Способ флотационного обогащения гематитсодержащих железных руд и продуктов

Изобретение относится к области обогащения полезных ископаемых и может быть использовано для флотационного извлечения из тонковкрапленного железорудного сырья оксидов железа (гематита, мартита, магнетита). Способ флотационного обогащения железных руд и продуктов включает тонкое обесшламливание рудного материала и флотацию минералов с использованием в качестве собирателя фосфорорганических соединений общей формулы: [RO(C2H4O)m]2P(O)OM, где R - алкил С4-20, алкил (С8-10)фенил; М-Н, К, HN(CH2CH2OH)3; m=4-12 с предварительной флотацией примесей. Выделение тонкодисперсных шламов по зерну 0,020 мм и тоньше проводят в длинноконусных гидроциклонах. Флотацию примесей карбонатных, фосфатных и железосодержащих силикатов проводят при значении рН 8-9, создаваемого жидким стеклом, а флотацию оксидов железа (гематита, мартита, магнетита) проводят при значении рН 5-6, создаваемого серной кислотой. Технический результат - повышение эффективности обогащения. 5 з.п. ф-лы, 1 ил., 7 табл., 3 пр.

 

Изобретение относится к области обогащения полезных ископаемых и может быть использовано для флотационного извлечения из тонковкрапленного железорудного сырья рудных минералов.

Известен способ обогащения сложных железных руд магнитным методом (Патент РФ №2290999, В03С 1/00. Патент РФ №2307710, В03С 1/00). В.результате магнитного обогащения в слабом магнитном поле концентрируется сильномагнитный магнетит, слабомагнитные гематит, мартит, карбонаты железа (сидерит и др.) - сбрасываются в отвал. В условиях интенсивного магнитного поля извлечение слабомагнитных минералов железа возможно, однако для тонковкрапленных форм выделения слабомагнитных минералов практически не эффективно.

Так, на Михайловском ГОКе, ежегодно перерабатывающем десятки млн тонн тонковкрапленных железистых кварцитов, преобладающий размер включений рудных минералов в которых составляет 0,045 мм и тоньше, до 40% железа уходит в хвосты мокрого магнитного обогащения, содержание в которых только слабомагнитных оксидов железа (гематита, мартита) превышает 20%.

Доизвлечение железа из хвостов мокрой магнитной сепарации (ММС) в дополнительную товарную продукцию позволило бы значительно повысить экономическую эффективность переработки сложных железных РУД.

Известен способ извлечения гематита из хвостов магнитной сепарации гравитационным методом на винтовых и центробежных сепараторах (Гзогян Т.Н., Губин С.Л. Опыт гравитационного доизвлечения гематита из хвостов Михайловского ГОКа, Горн. информ. - аналит. бюл., 2001, №8; Гзогян Т.Н., Перепелицин А.И., Чмырев А.В. и др. Применение центробежного гравитационного концентратора Falcon для извлечения гематита из хвостов мокрой магнитной сепарации. Черная металлургия, 2002, №4).

Недостатком способа для тонковкрапленного рудного материала, железо в котором более чем на 80% сконцентрировано в классах тоньше 0,045 мм, являются большие потери рудного материала, низкие производительность и технологическая эффективность гравитационных аппаратов.

Известен способ флотационного обогащения хвостов ММС в режиме обратной флотации (Кретов С.И., Губин С.Л., Игнатова Т.В. и др. Испытание технологии получения гематитовых концентратов из хвостов обогатительной фабрики ОАО «Михайловский ГОК». Обогащение руд, 2007, №6 с.20-24).

Способ на стадии флотационного обогащения хвостов ММС включает операции доизмельчения, классификации по крупности, дешламации и флотацию кремнезема катионным собирателем при получении гематитового концентрата в виде камерного продукта обратной флотации. Флотация кремнезема осуществляется с использованием импортных катионных собирателей Лилафлотов (алкиламины, эфирамины, эфирдиамины) фирмы "Akzo Nobel" (Швеция), для депрессии оксидов железа применяют крахмал или щелочной крахмал в количествах до 500 г/т. В результате обратной флотации получен гематитовый концентрат с выходом 9,7% при содержании железа 62,7% и кремнезема 4,3%. Извлечение железа в концентрат составило 21,6%.

