважине. Далее с учетом определяемых условий подбирают количество и концентрацию компонентов для выноса расплавленного парафина. Технический результат - повышение эффективности борьбы с асфальтено-смоло-парафиновыми отложениями. 1 ил., 1 табл.

 

Изобретение относится к нефтегазовой промышленности, а именно к способам борьбы с асфальтено-смоло-парафиновыми отложениями при добыче парафинистой нефти.

Известен способ удаления парафиновых отложений со стенок насосно-компрессорных труб, включающий установку ультразвукового преобразователя и возбуждение колебаний. Ультразвуковой преобразователь устанавливают в зоне наибольших толщин отложений парафина на стенках насосно-компрессорных труб, определяют собственную частоту радиально и радиально-изгибных мод колебаний насосно-компрессорных труб, заполненных нефтью с парафиновыми отложениями, и возбуждают в ней резонансные колебания на этих частотах, при этом интенсивность виброобработки поддерживают до отслаивания парафиновых отложений и растворения их в нефти [патент РФ №2106480 от 10.03.98 г., кл. Е21В 37/00].

Недостатком известного способа является то, что он не позволяет полностью удалять смолопарафиновые отложения со стенок насосно-компрессорных труб вследствие того, что ультразвуковой преобразователь устанавливается на средней глубине кристаллизации парафина в скважине, независимо от технологического режима работы скважины, особенностей добываемой продукции и т.д.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков является способ депарафинизации скважин, включающий создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов и вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб. В качестве взаимодействующих компонентов в скважину последовательно закачивают чередующиеся порции водного раствора диэтиламина и водного раствора соляной кислоты при соотношении объемов 1:2 и суммарном объеме двух последовательных порций, равном половине объема пространства, по которому в скважину закачивают компоненты [патент РФ №2100576 от 27.12.97 г., кл. Е21В 37/06]. Данный способ принят в качестве прототипа.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов; вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб.

Недостатком известного способа, принятого за прототип, является то, что он не обеспечивает полное удаление смолопарафиновых отложений на всем интервале глубин парафинообразования в скважине вследствие того, что температура закачиваемого состава на фактической глубине образования парафиновых отложений не достигает температуры плавления парафина.

Задачей изобретения является повышение эффективности способа депарафинизации нефтедобывающей скважины.

Поставленная задача была решена за счет того, что в известном способе депарафинизации нефтедобывающей скважины, включающем создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб, предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно формуле:

t н i = t н д + А 1 Р i Р н а с А 2 Г i Г 0 ,

где tнi - температура насыщения нефти парафином в скважине;

tнд - температура насыщения дегазированной нефти;

Рi - ряд последовательных значений давления в заданном интервале, МПа;

Рнас - давление насыщения нефти газом;

Гi - газонасыщенность нефти при соответствующих значениях давления Рi и температуре Тi, м33;

Г0 - газосодержание нефти при давлении Рнас;

А1 и А2 - корреляционные коэффициенты, зависящие от состава и свойств нефти,

по построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином определяют глубину и темодинамические условия интенсивной парафинизации в скважине, далее с учетом определяемых условий подбирают количество и концентрацию компонентов для выноса расплавленного парафина.

Признаки заявляемого технического решения, отличительные от решения по прототипу, - предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно вышеприведенной формулы; определяют по построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином глубину и темодинамические условия интенсивной парафинизации в скважине; подбирают количество и концентрацию компонентов для выноса расплавленного парафина с учетом определяемых условий.

Определение глубины и фактических термодинамических условий интенсивной парафинизации в скважине по кривым распределения температуры скважинного потока, давления в скважине и температуры насыщения нефти парафином в скважине позволит повысить эффективность способа депарафинизации нефтедобывающей скважины за счет использования закачиваемых компонентов в меньших количествах и меньших концентрациях.

На чертеже показаны кривые распределения для определения глубины и термодинамических условий интенсивной парафинизации.

Способ депарафинизации нефтедобывающей скважины осуществляется в следующей последовательности.

