Трехцикловой амплитудно-широтно-прерывный способ сушки изоляции электрических машин

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин и аппаратов. Технический результат - создание наиболее оптимального режима сушки изоляции, обеспечивающего ее надежность. Предложенный трехцикловой амплитудно-широтно-прерывный способ сушки изоляции электрических машин и аппаратов локомотивов включает принудительную продувку их воздушным потоком до нагрева и после нагрева, тепловой нагрев, контроль за рабочей температурой и состоянием изоляции. Отличие заключается в том, что сушку осуществляют циклами при высокой температуре. В первом цикле поверхностные слои изоляции сушат воздушным потоком, нагретым до предельно допустимой температуры для данного класса изоляции. Для класса изоляции В - 130°С, для F - 155°С, для Н - 180°С. Эта температура устанавливается в конце рабочего периода первого цикла и регулируется в осциллирующем режиме до конца рабочего периода третьего цикла. Такой режим обеспечивает удаление влаги из верхних слоев изоляции в первом цикле и из нижних слоев изоляции во втором и третьем циклах. В конце третьего цикла отключается электронагреватель 1 (см. фиг.1) и на полную мощность включается электродвигатель 4 привода вентилятора с целью полной нормализации изоляции. 2 ил.

 

Изобретение относится к электротехнике и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин.

Известен способ сохранения изоляции электрических машин и аппаратов локомотивов (1). Предложенный способ сохранения изоляции электрических машин и аппаратов локомотивов, включает принудительную продувку их воздушным потоком, тепловой нагрев и последующий контроль рабочей температуры воздуха и состояния изоляции. Способ характеризуется тем, что принудительную подачу воздуха через электрические машины и аппараты, осуществляют из окружающей среды, температуру которого ступенчато повышают с чередованием продувки с температурой окружающего воздуха и по времени в 2-5 раз больше времени нагрева, контролируя рабочую температуру воздуха и состояние изоляции, при этом дополнительно осуществляют ступенчатую сушку дискретно до температуры 90-100°С электрических машин и аппаратов, которые ранее до ремонта имели пониженное состояние изоляции.

Недостатки:

- при данном режиме сушки изоляции расходуется большое количество энергии;

- происходит повышенный износ изоляции и снижается ее надежность;

Ближайшим аналогом является патент (2). Предложенный способ сушки изоляции электрических машин и аппаратов локомотивов включает принудительную продувку их воздушным потоком, тепловой нагрев, контроль за рабочей температурой и состоянием изоляции. Сушку осуществляют ступенями. На первой ступени поверхностные слои изоляции сушат воздушным потоком нагретым до температуры 90-100°С, на второй ступени осуществляют сушку обмоток изоляции воздушным потоком при пониженной температуре 50-60°С. На третьей ступени сушки осуществляют воздушным потоком без подогрева, до тех пор, пока показатель сопротивления изоляции не достигнет норм, установленных правилами ремонта.

К недостаткам следует отнести:

- сушка изоляции при пониженных температурах в несколько раз увеличивает время на процесс нормализации изоляции;

- длительность процесса нормализации снижает качество изоляции.

Предложен трехцикловой амплитудно-широтно-прерывный способ сушки изоляции электрических машин и аппаратов локомотива. Предложенный способ сушки изоляции электрических машин и аппаратов локомотивов включает принудительную продувку их воздушным потоком до нагрева и после нагрева, тепловой нагрев, контроль за рабочей температурой и состоянием изоляции отличающейся тем, что сушку осуществляют циклами. В первом цикле поверхностные слои изоляции сушат воздушным потоком, нагретым до предельно допустимой температуре для данного класса изоляции. Для класса изоляции В - 130°С, для F - 155°С, для Н - 180°С. Эта температура устанавливается в конце рабочего периода первого цикла и регулируется в осциллирующем режиме до конца рабочего периода третьего цикла.

Сущность изобретения поясняется схемами. На фиг.1 приведена «Схема нагрева воздуха в электрокалориферной установке», где показано: 1 - электронагреватель (ТЭНы), 2 - выходной патрубок, 3 - входной патрубок, 4 - электродвигатель вентилятора, 5 - кожух крыльчатки вентилятора, 6 - передвижная тележка, 7 - блок управления, 8 - гофры выходного патрубка. На фиг.2 приведена схема трехциклового амплитудно-широтно-прерывного режима энергоподвода от электрокалориферной установки.