В другой работе (Патент РФ №2432207, В03С 1/00), по аналогичной схеме (собиратель не указан) из подобных хвостов ММС получен гематитовый концентрат с массовой долей железа общего 56,2%.

Недостатком способа являются: необходимость применения для флотации силикатов дорогих импортных катионных собирателей и дефицитного депрессора оксидов железа, а также недостаточно высокие качество железного концентрата, выход и извлечение железа в него, что обусловлено потерями оксидов железа на стадии подготовки хвостов к флотации и с пенным силикатным продуктом.

Наиболее близким флотационным способом, выбранным в качестве прототипа, является способ извлечения гематита методом прямой флотации с использованием анионных собирателей жирнокислотного типа: талловое масло, ЖК с добавкой нефтяных углеводородов в нейтральной среде при значении рН 6,9-7 (Остапенко П.Е. Обогащение железных руд, М., Недра, 1977, с.193) или смесь натриевых мыл талового масла и синтетических карбоновых кислот фракции С1016 при значении рН 5,5-7,0 (Обогащение руд и проблемы безотходной технологии. Л., Наука, 1980, с.66).

В результате прямой флотации жирнокислотным собирателем из хвостов ММС после их подготовки по крупности и дешламации были получены железные концентраты с содержанием железа 63% при извлечении железа в них 12,5%.

Недостатком данного способа флотации в условиях сложного минерального состава железных кварцитов, наличия в них большого количества других железосодержащих минералов с близкими флотационными свойствами и высокой степени насыщения пульпы железом является низкая избирательность жирнокислотных собирателей.

Технический результат изобретения - повышение эффективности технологии обогащения тонковкрапленного железорудного сырья за счет применения в технологии его переработки флотационного способа на основе использования фосфорорганических собирателей при получении концентратов с содержанием железа не ниже 64-65%.

Указанный технический результат достигается тем, что в способе флотационного обогащения сложных железосодержащих руд и продуктов их переработки, в результате тонкого обесшламливания исходного измельченного материала и флотационной очистки от примесей (карбонатов железа, кальция, магния, железосодержащих силикатов и апатита, фосфатов и др.), прямая флотация оксидов железа, согласно изобретению, осуществляется с фосфорорганическим собирателем общей формулы:

[RO(C2H4O)m]2P(O)OM, где

R-алкил С4-20, алкил(С8-10)фенил;

М-Н, K, HN(CH2CH2OH)3; m=4-12

В способе-прототипе для флотации оксидов железа используют жирнокислотые собиратели (таловое масло, жирные кислоты и их мыла в сочетании с другими реагентами собирателями) без применения предварительной флотации примесей.

Отличие предлагаемого способа от способа прототипа заключается, во-первых, в том, что для флотации оксидов железа в слабокислой среде (рН 5-6) используют фосфорорганические собиратели (ФОС) общей формулы:

[RO(C2H4O)m]2P(O)OM, где

R-алкил С4-20, алкил(С8-10)фенил;

М-Н, K, HN(CH2CH2OH)3; m=4-12

Другое существенное отличие состоит в том, что в заявляемом способе для рудного материала сложного состава флотации оксидов железа предшествует операция флотационного удаления флотоактивных силикатов железа, апатита и карбонатов, в том числе сидерита и анкерита, с использованием в слабощелочной среде (рН 8-9) фосфорорганических соединений (ФОС) общей формулы:

[RO(C2H4O)m]2P(P)OM, где

R - алкил С4-20, алкил(С8-10)фенил;

М-Н, K, HN(CH2CH2OH)3; m=4-12

В пенном продукте очистной флотации концентрируются главным образом силикаты железа, апатит, карбонаты, в том числе сидерит и анкерит.

В совокупности с тонким обесшламливанием использование ФОС в качестве собирателей для удаления примесей до флотации оксидов железа позволяет вывести карбонаты, в том числе низкосодержащие железо сидерит (48,5% Fe) и анкерит (14,6% Fe). Это на стадии последующей флотации оксидов железа в значительной степени снижает кислотоемкость пульпы и расход серной кислоты, а в совокупности с удалением железосодержащих карбонатов, апатита и других примесей обусловливает стабильное получение качественного по содержанию железа и вредных примесей железного концентрата.