Предварительно определяют глубину образования парафиновых отложений в скважине, для чего по технологической и геологической документации получают следующие исходные данные по скважине и продуктивному пласту:

- глубину скважины Нскв, м;

- пластовую температуру Тпл, К;

- температуру нейтрального слоя Тнс, К;

- плотность пластовой (ρпл) и дегазированной (ρнд) нефти, кг/м3;

- динамическую вязкость пластовой (µпл) и дегазированной (µнд) нефти, Па·с;

- давление насыщения нефти газом Рнас, МПа;

- газосодержание пластовой нефти (газовый фактор) Гнпл, м33;

- плотность газа, выделяющегося из нефти при однократном разгазировании при нормальных условиях ρг0, кг/м3;

- молярные доли азота и метана в газе однократного разгазирования (уа и ум), доли. ед.;

- плотность попутно добываемой воды при стандартных условиях ρв, кг/м3;

- содержание растворенных в воде солей С, г/л;

- дебит скважины по жидкости объемный (в стандартных условиях) Ож, м3/сут;

- дебит скважины по жидкости массовый Qм, т/сут;

- объемную обводненность жидкости (в стандартных условиях) βв, д.е.;

- давление на устье скважины Ру, МПа;

- забойное давление Рзаб, МПа;

- глубину подвески насоса Ннас, м;

- потребляемую электродвигателем мощность Nпэд, кВт;

- угол отклонения скважины от вертикали α, град;

- внутренний диаметр насосно-компрессорных труб (НКТ) dвн, м;

- внутренний диаметр эксплуатационной колонны Dэк, м.

Затем по полученным исходным данным строятся кривые распределения температуры скважинного потока, распределения давления в скважине, распределения температуры насыщения нефти парафином в скважине.

1. Расчет и построение кривой распределения температуры скважинного потока

При известной пластовой температуре Тпл вычисляется температура Т(Ннас) на глубине Ннас:

Т ( Н н а с ) = Т п л ω п ( Н с к в Н н а с ) ,                                                            ( 1 )

где ωп - температурный градиент потока, °С/м.

Температура жидкости на устье скважины определяется по формуле:

Т у = Т ( Н н а с ) ω п Н н а с                                                                                ( 2 )

Также учитывается повышение температуры потока жидкости на выкиде насоса Δt, с помощью температурного режима погружного агрегата в целом, можно рассчитать по следующей формуле:

Δ t У Э Ц Н = 24 α ( N п д N п о л . н . ) c ж ρ ж Q ж с т                                                                     ( 3 )

с ж = с н ( 1 β в ) + с в β в ,                                                                              ( 4 )

где α - коэффициент, равный 860 ккал/(кВт·ч);

сж - удельная теплоемкость продукции, ккал/(кг·°С);

сн, св - соответственно удельная теплоемкость нефти (сн≈2100 Дж/(кг·°C)) и воды (св≈4182 Дж/(кг·°C));

ρж - плотность продукции скважины, кг/м3;

Nпол.н. - полезная мощность насоса, кВт.

С учетом определения температуры жидкости на выкиде насоса строится кривая распределения температуры потока в скважине по точкам, соответствующим температуре на устье, температуре на забое и температуре на глубине подвески насоса.

2. Расчет и построение кривой распределения давления в скважине

Для расчета кривых распределения давления потока используется метод Ф. Поэтмана - П. Карпентера. В основу метода положено уравнение энергетического баланса для потока газожидкостной смеси гомогенной модели. В соответствии с этим методом область изменения давления в заданном интервале разбивается на отдельные интервалы с определенным шагом (например, ΔР=0,5 МПа). Затем с учетом разгазирования нефти в процессе подъема жидкости в скважине определяют плотность газожидкостной смеси, как отношение массы этой смеси к ее объему, для соответствующих термодинамических условий, т.е. давления и температуры:

ρ с м и = M с м / V с м                                                                                            ( 5 )

После определения плотности газожидкостной смеси, рассчитывают корреляционный коэффициент необратимых потерь давления по формуле:

f = 10 19,66 ( 1 + log ( 0,99 10 5 Q ж ( 1 β в ) M с м d в н ) ) 0,25 17,713                                             ( 6 )

С учетом корреляционного коэффициента рассчитывается полный градиент давления в точках с заданным давлением:

для давления, меньше, чем Рнас:

d Р d Н = ρ с м и g 10 6 cos α + [ f Q ж 2 ( 1 β Е ) 2 M с м 2 ] 2,3024 10 15 ρ с м и d в н 5                                           ( 7 )