По предложенному способу сушку изоляции осуществляют по циклам в следующей последовательности:

В первом цикле включают электронагреватель 1 и электродвигатель вентилятора 4 на полную мощность (максимальная амплитуда). По достижению температуры воздушного потока до предельно допустимого значения, электронагреватель отключается, и температура незначительно снижается.

Во втором цикле вновь включается электронагреватель 1, но с более низким уровнем энергоподвода по отношению к первому циклу, а электродвигатель 4 переключается на более низкий уровень энергоподвода. Суммарного уровня энергоподвода должно быть достаточно для восстановления температуры воздушного потока до предельно допустимого значения. По достижению температуры воздушного потока до предельно допустимого значения электронагреватель отключается, и температура незначительно снижается.

В третьем цикле снова включается электронагреватель 1, но с более низким уровнем энергоподвода по отношению ко второму циклу, и электродвигатель 4 переключается на самый низкий уровень энергоподвода. По достижению температуры воздушного потока до предельно допустимого значения электронагреватель отключается, а электродвигатель

переключается на полную мощность и работает до окончания цикла с целью полной нормализации изоляции.

Проведенные испытания в деповских условиях показали существенное снижение затрат на электроэнергию до 30…35% и сокращении в 2…3 раза времени на нормализацию изоляции.

Снижение затрат на электроэнергию и повышение качества процесса обусловлено тем, что сушку проводят при осциллирующем энергоподводе.

В первом цикле идет процесс удаления влаги из верхних слоев изоляции, во втором и третьем - из нижних слоев изоляции. В связи с этим повышается надежность изоляции.

Литература

1. Патент РФ №2138899, МПК H02K 5/12, H01F 4702. Заявка от 20.06.1997 г.

2. Патент РФ №2324278, МПК H02K 15/12. Заявка от 11.12.2006 г.

Трехцикловой амплитудно-широтно-прерывный способ сушки изоляции электрических машин и аппаратов, согласно которому осуществляют принудительную продувку их воздушным потоком до нагрева и после нагрева, тепловой нагрев, контроль за рабочей температурой и состоянием изоляции, отличающийся тем, что сушку осуществляют по циклам при высокой температуре с понижением уровня энергоподвода в каждом последующем цикле, причем в первом цикле поверхностные слои изоляции сушат воздушным потоком, нагретым до предельно допустимой температуры для данного класса изоляции: В - 130°С, F - 155°С, Н - 180°С, причем температура устанавливается в конце рабочего периода первого цикла и регулируется в осциллирующем режиме до конца рабочего периода третьего цикла, и такой режим обеспечивает удаление влаги из верхних слоев изоляции в первом цикле и из нижних слоев изоляции во втором и третьем циклах, причем в конце третьего цикла отключается электронагреватель, и на полную мощность включается электродвигатель привода вентилятора с целью полной нормализации изоляции.



 

Похожие патенты:
Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. .

Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. .

Изобретение относится к области электротехники и может быть использовано при техническом обслуживании и ремонте электрических машин. .

Изобретение относится к электротехнике, к корабельному электромашиностроению, в частности к погружным электрическим машинам, работающим в морской воде. .

Изобретение относится к области электротехники, касается технологии пропитки изоляции обмоток электрических машин и электротехнических изделий и может быть использовано при изготовлении статоров электрических машин, трансформаторов, дросселей.

Изобретение относится к области электротехники, предназначено для контроля сопротивления изоляции обмоток электродвигателя и сушки его обмоток токами нулевой последовательности при снижении сопротивления ниже заданного уровня.

Изобретение относится к области электротехники и касается способа формирования изолированных проводников ротора, используемых в узле ротора вращающейся электрической машины, а также особенностей конструктивного выполнения модульного устройства для осуществления данного способа.

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин. .

Изобретение относится к области электротехники и может быть использовано для удаления обмоток статора или якоря любого электродвигателя, в том числе погружных электродвигателей, обмоточный провод которых пропитан лаковым составом.