Кроме того, ФОС в отличие от жирнокислотых собирателей не требует умягчение воды, менее чувствителен к составу жидкой фазы пульпы и вследствие высоких собирательных свойств, при небольших расходах (в пределах 100-300 г/т в операцию) позволяет существенно интенсифицировать процесс флотации и снизить продолжительность основных операций с 20-15 мин до 8-5 мин.

Фосфорорганические соединения широко применяют в различных областях народного хозяйства и выпускаются отечественной промышленностью на нескольких предприятиях в значительных объемах по доступной цене. По токсичности ФОС соответствует 4 классу опасности.

Реагенты-собиратели этого класса соединений заявлены для флотации флюоритовых руд (Патент РФ №2319550, B03D 1/014 (Патент РФ №2381073, B03D 1/014). Как реагенты-собиратели оксидов и карбонатов железа, а также других карбонатов и апатита до настоящего времени не использовались.

Таким образом, для достижения технического результата необходимо осуществление совокупности разработанных отличительных признаков.

Указанная совокупность признаков в технической патентной литературе не обнаружена. Следовательно, изобретение отвечает критерию «изобретательный уровень».

Данное изобретение иллюстрируется примерами, в которых приведены результаты флотационного извлечения оксидов железа из проб сложного состава, представленных хвостами мокрой магнитной сепарации (пример 1) и гематит-мартитовой рудой (пример 2), и из гематитового продукта (пример 3).

В таблицах 1, 2 и 3 приведены характеристики минерального и химического состава исходных проб и гранулометрического состава материала проб флотационной крупности.

Таблица 1
Минеральный состав железорудных проб, %
Минералы Содержание
Хвосты ММС (пример 1) Гематит-мартитовая руда (пример 2) Гематитовый продукт (пример 3)
Гематит 27,4 64,2-65,0 36,8
Мартит -
Магнетит ~0,8 ~3,3 Ед. зерна
Кварц 41,4 15,0-17,0 52,6
Полевые шпаты Ед. зерна Ед. зерна 8,5
Ферросилит 2,5 - -
Хлорит 12,8 4,0 0,8
Эгирин 4,0 0,5 0,5
Карбонаты, 10,4 7,5-8,2 Ед. зерна
в том числе: сидерит, анкерит 6,0 6,4
кальцит 4,4 1,8
Прочие (апатит, цоизит, стильпномелан) 0,7 2,8 <0,8
Всего 100,0 100,0 100,0

Таблица 3
Гранулометрическая характеристика исходных проб флотационной крупности, %
Исходные пробы Классы крупности, мм Выход Fe общ. SiO2
Содержание Извлечение Содержание Извлечение
Хвосты ММС (пример 1) +0,4 - - - - -
-0,4+0,2 3,0 13,83 7,2 66,1 16,4
-0,2+0,16 1,0
-0,16+0,071 8,9
-0,071+0,045 11,5 21,27 9,9 59,46 13,1
-0,045+0,02 46,0 33,74 62,6 43,39 38,4
Всего пески 70,4 28,04 79,7 50,15 67,9
Шламы - 0,020 29,6 16,98 20,3 56,40 32,1
Итого 100,0 24,78 100,0 52,0 100,0
Гематит-мартитовая руда (пример 2) +0,2 - - - - -
-0,2+0,16 2,2 40,6 1,7 36,88 4,1
-0,16+0,071 21,3 48,97 20,2 25,64 27,6
-0,071+0,020 64,2 54,84 68,1 17,2 55,8
Всего пески 87,7 53,06 90,0 19,75 82,5
Шламы - 0,020 12,3 42,0 10,0 20,04 12,5
Итого 100,0 51,7 100,0 19,79 100,0
Гематитовый продукт (пример 3) +0,2 1,5 Не анализировали Не анализировали
-0,2+0,071 13,5
-0,071+0,020 78,8
Всего пески 93,6 29,59 97,4
Шламы - 0,020 6,2 12,00 2,6
Итого 100,0 28,6 100,0