для давления в сечениях, где Р≥Рнас, МПа/м:

d Р d Н = ρ с м и g 10 6 cos α + λ ω ж п р 2 ρ ж 10 6 2 d в н                                                     ( 8 )

Определив полный градиент давления, рассчитывают распределение давления на участках, где происходит течение газожидкостного потока:

Н i = Р у Р н к т d Н d Р = Р н а с Р у N ( ( d Н d Р ) у + ( d Н d Р ) i 2 + ( d Н d Р ) 1 + ( d Н d Р ) 2 + + ( d Н d Р i 1 ) ) = i = 1 N Δ Н i                   ( 9 )

Рассчитав длины участков Hi, соответствующих заданным Рi, по полученным точкам строится кривая распределения давления в скважине P=f(H).

3. Расчет и построение кривой изменения температуры насыщения нефти парафином в скважине

Построение кривой проводят по формуле (10) при известной температуре насыщения дегазированной нефти, путем расчета температуры для соответствующего интервала давлений, в котором было построено распределение давления в скважине.

t н i = t н д + А 1 Р i Р н а с А 2 Г i Г 0                                                                                 ( 10 )

где tнi - температура насыщения нефти парафином в скважине;

tнд - температура насыщения дегазированной нефти;

Рi - ряд последовательных значений давления в заданном интервале, МПа;

Рнас - давление насыщения нефти газом;

Гi - газонасыщенность нефти при соответствующих значениях давления Рi и температуре Тi, м33;

Г0 - газосодержание нефти при давлении Рнас;

А1 и А2 - корреляционные коэффициенты.

Значения tнд и корреляционных коэффициентов А1 и А2 определяются для условий месторождения с учетом состава и свойств нефти.

После построения кривых распределения давления, температуры потока, температуры насыщения нефти парафином в скважине, определяют глубину и термодинамические условия образования парафиновых отложений в скважине. Выделение из нефти твердых асфальтено-смоло-парафиновых веществ начинается при снижении температуры потока до температуры насыщения нефти парафином, поэтому глубина начала интенсивного образования отложения соответствует пересечению кривых распределения температуры потока и температуры насыщения нефти парафином в скважине.

Далее с учетом определенных глубины и термодинамических условий образования парафиновых отложений в скважине подбирают количество и концентрацию компонентов для выноса продуктов реакции и расплавленного парафина из насосно-компрессорных труб. В зоне отложения парафина создают температуру, превышающую температуру плавления парафина. Для этого закачивают через затрубное пространство скважины взаимодействующие с выделением тепла компоненты, например, водный раствор диэтиламина и водный раствор соляной кислоты. При поочередной прокачке порций водных растворов диэтиламина и соляной кислоты, их смешение происходит вблизи отложений парафина и в результате экзотермической химической реакции между ними выделяется теплота, что приводит к расплавлению и выносу парафиновых отложений потоком закачиваемой и добываемой жидкости.

Пример конкретного выполнения способа

Предлагаемый способ прошел апробацию на скважинах ООО «ЛУКОЙЛ-ПЕРМЬ». Результаты внедрения способа на промысле приведены в таблице. В таблице приведено сопоставление количества промывок и подземных ремонтов на скважинах ООО «ЛУКОЙЛ-ПЕРМЬ» до и после внедрения способа.

Таблица
Результаты внедрения способа на промысле
Кол-во промывок за год Кол-во подземных ремонтов за год
Кол-во скважин
до внедрения после внедрения до внедрения после внедрения
10 61 11 40 3

Таким образом, использование предлагаемого способа повышает эффективность борьбы с асфальтено-смоло-парафиновыми отложениями и снижает трудоемкость.

Способ депарафинизации нефтедобывающей скважины, включающий создание в зоне отложения парафина температуры, превышающей температуру плавления парафина путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб, отличающийся тем, что предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно формуле
t н i = t н д + A 1 P i P н а с A 2 Г i Г 0 ,
где tнi - температура насыщения нефти парафином в скважине;
tнд - температура насыщения дегазированной нефти;
Pi - ряд последовательных значений давления в заданном интервале, МПа;
Pнас - давление насыщения нефти газом;
Гi - газонасыщенность нефти при соответствующих значениях давления Рi и температуре Ti, м33;
Г0 - газосодержание нефти при давлении Pнас;
A1 и A2 - корреляционные коэффициенты, зависящие от состава и свойств нефти, по построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином определяют глубину и термодинамические. условия интенсивной парафинизации в скважине, далее с учетом определяемых условий подбирают количество и концентрацию компонентов для выноса расплавленного парафина.