Изобретение относится к электромашиностроению, в частности к производству и ремонту электрических машин, например обмоток тяговых электрических машин локомотивов.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей. Новым является то, что контроль качества пропитки осуществляют по коэффициенту пропитки, определяемому по измеренным значениям эквивалентной теплоемкости обмоток до и после пропитки. При этом эквивалентные теплоемкости каждой контролируемой обмотки определяют путем подвода к проводу непропитанной и пропитанной обмотки постоянного стабилизированного тока, в течение разных времен t1 и t2 соответственно и определения подведенной к проводу энергии и температуры провода обмоток, как в момент подвода к их проводу постоянного стабилизированного тока, так и по истечении времен t1 и t2. Времена t1 и t2 определяют из сравнения характеристик реальной непропитанной и пропитанной обмотки с идеализированной непропитанной и пропитанной обмоткой. Под идеализированной обмоткой понимают такую обмотку, теплопроводность компонентов которой является бесконечно большой, и обмотка идеально теплоизолирована от внешней среды и магнитного сердечника. В изобретении указывается, как определить упомянутые времена t1 и t2, в которые можно считать реальную обмотку идеальной. Используя времена t1 и t2 при контроле качества пропитки, можно предельно уменьшить методические погрешности. Технический результат - повышение точности и достоверности контроля качества пропитки. 4 ил., 8 табл.
Изобретение относится к способу изготовления изоляции обмоток электрических машин. Способ изготовления заключается в том, что вначале осуществляют пропитку стеклослюдоленты первым компаундом. Одновременно изготавливают второй компаунд на основе первого, в который дополнительно вводят марганцевый ускоритель полимеризации. Затем один или несколько слоев стеклослюдоленты накладывают на изделие, нагревают в печи до температуры 150-160°C. Далее изделие помещают в автоклав со вторым компаундом на 3-10 минут. После этого изделие извлекают из автоклава и помещают в печь, выдерживают 2-3 часа при температуре 160-180°C. Первый компаунд включает следующие компоненты при их соотношении в мас.%: 89,6-54,3 метакрилированной эпоксидной смолы, 10-45 диметакрилового эфира триэтиленгликоля, 0,2-0,3 перекисного инициатора полимеризации, 0,2-0,4 ингибитора полимеризации. Второй компаунд включает следующие компоненты при их соотношении в мас.%: 87,6-52,0 метакрилированной эпоксидной смолы, 10-44,9 диметакрилового эфира триэтиленгликоля, 1,0-1,2 перекисного инициатора полимеризации, 1,2-1,4 марганцевого ускорителя полимеризации, 0,2-0,5 ингибитора полимеризации. Изобретение позволяет повысить качество изоляции и точность получения заданных характеристик путем обеспечения глубокой и равномерной пропитки изоляции связующим, а также снизить энерго- и трудозатраты. 4 з.п. ф-лы.
Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и касается к способа изготовления обмоток электрических машин постоянного тока тягового электродвигателя. Технический результат, достигаемый при использовании данного изобретения, состоит в обеспечении повышенного усилия выпрессовки обмоток электрических машин класса нагревостойкости Н. Указанный технический результат достигается тем, что согласно предлагаемому способу изготовления обмоток электрической машины осуществляют нанесение на обмотку электроизоляционного материала, пропитанного нагревостойким связующим, монтаж обмотки на сердечник, разогрев и пропитку под вакуумом и давлением, причем основную изоляцию обмотки предварительно пропитывают полиэфиримидным компаундом класса нагревостойкости Н, а пропитку моноблока осуществляют эпоксидным компаундом класса нагревостойкости F с последующим отверждением. В частности, при осуществлении способа на полюсную катушку наносят слюдосодержащую ленту, пропитанную полиэфиримидным компаундом класса нагревостойкости Н, катушку надевают на полюс, предварительно изолированный электроизоляционным материалом. Моноблок разогревают до температуры, обеспечивающей миграцию компаунда внутрь изоляции, помещают в пропиточный автоклав и пропитывают компаундом класса нагревостойкости F под вакуумом и давлением. После стекания излишков компаунда моноблок помещают в термостат и отверждают при температуре, обеспечивающей одновременное отверждение компаунда в ленте и пропиточного компаунда в обмотке. Основная изоляция, подвергающаяся максимальным тепловым нагрузкам, соответствует классу нагревостойкости Н. Зазор между катушкой и полюсом пропитан компаундом класса нагревостойкости F, который обладает высокими механической прочностью, теплопроводностью и теплостойкостью вплоть до температуры класса нагревостойкости Н.

