Способ информационного квч воздействия на живой организм

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и обеспечение стабильных параметров информационного крайне высокочастотного (КВЧ) воздействия на живой организм с использованием лазерных систем. Способ заключается в облучении живого организма электромагнитными волнами малой интенсивности с использованием лазерного излучения в качестве электромагнитных волн малой интенсивности. Для облучения биологического объекта применяют лазеры ультракоротких импульсов, например, или лазеры на основе титан-сапфира с керровской линзой, или волоконные лазеры с диодной накачкой, задают период импульсов длительностью от 0,3 до 33,4 пикосекунд, длительность импульсов формируют в зависимости от величины скважности, взятой в диапазоне свыше 1 до 6680 включительно. В частности, в режиме меандра назначают длительность импульсов от 0,15 до 16,70 пикосекунд. При этом формируют импульсы с очертаниями в виде колоколообразной кривой. 4 з.п. ф-лы, 2 табл., 3 ил.

 

Изобретение относится к области биологии и медицины и может быть использовано для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных.

Известны способы облучения живых организмов или растений, заключающиеся в формировании расходящегося поток излучения от гелий-неонового лазера, который направляют на стимулируемый биообъект. При этом, расстояние от центра рассеивания потока оптического излучения от лазера до облучаемого биообъекта определяют из условия наличия фоторезонанса в клетках облучаемого биообъекта в зависимости от величины интенсивности потока оптического излучения и угла рассеивания этого потока (патент №2005344 по МПК - A01G 7/04, A01K 29/00, A61N 5/06; опубл. 15.01.1994 г.) (аналог).

Однако известные способы предполагают облучение биообъекта только в оптическом диапазоне и не учитывают особенности влияния электромагнитных излучений крайне высокой частоты.

Известны способы биостимуляции сельскохозяйственной птицы электромагнитным оптическим излучением, при которых на область груди цыплят-бройлеров в суточном возрасте однократно воздействуют низкоинтенсивным сканирующим лазерным излучением красного диапазона, пропущенным через пространственный модулятор при соблюдении длины волны 658 нм, длительности импульсов 250 нс, частоты импульсов 80 Гц, мощности излучения лазера 50 мВт, экспозиции излучения 60, 120 и 1,80 с (патент №2439876 по МПК - A01K 31/00; опубл. 20.01.2012 г,) (аналог).

Однако указанные способы, судя по частоте импульсов в 80 Гц, относятся к низкочастотным методам биостимуляции живых объектов и поэтому не применимы в крайневысокочастотном (КВЧ) диапазоне.

Известен также способ информационного КВЧ воздействия на живой организм, заключающийся в облучении биологически активных точек живого организма электромагнитными волнами малой интенсивности, причем в качестве электромагнитных волн малой интенсивности используют лазерное излучение, промодулированное информационным сигналом КВЧ диапазона. При этом лазерное излучение, промодулированное информационным сигналом КВЧ диапазона, формируют путем генерации в лазере одновременно по крайней мере двух мод, разность частот между которыми находится в окрестности хотя бы одной из трех величин: 66,1, 53,6 и 42,25 ГГц (патент №2109273 по МПК - G01N 22/00, A61N 5/02; опубл. 20.04.1998 г.) (прототип).

Известный способ обладает следующими недостатками:

а) модуляция лазерного излучения информационным сигналом КВЧ диапазона является сложной процедурой, при котором не удается осуществить быструю перестройку модулятора на другие частоты и обеспечить требуемые частотные характеристики;

б) модуляция лазерного излучения информационным сигналом КВЧ диапазона требуется специальный модулятор;

в) модулятор лазерного излучения подвергается значительному перегреву, что приводит к дестабилизации процессов модуляции и нарушению режимов облучения.

Задачами (целью) изобретения является упрощение процесса и обеспечение стабильных параметров информационного крайневысокочастотного (КВЧ) воздействия на живой организм с использованием лазерных систем.

Указанные задачи достигается тем, что в способе информационного КВЧ воздействия на живой организм, заключающемся в облучении живого организма электромагнитными волнами малой интенсивности с использованием лазерного излучения в качестве электромагнитных волн малой интенсивности, для облучения биологического объекта применяют лазеры ультракоротких импульсов, например или лазеры на основе титан-сапфира с керровской линзой, или волоконные лазеры с диодной накачкой, задают период импульсов длительностью от 0,3 до 33,4 пикосекунд, длительность импульсов формируют в зависимости от величины скважности, взятой в диапазоне свыше 1 до 6680 включительно, в частности в режиме меандра назначают длительность импульсов от 0,15 до 16,70 пикосекунд, при этом формируют импульсы с очертаниями в виде колоколообразной кривой на графике функции φ=f(t), где φ - поверхностная плотность потока излучения, t - время.