Пример 1. Флотационное обогащение хвостов мокрой магнитной сепарации (24,5% Fеобщ.). Рудные минералы представлены (табл.1) гематит-мартитом (27,4%), присутствует магнетит (~0,8%) и сидерит-анкерит (6,0%). Более 90% железа сосредоточено в классах крупности тоньше -0,071 мм, из них около 80% приходится на материал тоньше 0,045 мм, малопригодный для гравитационного и магнитного обогащения. Вмещающая порода в основном включает кварц (41,4%), пироксены и другие железосодержащие силикаты (в сумме порядка 20%), карбонаты (10,4%), присутствует апатит. Хвосты ММС сильно ошламованы, выход тонкодисперсных (-0,020 мм) шламов достигает 30%. По крупности хвосты ММС (табл.3) полностью пригодны для флотационного обогащения.

Заявляемый способ флотационного обогащения включает (фигура 1) последовательное проведение следующих операций:

- тонкого обесшламливания по зерну 0,020 мм в длинноконусном гидроциклоне;

- очистной флотации для предварительного до флотации оксидов железа удаления карбонатов железосодержащих силикатов и апатита фосфорорганическим собирателем (0,100 кг/т) в слабощелочной среде (рН 8-9) в присутствии жидкого стекла (0,350 кг/т). Расход жидкого стекла менее 0,350 кг/т недостаточен для эффективной депрессии оксидов железа и кварца, повышение до 0,400 кг/т и выше приводит к неизбирательной депрессии всего минерального комплекса, что обусловливает необходимость повышения расхода собирателя и негативно для последующей прямой флотации оксидов железа из камерного продукта. Продолжительность очистной флотации 5 мин. В камерном продукте очистной флотации концентрируются оксиды железа и кварц;

- флотации оксидов железа с фосфорорганическим собирателем (0,125 кг/т) в слабокислой среде (рН 5-6) в присутствии серной кислоты (0,8-0,9 кг/т), или серной кислоты (0,5-0,6 кг/т) и кремнефтористой соли аммония (0,8-0,9 кг/т) или натрия (0,5-0,6 кг/т). Снижение расхода серной кислоты до значения рН 6,5-7,0 приводит к нарушению избирательности флотации и снижению качества пенного железного продукта. Избыток серной кислоты при значении рН 4,5-4,0 обусловливает снижение флотируемости оксидов железа и необходимости увеличения расхода собирателя, с повышением кислотности до рН 4,0 и ниже флотация практически прекращается. Дополнительное использование кремнефтористых солей в пределах оптимального значения рН 5-6 способствует активации оксидов железа и повышению избирательности их флотации за счет более четкой селекции оксидов железа и кремния. Продолжительность флотации оксидов железа 8-10 мин;

- перечистки железного концентрата в слабокислой среде (рН 5,5-6,0) в присутствии серной кислоты (0,100 кг/т) или в сочетании серной кислоты и кремнефтористой соли (0,100 кг/т и до 0,075 кг/т соответственно);

- в качестве вспенивателя в операциях флотации используется Т-66 в количествах по 10-20 г/т в каждую.

Пример 2. Флотационное обогащение проб гематитовой руды с содержанием железа общего 51,5% и 56,3%. Рудные минералы представлены гематит-мартитом (64,2-65,0%), частично магнетитом (~3,3%), присутствует сидерит (табл.1 и 2). Крупность выделения рудных минералов не превышает 0,071 мм, при этом большая часть (до 80%) их приходится на крупность тоньше 0,045 мм. Пустая порода представлена кварцем (15-17%), пироксенами (до 4,5%) и карбонатами (7,5-8,2%), присутствует апатит.

Руду предварительно измельчают до содержания в питании флотации класса -0,071 мм на уровне 80%.