Изобретение относится к электромашиностроению и может быть использовано при изготовлении обмоток статоров электрических машин, трансформаторов, дросселей. Способ заключается в том, что пропиточный состав из емкости подают в виде вращающейся вдоль лобовых частей обмотки струи, при этом струю пропиточного состава заряжают электростатическим зарядом путем пропускания ее вдоль поверхности высоковольтного электрода, заземляют провод обмотки, а вращение струи осуществляют путем пропускания ее через индуктор, создающий вращающееся магнитное поле. Знак электростатического заряда струи периодически изменяют на противоположный, для чего на высоковольтный электрод подают инвертированные высоковольтные импульсы, длительность каждого из которых равняется периоду вращения струи вдоль лобовой части. Заявляемый способ позволяет повысить коэффициенты пропитки обмоток в 1,3-1,4 раза. 2 ил., 1 табл.

Изобретение относится к электротехнике и может быть использовано, например, в производстве статоров электрических машин. Способ пропитки многовитковой обмотки электрической машины заключается в подаче на лобовые части обмотки тонкой струи пропиточного состава из сопла на нагретую лобовую часть обмотки и во вращении струи вдоль лобовой части обмотки. Перед пропиткой в пропиточный состав добавляют мелкодисперсный ферромагнитный наполнитель, который предварительно дезинтегрируют. Смешивают пропиточный состав с измельченным ферромагнитным наполнителем, перемешивают полученную смесь и заливают ее в пропиточную установку. Перед пропиткой по обмоточным данным рассчитывают предельную массу пропиточной смеси mпр, которую можно разместить в полостях каждой из однотипных обмоток в процессе пропитки. Вводят в сопло электрод и подают на него потенциал, осуществляют процесс пропитки каждой из однотипных обмоток. В процессе пропитки частицы пропиточной смеси компаунда с мелкодисперсным ферромагнитным порошком электростатически заряжают, формируют струю. Осуществляют окончательное компаундирование проникшей в обмотку пропиточной смеси. Заявляемый способ позволяет в среднем в 1,55 раз повысит коэффициент пропитки обмоток и существенно повысить стабильность их значений от обмотки к обмотке. 2 ил., 1 табл.

Изобретение относится к электротехнике, а именно к способу определения коэффициента пропитки обмоток электрических машин, соединенных в звезду с изолированной нейтралью. В способе определения коэффициента пропитки обмоток электрических машин, характеризующего степень заполнения пропиточным составом полостей обмотки, у каждой обмотки из данной партии измеряют электрические параметры до пропитки и после пропитки и сушки, в качестве электрических параметров выбраны емкости двух фаз обмотки, соединенной в звезду, которые поочередно измеряют до пропитки Сдп12, Сдп13, Сдп23 и после пропитки Спп12, Спп13, Спп23 относительно корпуса, после чего по результатам измерений определяют коэффициент пропитки каждых двух фаз Кпр12, Кпр13, Кпр23 по математической зависимости, после чего определяют коэффициенты пропитки каждой фазы обмотки по математическим зависимостям. Техническим результатом является возможность определять не только усредненный коэффициент пропитки, но и распределение пропиточного состава по фазам обмотки, что существенно повышает информативность и точность контроля. 2 табл., 3 ил.