 

Похожие патенты:

Изобретение относится к нефтяной и газовой промышленности и может использоваться при защите от внутренней коррозии трубопроводов системы сбора нефти с высокой обводненностью на поздней стадии разработки нефтяного месторождения.

Изобретение относится к нефтяной промышленности. .

Изобретение относится к автономным устройствам для доставки реагента в скважину и его дозирования в добываемую жидкость. .

Изобретение относится к нефтяной промышленности и может быть использовано для предупреждения образования отложений неорганических соединений солей в процессе добычи нефти в скважинах с исправным состоянием обсадных колонн и оборудованных УЭЦН.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для дозированной подачи жидких реагентов в нефте- или газопроводы при обработке призабойной скважины.

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. .

Изобретение относится к нефтегазодобывающей отрасли и может найти применение для очистки нефтяных и газовых скважин от отложений. .

Изобретение относится к нефтегазодобывающей отрасли, а именно к устройствам для подачи химических реагентов в скважинную жидкость для предотвращения отложения солей на рабочих органах электроцентробежных насосов.

Изобретение относится к нефтедобывающей промышленности, в частности к способам удаления неорганических солей, отложившихся в скважинах и на поверхности нефтепромыслового оборудования.

Изобретение относится к области нефтегазодобычи, в частности к строительству, заканчиванию и капитальному ремонту скважин. .

Изобретение относится к нефтепромысловому оборудованию, в частности к устройствам для подачи химических реагентов в скважину. Устройство содержит цилиндрический корпус с заглушкой и отверстиями в верхней части, заполненный ниже уровня отверстий реагентом с образованием свободной полости. В заглушке выполнено сквозное отверстие, снаружи перекрытое дозатором, а со стороны свободной полости - рукавным фильтром из полимерного материала. На корпусе установлена муфта с отверстиями для выноса разбавленного реагента, поступающего из свободной полости через дозатор. Изобретение обеспечивает продолжительное равномерное поступление реагента в пластовую жидкость. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам ингибирования образования гидратов углеводородов в прискважинной зоне или в участках трубопровода при добыче и транспорте природных и попутных газов и может быть использовано в процессах добычи, транспорта и хранения нефти. В способе ингибирования образования гидратов углеводородов, включающем закачку в прискважинную зону или в участок трубопровода водной композиции полимера, указанная композиция содержит водный раствор полимера из группы, включающей: сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, диметиламиноэтилметакрилат, гидроксиэтилцеллюлозу, поливинилпирролидон, поливинилкарбоксилат, полиакрилат, поливинилкапролактам, акриламидометилпропансульфонат полиакриламид, гипан, полиоксипро в масле полимера из группы, включающей: полиакриламид, карбоксиметилцеллюлозу, эфир оксиэтилцеллюлозы, полиметакрилат, поливинилацетат или поливиниловый спирт или их сополимеры, и дополнительно - карбамидоформальдегидный концентрат КФК и гидрофобизирующую добавку при следующем соотношении компонентов, масс.%: указанные водный раствор или эмульсия 0,05-5,0, КФК 0,1-5,0, гидрофобизирующая добавка 0,1-5,0, вода - остальное, а перед закачкой указанной композиции дополнительно закачивают оторочку КФК в количестве 0,1-5,0 мас.% от массы указанной композиции и осуществляют выдержку не менее 3-5 часов. Изобретение развито в зависимом пункте формулы. Технический результат - повышение ингибирующей способности. 1 з.п. ф-лы, 19 пр., 2 табл., 1 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для подачи химических реагентов в скважинную жидкость.Устройство содержит соединенные по торцам с помощью муфт цилиндрические контейнеры с реагентом, камеры смешения и фильтры-дозаторы, расположенные в муфтах, имеющих, по крайней мере, по одному ряду входных и выходных отверстий. Верхние торцы цилиндрических контейнеров перекрыты фильтрами-дозаторами, а нижние торцы - заглушками. Муфты снаружи оснащены уплотнительными манжетами. Фильтры-дозаторы помещены в цилиндрический корпус, оснащенный сверху калиброванным отверстием. Выше фильтра-дозатора в муфте установлен струйный насос, а ниже струйного насоса в муфте установлен эжектор, сообщенный с рядом входных отверстий муфт патрубками. Камера смешения расположена в муфте на выходе струйного насоса. Выше струйного насоса в муфте размещены диафрагмы с центральными щелевыми отверстиями. Каждое отверстие последующей диафрагмы смещено на угол 25-30° по направлению часовой или против часовой стрелки. Проходные сечения отверстий диафрагм выполнены уменьшающимися снизу вверх. Повышается эффективность работы устройства за счет повышения качества смешивания реагента и точности дозирования. 3 ил.