Заявляемый способ флотационного обогащения включает последовательное проведение следующих операций:

- тонкого обесшламливания по зерну 0,020 мм в длинноконусном гидроциклоне;

- очистной флотации с фосфорорганическим собирателем (0,300 кг/т) в слабощелочной среде (рН 8-9) в присутствии жидкого стекла (0,500 кг/т). В сравнении с примером 1 увеличение расхода жидкого стекла, обусловленное более высоким содержанием оксидов железа, повлияло на увеличение расхода собирателя на этой операции. Продолжительность флотации 5 мин;

- флотации оксидов железа фосфорорганическим собирателем (0,170 кг/т) в слабокислой (рН 5-6) среде в присутствии серной кислоты (0,5 кг/т) и кремнефтористой соли (1,0 кг/т КФА или 0,6 кг/т КВН). Продолжительность флотации 8-10 мин;

- перечистки пенного продукта в слабокислой среде (рН 5,0-5,5) при расходе серной кислоты и кремнефтористой соли 0,100 кг/т и примерно 0,075 кг/т соответственно;

- в качестве вспенивателя в операциях флотации используется Т-66 в количествах по 20 г/т в каждую.

Пример 3. Флотационное обогащение гематитового продукта, характеризующегося (табл.1, 2, 3) невысоким содержанием железа (28,6%), представленного гематитом, и сравнительно простым составом вмещающей породы, состоящей в основном из кварца (52,6%) и полевых шпатов (8,5%). Карбонаты, пироксены и другие примеси практически отсутствуют.

Пробу гематитового продукта предварительно доизмельчают до номинальной крупности -0,2 мм и содержания класса -0,071 мм на уровне 85%.

Заявляемый способ флотационного обогащения включает последовательное проведение следующих операций:

- тонкого обесшламливания по зерну 0,020 мм в длинноконусном гидроциклоне;

- флотации оксидов железа фосфорорганическим собирателем (0,12 кг/т в слабокислой среде (рН 5-6), создаваемой серной кислотой (0,5 кг/т) в присутствии кремнефтористой соли (0,5-0,8 кг/т). Расход вспенивателя Т-66 - 20 г/т. Продолжительность флотации - 8 мин.

Показатели флотационного обогащения железных проб представлены в таблице 4. Характеристики минерального и гранулометрического состава полученных по заявляемому способу железных концентратов приведены в таблицах 5 и 6, минеральная характеристика пенного продукта очистной флотации - в таблице 7.

Таблица 6
Минеральный состав железных концентратов, %
Минералы Пример 1 (выход концентрата 15,3%) Пример 2 (выход концентрата 49,8%) Пример 3 (выход концентрата 39,1%)
Гематит, мартит 89,5 85,5 93,0
Магнетит ~3,5 ~5,5 Ед. зерна
Сростки оксидов железа с кварцем, пироксенами и др. 7,5 9,0 7,0
Итого 100,0 100,0 100,0
Таблица 7
Минеральный состав пенного карбонатного продукта, %
Минералы Пример 1 Пример 2 Примечание
Гематит, мартит, магнетит 12,8 25,0 Тонкие срастания гематита и сидерита
Карбонаты, 84,0 70,5 Свободные и в срастании с другими минералами
в т.ч.:
- сидерит, анкерит 64,2 62,9
- кальцит 19,8 7,6
Хлорит, силикаты железа (эгирин, ферросилит), апатит, кварц и др. 3,2 4,5
Итого 100,0 100,0

Из данных табл.4 следует, что в результате обогащения по заявляемому способу тонковкрапленного железорудного сырья, исходное содержание железа в котором варьировало в пределах 24,5%-56,3%, с использованием в качестве собирателя ФОС получены кондиционные железные концентраты с содержанием Feобщ. - на уровне 65% и выше, оксида кремния - менее 5% при извлечении железа в них от 40,5% до 89,8%.

В прототипе на хвостах ММС извлечение железа в концентрат, содержащий 63% Feобщ., не превышает 13%.

Предлагаемый способ за счет совокупности последовательно используемых приемов обесшламливания и очистной флотации с собирателем ФОС в результате соответствующего подбора технологического режима для рудного материала сложного состава позволяет практически полностью вывести карбонаты железа, магния и кальция, способствуя тем самым повышению избирательности последующей флотации оксидов железа и снижению кислотоемкости пульпы в этой операции.

В разработанном режиме очистной флотации также происходит эффективное удаление фосфатов (апатита). Таким образом, количество фосфора и магния в железном концентрате не превышает допустимые содержания для товарной продукции.

