Способ формирования частоты и фазы выходного сигнала управляемого генератора блока синхронизации в режиме удержания

Предлагаемый способ относится к технике связи и к режимам работы блоков синхронизации (БС), содержащим управляемые генераторы (УГ), точнее, к способам формирования высокостабильного выходного сигнала УГ БС в режиме удержания. Достигаемый технический результат - повышение точности формирования высокостабильного выходного сигнала УГ БС в режиме удержания. Способ формирования частоты и фазы выходного сигнала УГ БС в режиме удержания включает предварительное, в режиме синхронной работы, накопление наборов параметров, характеризующих зависимость отклонений частоты выходного сигнала УГ от эффектов старения УГ и от воздействий изменений температуры окружающей среды, формирование частоты и фазы выходного сигнала УГ в режиме удержания путем прогнозирования отклонений частоты выходного сигнала УГ от начального значения на основе предварительно накопленных наборов параметров, времени работы в режиме удержания и текущих значений температуры окружающей среды, при этом производят расчет необходимых изменений цифрового сигнала управления (ЦСУ) УГ на основе спрогнозированных значений отклонений частоты для компенсации спрогнозированных значений отклонений частоты и с учетом прогнозирования некомпенсированных отклонений частоты. 4 ил.

 

Предлагаемый способ относится к технике связи и к режимам работы блоков синхронизации (БС), содержащим управляемые генераторы (УГ), точнее, к способам формирования высокостабильного выходного сигнала УГ БС в режиме удержания.

Один из известных способов формирования высокостабильного выходного сигнала УГ в режиме удержания представлен в патенте US 7692499 «Способ формирования высокостабильных сигналов синхронизации в режиме удержания с цифровой компенсацией и с использованием адаптивной фильтрации» (авторы Xin Liu, Liang Zhang и др.), дата приоритета 31.12.2007 г.

В известном способе предложено повысить стабильность частоты выходного сигнала УГ БС в режиме удержания путем компенсации отклонения частоты, связанного с эффектом старения УГ и с изменениями температуры. Непосредственное измерение отклонения частоты УГ невозможно, так как в режиме удержания сигнал внешней синхронизации отсутствует. Чтобы обеспечить возможность прогнозирования значений отклонений частоты УГ в режиме удержания, в упомянутом способе предлагается заранее, в режиме синхронной работы, накопить два набора параметров, характеризующих зависимость отклонений частоты УГ от старения и изменений температуры. После перехода УГ в режим удержания, отклонения частоты УГ оцениваются на основе прогноза. Исходными данными для расчета прогнозируемых отклонений частоты являются предварительно накопленные два набора параметров, время работы в режиме удержания и отклонение температуры от начального значения режима удержания.

Общее выражение для прогнозирования значений отклонений частоты УГ в режиме удержания, приведенное в известном способе, представлено следующим образом:

F ( k + 1 ) = F ( k ) + G k + T k ( 1 )

где F(k) и F(k+1) - спрогнозированные отклонения частоты в моменты времени k и k+1 соответственно, относительно начального значения частоты в режиме удержания,

G и Г - параметры из двух предварительно накопленных наборов, соответствующие отклонению частоты соответственно от старения УГ и изменения температуры,

k - момент времени.

Чтобы скомпенсировать спрогнозированное отклонение частоты, вводится изменение в цифровой сигнал управления (ЦСУ) УГ.

Указанный способ имеет недостатки. В связи с конечной разрядностью ЦСУ, компенсация спрогнозированных отклонений частоты будет производиться с некоторой погрешностью, не превышающей цены единицы младшего разряда кода ЦСУ. Некомпенсированные отклонения частоты будут вызывать отклонения фазы выходного сигнала УГ от начального значения режима удержания. Если БС входит в состав аппаратуры синхронизации времени, неконтролируемые отклонения фазы выходного сигнала УГ могут значительно увеличить случайную составляющую основной погрешности аппаратуры.

Целью изобретения является ограничение изменений фазы УГ БС в режиме удержания заранее заданными пределами для повышения точности формирования высокостабильного выходного сигнала УГ БС в режиме удержания.