Изобретение относится к горнодобывающей промышленности. Технический результат - повышение добычи углеводородов и обеспечение бесперебойной работы скважин без остановок добычи на время ремонтов. В способе в скважины закачивают рабочие жидкости для обработки призабойных зон и вытеснения нефтей из пластов, производят ремонт скважин и антикоррозийную обработку труб и оборудования в них, очищают трубы в верхних частях добывающих скважин от асфальтеновых и смолопарафиновых отложений АСПО. В качестве рабочей жидкости используют комплексный органический растворитель, состоящий из производных ароматических углеводородов, сложных эфиров карбоновых и органических кислот, у которого изменяют плотность и вязкость в зависимости от изменяющихся условий конкретных месторождений. Процесс обработки пластов указанным растворителем из всех добывающих скважин на месторождениях повторяют многократно через заданные промежутки времени и поддерживают требуемый уровень добычи нефтей и газов на месторождениях. Для очистки от АСПО многократно прокачивают указанный растворитель с введенными в него антикоррозийными добавками в виде фосфатов по трубам из забоев скважин на поверхность и обратно по замкнутому циклу. Для добычи газа из месторождений с высокой обводненностью пластов и низким пластовым давлением плотность комплексного органического растворителя изменяют для вытеснения пластовых вод вглубь пластов. Для увеличения объемов добычи нефтей одновременно с обработкой комплексным органическим растворителем призабойных зон всех добывающих скважин осуществляют глушение им всех нагнетательных скважин и вытесняют нефти в сторону добывающих скважин, при этом чередуют объемы закачки в нагнетательные скважины комплексного органического растворителя с объемами закачиваемых вслед за ним пластовых вод в соотношениях от 1:1 в начале закачки в пласты и до не менее 1:20 в конце по мере увеличения общего объема закачки в пласты этого состава. 2 ил.