Оксид кремния практически полностью выводится на операциях обесшламливания и флотации оксидов железа, что гарантирует минимальное содержание SiO2 (на уровне 5% и ниже) в товарном железном концентрате.

Применительно к богатому гематитовому сырью (пример 2.2) камерный продукт очистной флотации с содержанием железа свыше 58% и минимальным содержанием вредных примесей может быть использован как железный концентрат без последующего обогащения в кислой среде. С целью получения высокосортной товарной продукции для удаления оксидов кремния необходима последующая операция флотации оксидов железа.

Флотация оксидов железа с фосфорорганическим собирателем в слабокислой среде может быть осуществлена с применением в качестве регулятора среды только серной кислоты (пример 1.1). С целью получения высокосортной продукции с минимальным содержанием оксида кремния и при переработке бедного сырья селекция оксидов железа и кремния более эффективна в слабокислой среде в присутствии кремнефтористой соли (пример 1.2 и 2).

Собиратель ФОС, используемый в заявляемом способе, универсален и в сочетании с соответствующими регуляторами среды является эффективным собирателем при значении рН 8-9 для карбонатов железа, магния и кальция, апатита и при значении рН 5-6 для оксидов железа (гематита, мартита, магнетита).

Таким образом, разработанный способ позволяет повысить эффективность переработки железосодержащих проб за счет получения дополнительной товарной продукции из хвостов магнитного обогащения и промежуточных продуктов и позволяет вовлечь в переработку тонковкрапленное гематитсодержащее рудное сырье.

1. Способ флотационного обогащения гематитсодержащих железных руд и продуктов, включающий тонкое обесшламливание исходного измельченного материала и флотацию минералов, отличающийся тем, что в качестве собирателя в процессах флотационного обогащения используют фосфорорганические соединения общей формулы:
[RO(C2H4O)m]2P(O)OM,
где R - алкил С4-20, алкил (С8-10)фенил;
М-Н, K, HN(CH2CH2OH)3; m=4-12
с предварительной флотацией примесей.

2. Способ по п.1, отличающийся тем, что выделение тонкодисперсных шламов по зерну 0,020 мм и тоньше проводят в длинноконусных гидроциклонах.

3. Способ по п.1, отличающийся тем, что флотацию примесей карбонатных, фосфатных и железосодержащих силикатов проводят при значении рН 8-9, создаваемого жидким стеклом.

4. Способ по п.1, отличающийся тем, что флотацию оксидов железа (гематита, мартита, магнетита) проводят при значении рН 5-6, создаваемого серной кислотой.

5. Способ по п.1, отличающийся тем, что флотацию оксидов железа (гематита, мартита, магнетита) проводят при значении рН 5-6, создаваемого серной кислотой в присутствии кремнефтористых солей.

6. Способ по п.1, отличающийся тем, что последовательно ведут тонкое обесшламливание, флотацию примесей по п.3 и флотацию оксидов железа по п.4 или 5.



 

Похожие патенты:

Изобретение относится к области обогащения полезных ископаемых и может быть использовано для обогащения угля, угольного шлама, технического углерода, шламовых вод угольных предприятий и т.д.

Изобретение относится к способу регулирования одной или более камер пенной флотации для разделения веществ. .
Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению благородных металлов и сульфидных минералов с ассоциированными благородными металлами из измельченного сырья, и может быть использовано при флотационном обогащении золотосодержащих сульфидных руд и продуктов обогащения, содержащих благородные металлы.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в схеме селективной флотации углеродсодержащих компонентов из сульфидных и смешанных руд.

Изобретение относится к гидрометаллургии, в частности к способу извлечения европия (III) из растворов солей флотоэкстракцией. .
Изобретение относится к области флотационного обогащения техногенного сырья. .

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при переработке минерального сырья, содержащего пирротин. .

Изобретение относится к способу получения чистого гольмия или его оксидов из бедного или техногенного сырья с помощью метода ионной флотации. .

Изобретение относится к способу получения чистого лантана или его оксидов из бедного или техногенного сырья с помощью метода ионной флотации. .
Изобретение относится к способу извлечения меди и молибдена из сульфидных медно-молибденовых руд. .