Техническим результатом применения предлагаемого изобретения является снижение расходов на эксплуатацию оборудования и сетей синхронизации, за счет возможности использования недорогих управляемых генераторов с влияниями на отклонения частоты эффекта старения и изменений температуры большими, чем в существующем оборудовании. Таким образом, предлагаемый способ позволяет снизить стоимость используемых УГ, при сохранении параметров качества связи. Также применение предлагаемого способа позволяет значительно увеличить допустимое время работы БС в режиме удержания без ухудшения качества связи.

Для достижения указанной цели предлагается в способе формирования частоты и фазы выходного сигнала управляемого генератора блока синхронизации в режиме удержания, включающем предварительное, в режиме синхронной работы, накопление наборов параметров, характеризующих зависимость отклонений частоты выходного сигнала управляемого генератора (УГ) от эффектов старения УГ и от воздействий изменений температуры окружающей среды, и формирование частоты и фазы выходного сигнала УГ в режиме удержания путем прогнозирования отклонений частоты выходного сигнала УГ от начального значения на основе предварительно накопленных наборов параметров, времени работы в режиме удержания и текущих значений температуры окружающей среды, расчет необходимых изменений цифрового сигнала управления (ЦСУ) УГ на основе спрогнозированных значений отклонений частоты и формирования изменений ЦСУ УГ для компенсации спрогнозированных отклонений частоты выходного сигнала УГ,

- производить прогнозирование некомпенсированных отклонений частоты выходного сигнала УГ, вызванных конечной разрядностью кода ЦСУ,

- производить прогнозирование отклонений фазы выходного сигнала УГ от начального значения, вызванных некомпенсированными отклонениями частоты,

- и, в случае выхода спрогнозированного отклонения фазы выходного сигнала УГ за заранее заданные предельные значения, вводить поправку к ЦСУ, равную по модулю одной единице младшего разряда кода ЦСУ, причем знак поправки выбирать таким, чтобы ограничить отклонения фазы выходного сигнала УГ.

На фиг.1 приведен пример графика изменения некомпенсированного отклонения частоты на выходе УГ при использовании известного способа формирования частоты и фазы УГ в режиме удержания.

На фиг.2 приведен пример графика общего характера изменения фазы на выходе УГ при использовании известного способа формирования частоты и фазы УГ в режиме удержания.

На фиг.3 приведен пример графика изменения некомпенсированного отклонения частоты на выходе УГ при использовании предлагаемого способа формирования частоты и фазы УГ в режиме удержания.

На фиг.4 приведен пример графика характера изменения фазы на выходе УГ при использовании предлагаемого способа формирования частоты и фазы УГ в режиме удержания.

Таким образом, в предлагаемом способе производится прогнозирование некомпенсированных отклонений частоты выходного сигнала УГ, вызванных конечной разрядностью кода ЦСУ.

Для расчета некомпенсированных отклонений частоты, из спрогнозированного в соответствии с выражением (1) отклонения частоты вычитается отклонение частоты, которое может быть скомпенсировано рассчитанным изменением ЦСУ.

Значение изменения ЦСУ, необходимого для компенсации спрогнозированного в соответствии с выражением (1) отклонения частоты, можно рассчитать в соответствии с выражением (2).

D ( k + 1 ) = [ F ( k + 1 ) f D ] ( 2 )

где:

D(k+1) - необходимое изменение ЦСУ в момент времени k+1 относительно начального значения ЦСУ в режиме удержания;

F(k+1) - спрогнозированное отклонение частоты в момент времени k+1 относительно начального значения частоты в режиме удержания;

fD - изменение частоты УГ при изменении ЦСУ на единицу младшего разряда;

[…] - обозначает округление до ближайшего целого значения.

Некомпенсированное отклонение частоты на выходе УГ можно определить по выражению:

F o u t ( k + 1 ) = F ( k + 1 ) + D ( k + 1 ) f ( 3 )

где:

D(k+1) - необходимое изменение ЦСУ в момент времени k+1 относительно начального значения ЦСУ в режиме удержания;

Fout(k+1) - спрогнозированное некомпенсированное отклонение частоты на выходе УГ в момент времени k+1;

F(k+1) - спрогнозированное отклонение частоты в момент времени k+1 относительно начального значения частоты в режиме удержания;

fD - изменение частоты УГ при изменении ЦСУ на единицу младшего разряда.

Некомпенсированное отклонение частоты на выходе УГ будет вызывать отклонение фазы выходного сигнала УГ, равное произведению среднего отклонения частоты на время.