На фиг.1 в сопоставительном масштабе приведены разновидности серий теоретических импульсов одинакового периода при скважности больше двух (при длительности импульса τ1) и при скважности, равной двум (при длительности импульса τ2); на фиг.2 представлена серия лазерных импульсов колоколообразной формы с экспоненциальным фронтом; на фиг.3 показан вид электрического поля лазерных импульсов. На фигурах обозначены: t - время; Т - период импульсов; τ - длительность импульса.

Способ информационного КВЧ воздействия на живой организм осуществляют следующим образом.

Облучают живой организм электромагнитными волнами малой интенсивности. В качестве электромагнитных волн малой интенсивности используют импульсное лазерное излучение с периодом импульсов длительностью от 0,3 до 33,4 пикосекунд. Период импульсов ориентировочно выбирают по таблице 1, а при необходимости более точного расчета используют формулы

ν = c 0 λ ; T = 1 ν ,

где ν - частота импульсов, соответствующих частоте крайневысокочастотных электромагнитных излучений (КВЧ ЭМИ); c0 - скорость света в вакууме, c0=2,99792·108 м/с; λ - длина волны; Т - период импульсов.

Таблица 1.
Соответствие длины волны с частотой и периодом импульсов лазера
Длина волны КВЧ
ЭМИ, мм
Частота ν, ГГц Необходимый период Т импульсов лазера, пс
10 29,979 33,4
9 33,310 30,0
8 37,474 26,7
7 42,827 23,4
6 49,965 20,0
5 59,958 16,7
4 74,948 13,3
3 99,931 10,0
2 149,896 6,7
1 299,792 3,3
0,9 333,102 3,0
0,8 374,740 2,7
0,7 428,274 2,3
0,6 499,653 2,0
0,5 599,584 1,7
0,4 749,480 1,3
0,3 999,307 1,0
0,2 1498,960 0,7
0,1 2997,920 0,3

Для обеспечения условия информационного воздействия электромагнитным излучением низкой интенсивности на многоклеточные организмы, в том числе на растения, животных и человека, принимают такое излучение, поверхностная плотность потока которого не превышает 10 мВт/см2.

Поверхностную плотность потока излучения вычисляют по формуле:

φ = Ф S ,

где Ф - поток (мощность) излучения; S - площадь поверхности, на которую направляют излучение.

Для облучения клеток и субклеточных структур поверхностную плотность потока излучения принимают на несколько порядков меньше.

Для облучения биологического объекта применяют лазеры ультракоротких импульсов, например или лазеры на основе титан-сапфира с керровской линзой, или волоконные лазеры с диодной накачкой. В зависимости от требуемой величины скважности задают длительность импульсов. При этом формируют импульсы с очертаниями в виде колоколообразной кривой на графике функции φ=f(t), где φ - поверхностная плотность потока излучения, t - время.

Скважность вычисляют по формуле:

Q = T τ ,

где Т - период импульсов; τ - длительность импульса.

Величину скважности оценивают исходя из факта, что известные лазеры ультракоротких импульсов позволяют получать самые короткие импульсы длительностью до 5 фемтосекунд. При такой постановке получают диапазон величин скважности 1<Q≤6680.

В частности, при отсутствии особых указаний по величине скважности считают наиболее целесообразным скважность, равную двум (Q=2). Таким образом, для имитации воздействия КВЧ ЭМИ при помощи импульсов лазерного излучения наиболее целесообразно импульсное излучение со скважностью, равной двум - меандр. Длительность импульсов и длительность паузы в периоде такого воздействия равны и характер импульс получил название «меандр». В режиме меандра назначают длительность импульсов от 0,15 до 16,7 пикосекунд.

Реальный лазерный импульс получают не строго прямоугольным по форме (как это показано на фиг.1), а получают сформированный непосредственно в лазерной системе импульс, график которой представляет собой колоколообразную кривую, имеющую экспоненциальный фронт, после которого функция проходит через максимум и уменьшается до нуля. Таким образом, серия лазерных импульсов выглядит в виде изображения, показанного на фиг.2, а электрическое поле имеет огибающую в виде периодической функции (фиг.3).

Пример. Провели оценочные расчеты и подбор лазера, имитирующего КВЧ ЭМИ относительно наиболее употребляемого в микроволновой экспериментальной биологии излучения с длиной волны λ=7,1 мм. Рассчитали требуемую частоту импульсов ν=42,2 ГГц. Определили период импульсов Т=23,68 пс. Назначили длительность импульса, например, при использовании меандра τ=11,84 пс. Из серии лазеров ультракоротких импульсов выбрали пикосекундный лазер, например, с длиной волны излучения 1060 нм (ближний инфракрасный диапазон оптических излучений).