Изобретение относится к области обогащения полезных ископаемых, а более конкретно, к флотационному обогащению цинксодержащих руд цветных металлов. В качестве модифицированного реагента для флотации цинксодержащих руд цветных металлов применен полиметиленнафталинсульфонат. Модифицированный реагент имеет общую формулу . Технический результат - повышение выхода готового продукта за счет усиления депрессии при флотации и упрощение схемы обогащения. 1 з.п. ф-лы, 2 ил.
Изобретение относится к области обогащения пиритных золотосодержащих медных, медно-цинковых, свинцово-цинковых и других техногенных продуктов цветных и благородных металлов. Способ флотационного обогащения сульфидных техногенных продуктов цветных металлов включает кондиционирование измельченной смеси сульфгидрильными собирателями в щелочной известковой среде. В раствор дитиофосфата вводят в качестве модифицирующих компонентов до 10% (мольная доля) раствор ксантогената и КМЦ до 20% (массовая доля). Пульпу вначале последовательно кондиционируют с модифицированным дитиофосфатом при pH более 8-9 при продолжительности до 10 мин, а затем с ксантогенатом с интервалом до 10 мин и флотируют сульфиды цветных металлов и минеральные формы благородных металлов при соотношении расходов модифицированного дитиофосфата и ксантогената соответственно от 1:2 до 2:1. Технический результат - снижение флотируемости пирита и повышение извлечения металлов. 2 табл., 2 пр.

Изобретение может быть использовано для извлечения наночастиц диоксида кремния и углерода из шламов газоочистки электротеримического производства кремния флотацией. Способ включает термообработку техногенного отхода газоочистки электротермического производства кремния при температуре 400-600°С. Полученный термообработанный материал измельчают до крупности частиц не более 10-6 и осуществляют его репульпацию. Полученную суспензию аэрируют в режиме, обеспечивающем образование пузырьков воздуха, сопоставимых с размерами флотируемых частиц, при этом в процессе аэрации подают исходные пузырьки воздуха размером не более 50·10-6 м. Разделение пенного продукта, содержащего углеродные наночастицы, и камерного продукта, содержащего частицы диоксида кремния, ведут в ламинарном режиме истечения пенного продукта на сливе и поддерживают высоту слоя пены не менее 30·10-3 м. Изобретение позволяет выделять из шлама газоочистки электротермического производства кремния углеродные наночастицы и наночастицы диоксида кремния при снижении энергозатрат. 9 з.п. ф-лы, 8 ил., 1 табл., 1 пр.