Изобретение относится к области электротехники и электромашиностроения, в частности, к технологии электрических машин, например обмоток вращающихся электрических машин тягового подвижного состава. Способ пропитки изоляции лобовых частей обмоток вращающихся электрических машин состоит из трех последовательных этапов: 1) удаление влаги инфракрасным (ИК) нагревом из изоляции лобовой части перед пропиткой с предельно допустимой температурой для данного класса изоляции; 2) нанесение на лобовую часть пропиточной смеси при помощи автоматических распылителей высокого давления; 3) транспортировку пропиточной смеси вглубь изоляции обмотки при помощи коротковолновых и средневолновых импульсных керамических преобразователей ИК-излучения. При этом удаление влаги из изоляции лобовой части обмотки перед ее пропиткой и транспортировку пропиточной смеси вглубь изоляции обмотки осуществляют в спектрально-осциллирующих режимах энергоподвода с циклическим чередованием коротковолнового и средневолнового ИК-излучения. Технический результат - повышение качества процесса пропитки в несколько раз при одновременном сокращении времени пропитки в 7-10 раз и обеспечении 2- или 3-кратного эффекта от ресурсоэнергосбережения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано, например, в производстве статоров электрических машин. Согласно данному изобретению после разогрева обмотки перед пропиткой до заданной температуры подают в нее импульсы тока, амплитуда которых лежит в диапазоне (10-50)А, а длительность (0,5-10) с, при этом частота следования импульсов тока лежит в диапазоне (5-10) Гц. Одновременно с подачей упомянутых импульсов тока в обмотку подключают к магнитному сердечнику обмотки инфразвуковой излучатель. При этом изменяют частоту звуковых колебаний инфразвукового излучателя непрерывно и циклически в диапазоне частот от 0,5 кГц до 10 кГц и обратно. По завершении пропитки отключают от магнитного сердечника инфразвуковой генератор, отключают от обмотки источник импульсного тока, подключают к обмотке греющий постоянный или переменный ток, при помощи которого разогревают пропитанную обмотку до температуры полимеризации пропиточного состава, и сушат обмотку до полного отверждения в ней пропиточного состава. Технический результат, достигаемый при осуществлении данного способа, состоит в сокращении времени пропитки в 1,8 раза и в повышении коэффициента пропитки в 1,8 раза при одновременном снижении в три раза разброса коэффициентов пропитки от обмотки к обмотке. 2 ил.

Изобретение относится к области электротехники, в частности к контролю качества пропитанной изоляции электротехнических изделий, и может быть использовано для контроля процесса отверждения пропитанной изоляции обмоток электротехнических изделий. Согласно изобретению, предварительно подготавливают партию образцов пропиточного состава, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимают зависимость диэлектрической проницаемости от частоты электромагнитного поля. По снятым зависимостям выбирают две частоты измерения, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая - f2 в оптической области не отвержденного изоляционного пропиточного состава. Затем, используя снятые для образцов частотные зависимости, строят график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , где εпс(f1) εпс(f2) - диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно. После этого у каждой из контролируемых обмоток измеряют на выбранных двух частотах емкости относительно корпуса до пропитки Cдп(f1) и Cдп(f2), и емкости у тех же обмоток после их пропитки и сушки Cпп(f1) и Cпп(f2), и по результатам измерений вычисляют отношение lgε пс ( f 2 ) lgε пс ( f 1 ) = lnC пп (f 2 ) + ln[C экв ( f 2 ) − C дп ( f 2 ) ] − lnC дп ( f 2 ) − ln[C экв ( f 2 ) − C пп ( f 2 ) ] lnC пп (f 1 ) + ln[C экв ( f 1 ) − C дп ( f 1 ) ] − lnC дп ( f 1 ) − ln[C экв ( f 1 ) − C пп ( f 1 ) ] , где C экв ( f 1 ) = 2pSε 0 ε э ( f 1 ) ε к ( f 1 ) 3[d э ε к ( f 1 ) + d к ε э ( f 1 ) , C экв ( f 2 ) = 2pSε 0 ε э ( f 2 ) ε к ( f 2 ) 3[d э ε к ( f 2 ) + d к ε э ( f 2 ) - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; εэ(f1), εэ(f2), - диэлектрические проницаемости эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля соответственно; εк(f1), εк(f2) - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля, соответственно; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции, после чего по вычисленной по результатам измерения величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяют из графика зависимости степени высушенности пропиточного состава степень высушенности пропиточного состава в каждой контролируемой обмотке. Предлагаемый способ обеспечивает достижение технического результата, состоящего в исключении необходимости измерения собственной емкости обмоток на трех частотах с применением эталонной индуктивности при одновременном обеспечении существенного упрощения его (способа) осуществления (реализации) за счет исключения необходимости изготовления и использования для контроля таких элементов, как стабилизатор тока, измеритель времени разогрева и измеритель приращения температуры обмоток в процессе их разогрева. 1 табл., 4 ил.