Заявленный способ, основанный на облучении биообъектов ультракоторокими импульсами электромагнитных излучений оптического диапазона с частотами импульсов, которые соответствуют частотам крайневысокочастотных излучений (миллиметрового и субмиллиметрового диапазонов длин волн), позволяет получить определенный биологический эффект, схожий с действием крайневысокочастотных электромагнитных излучений. Использование импульсных лазерных систем позволяет упростить процесс облучения и биологической стимуляции. Исключение модулятора позволяет обеспечить стабилизацию параметров информационного крайневысокочастотного воздействия на живой организм. Таким образом, открывается еще одна область использования лазеров ультракоротких импульсов, а именно, применение их для исследования информационного воздействия на живые объекты и биологической стимуляции. Приведенные сведения позволяют произвести предварительный подбор лазера, который потенциально мог бы считаться квазибиологическим. Кроме того, в научных исследованиях открываются возможности получения новых эффектов воздействия электромагнитных излучений на объекты живой природы с более высокой воспроизводимостью результатов экспериментов.

1. Способ информационного КВЧ воздействия на живой организм, заключающийся в облучении живого организма электромагнитными волнами малой интенсивности с использованием лазерного излучения в качестве электромагнитных волн малой интенсивности, отличающийся тем, что для облучения биологического объекта применяют лазеры ультракоротких импульсов, задают период импульсов длительностью от 0,3 до 33,4 пикосекунд и формируют импульсы с очертаниями в виде колоколообразной кривой на графике функции φ=f(t), где φ - поверхностная плотность потока излучения; t - время.

2. Способ по п.1, отличающийся тем, что длительность импульсов формируют в зависимости от величины скважности, взятой в диапазоне свыше 1 до 6680 включительно.

3. Способ по п.1, отличающийся тем, что в режиме меандра назначают длительность импульсов от 0,15 до 16,70 пикосекунд.

4. Способ по п.1, отличающийся тем, что для облучения биологического объекта применяют лазеры на основе титан-сапфира с керровской линзой.

5. Способ по п.1, отличающийся тем, что для облучения биологического объекта применяют волоконные лазеры с диодной накачкой.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к технике обнаружения взрывчатых веществ, в частности, к способам обнаружения взрывчатых веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей.

Изобретение относится к области неразрушающего контроля и диагностики материалов и может быть использовано в тех областях науки и техники, где необходимо отслеживать состояние материалов без оказания тестового воздействия на них.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. .

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Изобретение относится к способам и устройствам измерения концентрации и электрофизических параметров жидких дисперсионных сред и может быть использовано для контроля и регулирования электрофизических параметров и концентрации ферромагнитных частиц (ФМЧ) в жидкости в процессе производства изделий из ферромагнитных материалов, в химической и других областях промышленности.

Изобретение относится к области измерительной техники, а именно к способу определения толщины металлического покрытия, нанесенного на диэлектрическую основу, при котором зондируют металлическое покрытие электромагнитным сигналом излучателя.

Изобретение относится к области электротехники, в частности к способу определения электропроводности и толщины полупроводниковых слоев на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме и может быть использовано в приборостроении, электронной промышленности и машиностроении для контроля скорости осаждения и состава осажденных покрытий.
Изобретение относится к медицине, а именно к физиотерапии, гастроэнтерологии. .

Изобретение относится к области медицины, а именно к функциональной диагностике. .
Изобретение относится к медицине, а именно - к физиотерапии. .

Изобретение относится к медицинской технике и предназначено для опто-пирометрического мониторинга температуры ткани в реальном времени. .
Изобретение относится к медицине, а именно к онкологии и хирургии, и может быть использовано для лечения рака прямой кишки. .
Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для индукции цитотоксического действия на опухолевые клетки.
Изобретение относится к физиотерапии. .

Изобретение относится к медицинской технике и предназначено для лечения злокачественных опухолей человека и животных, при помощи облучения электромагнитным полем сверхвысокой частоты.
Изобретение относится к медицине, а именно к физиотерапии, неврологии. .
Изобретение относится к медицине, а именно к физиотерапии. .

Изобретение относится к медицине и медицинской технике, а именно к устройствам, применяемым в онкологии и физиотерапии. Устройство содержит два электрода, установленных в полостях диэлектрических чашеобразных корпусов, подключенных к УВЧ-аппарату, каждый корпус которого снабжен дополнительным сетчатым электродом из графитизированной электропроводной ткани с примыкающей к нему прокладкой, пропитанной лекарственным веществом. Сетчатый электрод соответствует по форме и размерам основному электроду, установлен параллельно основному электроду, отделен от него диэлектрической прокладкой и подключен к источнику постоянного тока. На наружной поверхности каждого из корпусов, на равнозначном расстоянии друг от друга выполнены приливы со сквозными отверстиями для гибких световодов в количестве от 4 до 10 штук, собранных в общий кабель и подсоединенных к лазерному источнику света с возможностью освечивания опухоли с обеих сторон лазерным излучением. Использование изобретения позволит расширить физиотерапевтические функции устройств для УВЧ-гипетермии. 4 ил.
Наверх