Если обозначить как Δt промежуток времени между моментами времени k и k+1, можно спрогнозировать отклонение фазы в момент времени k+1, проведя расчет по следующему выражению:

Ф ( k + 1 ) = Ф ( k ) + F o u t ( k + 1 ) + F o u t ( k ) 2 Δ k ( 4 )

где:

Ф(k) и Ф(k+1) - отклонение фазы сигнала на выходе УГ в моменты времени k и k+1, относительно начального значения в режиме удержания;

Fout(k) и Fout(k+1) - спрогнозированное некомпенсированное отклонение частоты на выходе УГ в моменты времени k и k+1;

Δt - промежуток времени между моментами времени k и k+1.

Предполагается, что промежуток времени Δt достаточно мал, чтобы считать изменение частоты на этом промежутке линейной функцией.

Пример.

Характер изменения некомпенсированных отклонений частоты и соответствующих отклонений фазы можно рассмотреть, используя численный пример, относящийся к термостатированному кварцевому УГ, при воздействии эффекта старения. Допустим, что скорость ухода частоты в результате старения УГ составляет 2*10-10 относительных единиц в сутки (или 2,3*10-15 относительных единиц в секунду), а величина изменения частоты на выходе УГ, соответствующая изменению ЦСУ на одну единицу наименьшего разряда, составляет 7,6*10-12 относительных единиц.

Для приведенного численного примера, изменение некомпенсированного отклонения частоты на выходе УГ, рассчитанное по выражению (3), будет соответствовать графику на фиг.1. Общий характер изменения фазы, рассчитанного по выражению (4), будет соответствовать графику на фиг.2.

В аппаратуре синхронизации времени, в частности в серверах времени, систематическая и случайная составляющие основной погрешности формируемой шкалы времени должны быть метрологически установлены. Это накладывает ограничения и на отклонения фазы выходного сигнала УГ.

Чтобы не допустить выхода фазы сигнала УГ за заданные пределы, необходимо ввести дополнительные изменения ЦСУ, по отношению к рассчитанным по выражению (2) значениям.

Если обозначить пределы отклонения фазы как Фmax и Фmin, функцию определения необходимых значений ЦСУ в виде математического выражения можно записать следующим образом:

D ( k + 1 ) = [ F ( k + 1 ) f D ] + δ ( 5 )

где:

δ=1, если Ф(k+1)≤Фmin

δ=-1, если Ф(k+1)≥Фmах

δ=0, в других случаях.

Если в рассмотренный выше численный пример добавить пределы отклонения фазы, например

Фmax=1*10-10с и

Фmin=-1*10-10с,

и воспользоваться выражением (5) для определения значений ЦСУ, изменение некомпенсированного отклонения частоты на выходе УГ будет соответствовать графику на фиг.3, а характер изменения фазы будет соответствовать графику на фиг.4. Отклонения фазы на выходе УГ снизились, по сравнению с фиг.2, почти в 32 раза и не превышают заданных пределов.

Периодичность прогнозов зависит от заданных пределов изменения фазы следующим образом:

Δ t < < Ф m a x Ф m i n f D ( 6 )

В результате применения предлагаемого способа, мгновенные отклонения частоты УГ не превышают ±fD, а мгновенные отклонения фазы на выходе УГ не превышают заданных пределов.

Технико-экономический эффект.

Применение предлагаемого способа позволяет использовать в БС на сетях связи недорогие управляемые генераторы с влияниями на отклонения частоты эффекта старения и изменений температуры большими, чем в существующем оборудовании. Таким образом, предлагаемый способ позволяет снизить стоимость используемых УГ, при сохранении параметров качества связи. Также применение предлагаемого способа позволяет значительно увеличить допустимое время работы БС в режиме удержания без ухудшения качества связи. Это снижает расходы на эксплуатацию оборудования и сетей синхронизации.

Наиболее наглядно экономический эффект проявляется при использовании предлагаемого способа в серверах времени.

Рассмотрим аппаратуру эталонной шкалы времени, предназначенную для организации распределенной в пространстве шкалы времени методом физической транспортировки работающей эталонной шкалы. Если требуется обеспечить синхронность локальных шкал времени до единиц наносекунд, аппаратура эталонной шкалы времени, без применения предлагаемого способа, должна содержать атомную шкалу времени на основе цезиевых или водородных генераторов. Рубидиевые и, тем более, кварцевые генераторы без применения предлагаемого способа не могут использоваться в аппаратуре эталонной шкалы времени, так как имеют значительные коэффициенты старения и температурные коэффициенты отклонения частоты.