Изобретение относится к области электротехники, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий, в частности пропитки обмоток электрических машин. Согласно предлагаемому способу определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин у каждой обмотки из данной партии до пропитки и после пропитки полимерным составом и сушки измеряют емкости Скдп и Скпп относительно корпуса. Затем после пропитки и сушки обмоток измеряют температуру у каждой обмотки Т1пп и через провод каждой контролируемой обмотки пропускают постоянный стабилизированный ток I0, величину которого выбирают в зависимости от площади сечения S жилы провода обмотки в интервале предельно допустимых для материала провода обмотки плотностей тока от jmin до jmax в диапазоне значений jminS ≤ I0 ≤ jmaxS. При этом упомянутый выбранный ток I0 пропускают через обмотку в течение определенного времени t0 и измеряют падение напряжения на обмотке U1п в момент подвода к ней стабилизированного тока и падение напряжения на обмотке U2п в момент упомянутого времени t0. После упомянутых выше операций у каждой контролируемой обмотки по результатам измерений определяют коэффициент пропитки прикорпусных полостей Кки обмотки и коэффициент пропитки Кмв межвитковых полостей обмотки по формулам К к и = 1 ln ε п с × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) ,                                        ( 4 ) К м в = 1 m 0 м в с с { I 0 × t о [ U 1 п ( U 1 п + U 2 п ) α 2 ( U 2 п − U 1 п ) [ 1 + α ( Т 1 − 20 ] ] − [ 1 + α ( Т 1 − 20 ) ] B 2 U 1 п + B 1 } ,       ( 5 ) где С э к в = р S п ε 0 ε э ε к ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции обмотки; р - количество пазов в магнитном сердечнике, в которые всыпается контролируемая часть обмотки; Sп - площадь поверхности паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода; cс - удельная теплоемкость высохшего пропиточного состава; m 0 м в = d c S c l w ( 1 − р 4 К з ) × р 2 − р S п 2 ε 0 ( С э к в − С д п С д п С э к в ) - предельная масса сухого пропиточного состава, которую можно разместить в межвитковых полостях обмотки при их 100% заполнении; dc - плотность высохшего пропиточного состава; Sс - площадь сечения паза; lw - длина витка обмотки; Кз - коэффициент заполнения паза; α - температурный коэффициент сопротивления провода обмотки; B1 = Сээм + Сэк - эквивалентная теплоемкость слоев теплоемкостей эмали С э э м = с э π ( D э 2 − D п р 2 ) 4 1 п р ρ э м и корпусной изоляции Сэк = Ски × П × dки × L × р × ски; сэ - удельная теплоемкость эмали; Dэ - диаметр эмалированного провода обмотки; Dпр - диаметр жилы провода обмотки; lпр - номинальная длина провода контролируемой части обмотки; ρэм - плотность эмали; ски - удельная теплоемкость корпусной изоляции; П - периметр паза; dки - толщина корпусной изоляции; L - длина паза; ρки - плотность корпусной изоляции; В 2 = с п р × ρ 2 0 × I 0 2 ρ п р l п р 2 - постоянный коэффициент; спр - удельная теплоемкость материала жилы провода обмотки; ρ20 - удельное сопротивление материала жилы провода обмотки при 20°С. Технический результат - упрощение способа за счет исключения необходимости у одной из произвольно выбранных обмоток измерять емкость относительно корпуса и собственную емкость до пропитки, затем погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и вновь измерять емкость этой обмотки относительно корпуса и собственную емкость обмотки, не вынимая обмотку из пропиточной жидкости, а также исключения необходимости у каждой из контролируемых обмоток дважды измерять собственные емкости: до пропитки и после нее, повышение точности, так как значение коэффициента пропитки не зависит от взаимного расположения витков в пазу, а также повышение информативности контроля, так как данный способ позволяет определить, как пропиточный состав распределился внутри обмотки и каковы коэффициенты пропитки прикорпусных и межвитковых полостей обмоток. 1 табл., 2 ил.
Наверх