В настоящем изобретении предложены способы обработки углеводородных текучих сред с целью уменьшения кажущейся вязкости углеводородных текучих сред, встречающихся в операциях с нефтью, уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе. Способ уменьшения кажущейся вязкости углеводородной текучей среды, встречающейся в операциях с нефтью, включает: приведение в контакт углеводородной текучей среды с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Способ уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе включает: приведение в контакт углеводородной текучей среды, встречающейся в операциях с нефтью, внутри затрубного пространства или трубопровода с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение производительности и эффективности выделения нефти после транспортировки. 2 н. и 1 3 з.п. ф-лы, 4 табл., 7 пр., 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для предотвращения коррозии и отложений на оборудовании. Устройство содержит установку дозировочную электронасосную, линию нагнетания в виде жесткого шланга, соединенную с помощью устройства ввода, выполненного в устьевой арматуре с капиллярным трубопроводом, проходящим по наружной поверхности колонны насосно-компрессорных труб и насосного агрегата, на нижнем конце которого размещены подвесное устройство, распылитель и центратор. Устройство ввода капиллярного трубопровода смонтировано в боковом отводе устьевой арматуры в виде патрубка с заглушкой, оснащенной центральным каналом. Снаружи канал заглушки сообщен с линией нагнетания, а изнутри - с верхним концом капиллярного трубопровода, имеющим возможность герметизации в заглушке. Между боковым отводом и заглушкой патрубок оснащен отводом с угловым вентилем. Капиллярный трубопровод выполнен в виде полимерного армированного кабеля и в подвесном устройстве соединен с полой штангой, жестко присоединенной сверху к подвесному устройству. На нижнем конце полой штанги установлен распылитель, оснащенный регулируемым обратным клапаном. Повышается надежность, эффективность, снижается металлоемкость. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может применяться для очистки скважин от асфальтосмолопарафиновых отложений. Колонну труб спускают в скважину на глубину от 1 до 10 м от забоя, к первой затрубной задвижке монтируют нагнетательную линию и обвязывают ее с насосным агрегатом и автоцистернами с реагентом и технологической жидкостью.Насосным агрегатом по нагнетательной линии закачивают в затрубное пространство растворитель, одновременно вытесняя скважинную жидкость через колонну труб в нефтепровод и не превышая при этом давления, допустимого на эксплуатационную колонну. Отсоединяют от насосного агрегата автоцистерну с реагентом и подсоединяют к нему автоцистерну с технологической жидкостью, насосным агрегатом подают технологическую жидкость в нагнетательную линию в объеме 1,0 м3 и прокачивают реагент из нагнетательной линии в затрубное пространство скважины. Оставляют скважину на технологическую выдержку в течение 6 ч, закрывают задвижку на нефтепроводе и обвязывают первую затрубную задвижку с автоцистерной с растворителем. Промывают ствол скважины по замкнутому кругу в три цикла. Открывают вторую трубную задвижку, открывают задвижку на нефтепроводе и отсоединяют от насосного агрегата автоцистерну с реагентом и подсоединяют к нему автоцистерну с технологической жидкостью, промывают ствол скважины от растворителя технологической жидкостью, вытесняя его в нефтепровод и не превышая при этом давления, допустимого на эксплуатационную колонну и нефтепровод. Повышается эффективность очистки, сокращается длительность процесса, повышается культура производства. 2 ил.

Предложение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением. Устройство содержит колонну лифтовых труб с глубинным насосом, станцию управления на устье скважины, устьевую арматуру, оснащенную выкидной линией с трубной задвижкой, установленную на верхнем конце лифтовой колонны труб. Глубинный насос снизу оснащен хвостовиком, спущенным ниже интервала перфорации. Устьевая арматура оснащена двумя нагнетательными линиями, сообщенными с межколонным пространством скважины. Первая линия оснащена штуцером, задвижкой и обвязана с насосным агрегатом на устье скважины. Устройство оснащено манифольдной линией с задвижкой, гидравлически связывающей выкидную линию скважины со второй линией, оснащенной задвижной за манифольдной линией. В первом положении двухпозиционный переключатель потока жидкости обеспечивает подачу химического реагента от первой нагнетательной линии в межколонное пространство скважины. Во втором положении переключатель соединяет выкидную линию с отбираемой из скважины жидкостью через манифольдную линию со второй нагнетательной линией. Повышается надежность, упрощается конструкция. 2 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для очистки скважин. На устье монтируют нагнетательную линию, проходящую через теплообменное устройство, которое обвязывают с паропередвижной установкой и автоцистернами с растворителем и технологической жидкостью, обвязанными с насосным агрегатом. Одновременно запускают в работу паропередвижную установку и насосный агрегат, заполняют эксплуатационную колонну и спущенную в нее колонну насосно-компрессорных труб растворителем, подогретым в теплообменном устройстве до температуры 75-80°C. Температуру растворителя на выходе из теплообменного устройства поддерживают путем изменения расхода насосного агрегата, подающего растворитель из автоцистерны, при постоянных значениях температуры и расхода пара, создаваемых паропередвижной установкой на ее выходе. Процесс заполнения растворителем производят с одновременным вытеснением в нефтепровод скважинной жидкости. По окончании заполнения растворителем прекращают подачу пара в теплообменное устройство, насосным агрегатом подают технологическую жидкость в нагнетательную линию в объеме 1,0 м3 и прокачивают растворитель в скважину. Оставляют скважину на технологическую выдержку в течение 4 ч, после чего запускают в работу глубинный насос в режиме циркуляции, запускают скважину в эксплуатацию и откачивают отработанный растворитель в нефтепровод. Повышается эффективность и надежность обработки, сокращается продолжительность, повышается культура производства. 1 ил.
Наверх