Применение предлагаемого способа позволяет во многих случаях использовать в аппаратуре эталонной шкалы времени рубидиевые генераторы, что дает значительный экономический эффект. Так, стоимость водородного стандарта 41-1007 (изготовитель ЗАО «Время-Ч», Нижний Новгород) более чем в 34 раза превосходит стоимость рубидиевого генератора FE-5680A (поставщик ОАО «Морион», Санкт-Петербург). Экономия на замене только одного водородного стандарта рубидиевым генератором составляет более двух миллионов рублей.

Способ формирования частоты и фазы выходного сигнала управляемого генератора блока синхронизации в режиме удержания, включающий предварительное, в режиме синхронной работы, накопление наборов параметров, характеризующих зависимость отклонений частоты выходного сигнала управляемого генератора (УГ) от эффектов старения УГ и от воздействий изменений температуры окружающей среды, и формирование частоты и фазы выходного сигнала УГ в режиме удержания путем прогнозирования отклонений частоты выходного сигнала УГ от начального значения на основе предварительно накопленных наборов параметров, времени работы в режиме удержания и текущих значений температуры окружающей среды, расчет необходимых изменений цифрового сигнала управления (ЦСУ) УГ на основе спрогнозированных значений отклонений частоты и формирования изменений ЦСУ УГ для компенсации спрогнозированных отклонений частоты выходного сигнала УГ, отличающийся тем, что производится прогнозирование некомпенсированных отклонений частоты выходного сигнала УГ, вызванных конечной разрядностью кода ЦСУ, производится прогнозирование отклонений фазы выходного сигнала УГ от начального значения, вызванных некомпенсированными отклонениями частоты, и, в случае выхода спрогнозированного отклонения фазы выходного сигнала УГ за заранее заданные предельные значения, вводится поправка к ЦСУ, равная по модулю одной единице младшего разряда кода ЦСУ, причем знак поправки выбирается таким, чтобы ограничить отклонения фазы выходного сигнала УГ.



 

Похожие патенты:

Изобретение относится к электронной технике, а именно к синтезаторам сетки частот (ССЧ) на базе контура импульсной фазовой автоподстройки частоты (ФАПЧ) с компенсацией помех дробности, и может применяться при использовании схем, основанных на амплитудно- или широтно-импульсной модуляции тока компенсации.

Изобретение относится к области радиотехники и автоматики, к системам автоматической подстройки частоты излучения газовых лазеров непрерывного действия с улучшенными стабилизационными характеристиками и может быть использовано в космической технологии, в частности, для измерения «фиолетового смещения» частоты лазерного излучения в гравитационном поле Земли.

Изобретение относится к области связи, в частности к способу и устройству временной синхронизации. .

Изобретение относится к технике измерения сигналов точного времени в каналах связи и может использоваться в сетях электросвязи, системах передачи. .

Изобретение относится к радиотехнике и может быть использовано для фильтрации информационных процессов, передаваемых с помощью частотно-модулированных сигналов. .

Изобретение относится к электронно-вычислительной технике и радиотехнике, предназначено для синтеза сигналов многочастотной телеграфии и может быть использовано в современных адаптивных системах связи.

Изобретение относится к системам стабилизации частоты (ССЧ) и может быть использовано для стабилизации частоты перестраиваемого криогенного генератора (ПГ) путем фазовой синхронизации к высокостабильному опорному синтезатору частот.

Изобретение относится к устройствам импульсной техники и может быть использовано в прецизионных генераторах импульсов. .

Изобретение относится к электронно-вычислительной технике и предназначено для синтеза многофазных сигналов и может использоваться в радиолокации, системах связи и телевидения.

Изобретение относится к радиоизмерительной технике и может быть использовано при разработке источников сигнала СВЧ-диапазона (генераторы сигналов, синтезаторы частот, гетеродинные устройства), в том числе в источниках сигнала миллиметрового диапазона длин волн, в которых выходной сигнал формируется умножением частоты источника сигнала СВЧ.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов и могут использоваться в радиолокации при использовании фазо-кодированных импульсов. Достигаемый технический результат- увеличение подавления боковых лепестков при сжатии кода. По одному из вариантов Устройство подавления боковых лепестков при импульсном сжатии многофазных кодов длины N содержит цифровой фильтр By для кода Р3 и формирователь цифрового корректирующего сигнала, состоящий из последовательно соединенных преобразователя кода в комплексно сопряженный код и цифрового фильтра с конечной импульсной характеристикой (КИХ-фильтра) порядка N+1 с N+2 коэффициентами -1,1, 0,0,0, 1,-1, , линию задержки на длительность одного кодового элемента т, сумматор и двухвходовый вычитатель. По другому варианту Устройство подавления боковых лепестков при импульсном сжатии многофазных кодов длины N содержит соединенные по входу цифровой фильтр By для кода Р4 и формирователь цифрового корректирующего сигнала, первый сумматор, линию задержки на длительность одного кодового элемента т и второй двухвходовый сумматор. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники и может быть использовано в устройствах передачи непрерывного информационного потока по каналу (сети) пакетной связи. Технический результат - компенсация больших блужданий тактовых импульсов (джиттера). Это достигается увеличением в 2n раз периода дискриминационной характеристики. Устройство содержит фильтр нижних частот и генератор, управляемый кодом, а также счетчик записи, счетчик чтения, два вычитателя, формирователь импульса начальной установки и запоминающее устройство. При этом на второй (инверсный) вход второго вычитателя подана константа 2n-1 (n - разрядность счетчиков), первый вход и выход запоминающего устройства являются соответственно информационным входом и информационным выходом устройства, входом тактовых импульсов которого является первый вход счетчика записи, а выход генератора, управляемого кодом является выходом таковых импульсов устройства. 1 ил.

Синтезатор частот с коммутируемыми трактами приведения частоты относится к радиотехнике и может быть использован для формирования сетки стабильных частот с равномерным шагом в приемных устройствах с повышенной помехозащищенностью, а также в приемопередающих устройствах с быстрой перестройкой рабочих частот. Достигаемый технический результат - уменьшение уровня фазовых шумов выходного сигнала, времени перестройки по частоте, уровня паразитных спектральных составляющих. Устройство содержит два частотно-фазовых детектора (1 и 9); два фильтра нижних частот (2 и 10), генератор, управляемый напряжением (3), расщепитель мощности (4), делитель частоты (5), низкочастотный коммутатор (6), смеситель (7), формирователь опорных частот (8), блок управления (12). 3 ил.

Изобретение относится к электронно-вычислительной технике и радиотехнике, предназначено для синтеза пачек прямоугольных импульсов и может быть использовано в системах радиолокации и навигации. Достигаемый технический результат - возможность формирования пачек прямоугольных импульсов с заданными параметрами частоты следования импульсов, количеством импульсов в пачке и периодом повторения пачки импульсов. Цифровой синтезатор двухуровневых сигналов содержит эталонный генератор 1, блок формирования и задержки 2, первый регистр памяти 3, цифровой накопитель 4, первый мультиплексор 5, второй регистр памяти 6, третий регистр памяти 7, делитель с переменным коэффициентом деления 8, счетчик 9, второй мультиплексор 10, четвертый регистр памяти 11. Входы первого, второго, третьего и четвертого регистров памяти являются соответственно первым, вторым, третьим и четвертым цифровыми входами цифрового синтезатора двухуровневых сигналов, а выход первого мультиплексора является его цифровым выходом. 2 ил.

Изобретение относится к частотной селекции и фильтрации радиосигналов. Технический результат заключается в обеспечении адаптации устройств селекции радиосигналов к помеховой обстановке, а также возможности управления их энергопотреблением. Способ селекции радиосигналов заключается в том, что из N схем селекции выбирают схему селекции с наиболее широкой полосой пропускания, для которой подавляющий сигнал полностью или наибольшая возможная часть его мощности находится вне ее полосы пропускания. Если подавляющий сигнал находится в полосе пропускания схемы селекции с наименее широкой полосой пропускания, то выбирают схему селекции с самой широкой полосой пропускания. Устройство для определения помеховой обстановки содержит N схем селекции, N детекторов, N-1 устройств сравнения, N-1 или N пороговых устройств и решающее устройство с N-1 или N входами. Это устройство выдает сигнал выбора схемы селекции по указанному способу. Устройство селекции радиосигналов содержит N схем селекции и управляемый переключатель. Причем решающее устройство может управлять выбором схемы селекции через управление переключателем в соответствии со способом. 3 н. и 21 з.п. ф-лы, 15 ил.

Изобретение относится к технике связи. Технический результат заключается в комплексном улучшении основных параметров системы синхронизации, а именно: в повышении помехоустойчивости, в улучшении фильтрующих свойств системы, в расширении полос захвата и удержании синхронного режима работы, в уменьшении времени вхождения в синхронный режим работы, в обеспечении нулевой статической ошибки по фазе и в обеспечении корректной работы устройства в условиях наличия изменений и флуктуаций амплитуды входного сигнала или изменений коэффициента передачи фазовых детекторов. Устройство содержит подстраиваемый генератор 1, фазовращатель 2 на π/2, первый и второй фазовые детекторы 3 и 4, первый и второй компараторы напряжений 5 и 6, коммутатор 7 полярности сигнала, реверсивный счетчик 8, цифроаналоговый преобразователь 9, первый сумматор 10, линию 11 временной задержки, интегратор 12, логическую схему «ИСКЛЮЧАЮЩЕЕ ИЛИ» 13, формирователь импульсов 14, перемножитель сигналов 15, первый и второй блоки возведения текущего значения напряжения во вторую степень 16 и 17, второй сумматор 18, блок возведения текущего значения напряжения в 1/2 степень 19, первый делитель напряжений 20 и второй масштабирующий делитель напряжения 21. 3 ил.

Изобретение относится к устройствам стабилизации параметров автогенераторов и может быть использовано в технике связи и управления, радиоавтоматике, системах авторегулирования. Достигаемый технический результат - повышение устойчивости, определяющей полосу захвата частоты, при сохранении высокой точности фазовой синхронизации. Устройство фазовой автоподстройки частоты содержит знакомодульный логический фазовый дискриминатор (ЗМЛФД), управляемый генератор, три сумматора напряжений, интегратор, пропорциональное звено, два формирователя напряжения, два обнуляемых интегратора и делитель частоты. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в приемопередающих устройствах СВЧ диапазона частот. Техническим результатом является повышение устойчивой работы при перестройке частоты входного СВЧ сигнала. СВЧ синтезатор частот содержит СВЧ генератор, управляемый напряжением (ГУН), направленный ответвитель, СВЧ смеситель, источник входного СВЧ сигнала, первый делитель частоты с переменным коэффициентом деления, частотно-фазовый детектор, второй делитель частоты с переменным коэффициентом деления, источник опорного сигнала, фильтр нижних частот, фазовый компаратор, ждущий мультивибратор, два диода и операционный усилитель. 4 ил.

Изобретение относится к электронно-вычислительной технике и радиотехнике. Технический результат заключается в повышении быстродействия и возможности формирования многочастотных частотно-модулированных сигналов. Цифровой вычислительный синтезатор частотно-модулированных сигналов содержит: эталонный генератор, блок формирования и задержки, три регистра памяти, четыре цифровых накопителя, делитель с переменным коэффициентом деления, два функциональных преобразователя код x - sin x, два инверсных фильтра sin х/х, коммутатор, два цифроаналоговых преобразователя. Цифровыми входами ЦВС ЧM сигналов являются входы первого, второго и третьего регистров памяти, а его аналоговыми выходами являются выходы первого и второго ЦАП. 2 ил.

Изобретение относится к области радиотехники. Tехнический результат - расширение полосы захвата путем изменения симметричной формы дискриминационной характеристики знакового логического фазового дискриминатора в асимметричную, а при увеличении зоны положительного или отрицательного знака дискриминационной характеристики увеличивается соответствующая односторонняя полоса захвата для начальных частотных расстроек соответствующего знака. Способ увеличения полосы захвата системы фазовой автоподстройки частоты с упомянутым дискриминатором характеризуется тем, что определяют знак разности входного и вырабатываемого управляемым генератором выходного колебаний, формируют управляющие напряжения, имеющие знак, соответствующий знаку разности фаз, которые объединяют в единый сигнал, которым управляют частотой управляемого генератора. 2 н.п. ф-лы, 7 ил.
Наверх