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению сульфидных минералов из концентратов, и может быть использовано при флотационном обогащении сульфидных медно-цинковых пирит и пирротинсодержащих, а также полиметаллических руд. Способ флотационного отделения сфалерита и минералов меди от сульфидов железа включает кондиционирование минеральной суспензии в присутствии комплексообразующего собирателя и регулятора комплексообразования, введение вспенивателя и выделение сульфидных минералов цинка и меди в пенный продукт флотации. В качестве комплексообразующего реагента, селективного к цинку и меди, используют 1-фенил-2,3-диметил 4-диметиламинопиразолон-5, способный к образованию прочного соединения с этими металлами. В качестве регулятора комплексообразования используют роданид аммония, либо его смесь с уксусной кислотой, либо сернокислую медь. Соотношение собирателя и регулятора комплексообразования составляет от 1:0,25 до 1:3. Технический результат - повышение эффективности отделения сфалерита и минералов меди от сульфидов железа. 1 табл.
Предложенная группа изобретений относится к технологиям обогащения. Более конкретно, настоящее изобретение относится к композициям для обогащения и к способам их применения. Способ отделения первого материала от второго материала включает: смешивание первого материала и второго материала в суспензии с композицией для обогащения, где композиция для обогащения включает по меньшей мере один жирнокислотный побочный продукт процесса производства дизельного биотоплива или реакций переэтерификации, причем жирнокислотный побочный продукт включает моноглицериды или диглицериды, от более 55 массовых процентов до приблизительно 60 массовых процентов сложных метиловых эфиров жирных кислот, от приблизительно 0,01 массового процента до приблизительно 1 массового процента метанола и от приблизительно 0,01 массового процента до приблизительно 1 массового процента глицерина, обеспечение пузырьков воздуха в суспензии для образования агрегатов пузырьков с частицами первого материала и обеспечение отделения агрегатов пузырьков с частицами от второго материала. Технический результат - повышение эффективности отделения одного материала от другого. 2 н. и 17 з.п.ф-лы, 3 табл., 2 пр.
Изобретение относится к области обогащения полезных ископаемых, в частности к выбору флотационных реагентов для флотации руд. Способ флотационного извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина с использованием смеси флотореагентов - собирателей. В качестве флотореагентов используют смеси органических соединений с определенными экспериментальными компьютерными параметрами, величина диполь/дипольного взаимодействия которых должны быть пределах от -2,7717 до 0,4956, ¼ ван-дер-ваальсово взаимодействие в пределах от 2,2390 до 8,8701, не ¼ ван-дер-ваальсово взаимодействие от -0,3746 до 1,7483, изгиб валентных углов от 2,4600 до 3,1866, растяжением валентных связей от 0,2580 до 0,7430 и величиной стерической энергии от 6,1198 до 8,6639 ккал/моль. Технический результат - повышение эффективности флотационного извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина, а также повышение эффективности подбора реагентов. 3 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к флотации необогащенных калийных солей и, в частности, к пенообразователю и способу пенной сепарации нерастворимых компонентов сильвинита. Способ выделения нерастворимых компонентов из сильвинита, в котором сильвинит суспендируют в насыщенном солевом растворе. В суспензию вводят флокулянт, и к полученному таким путем составу добавляют пенообразователь, который содержит, по меньшей мере, простой и/или сложный эфир, где а) простой эфир соответствует формуле R-О-R', где R обозначает линейные или разветвленные алкильные или алкенильные группы с числом атомов углерода от 2 до 30, R′ - линейные или разветвленные алкильные или алкенильные группы с числом атомов углерода от 1 до 30, b) сложный эфир произведен реакцией одно- или многоосновной карбоновой кислоты с числом атомов углерода от 2 до 30 (остаток кислоты) с одно- или многоатомным спиртом с числом атомов углерода от 1 до 30 (остаток спирта) либо c) простой и/или сложный эфир являются циклическими, в которых размер кольца составляет от 6 до 30 углеродных атомов. Способ флотации сильвинита включает выделение нерастворимых компонентов из сильвинита вышеуказанным способом и флотацию сильвина путем добавления собирателя и пенообразователя для флотации силивинита. Технический результат - повышение эффективности разделения сильвинита и нерастворимых компонентов. 3 н. и 12 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к флотации природных солей калия и, в частности, к собирателю (или коллектору) и способу обогащения пены нерастворимых компонентов сильвинита. Способ флотации сильвинита включает отделение нерастворимых компонентов сильвинита путем суспендирования сильвинита в насыщенном растворе соли, добавления к суспензии неионного флокулянта и последующего добавления к полученному таким образом составу пенообразующего средства, которое содержит по меньшей мере один полипропиленгликоль и по меньшей мере один спирт, содержащий углеводородный радикал, имеющий от 6 до 16 атомов углерода, при этом собиратель отсутствует, и флотацию сильвина путем добавления собирателя и пенообразующего средства для флотации сильвинита. Применение композиции, содержащей по меньшей мере один пропиленгликоль и по меньшей мере один спирт, содержащий углеводородный радикал, имеющий от 6 до 16 атомов углерода, в качестве пенообразующего средства для флотации нерастворимых компонентов сильвинита в отсутствие собирателя. Технический результат - повышение эффективности разделения сильвинита и нерастворимых компонентов. 2 н. и 13 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к способу обогащения медно-молибденовых руд. Способ включает основную флотацию с несколькими перечистками сульфгидрильными и аполярными собирателями с получением коллективного медно-молибденового концентрата. Затем ведут обработку его сернистым натрием и селективную флотацию молибденита с последующим сгущением полученного молибденсодержащего продукта. Далее молибденсодержащий продукт обрабатывают смесью серной кислоты и сульфата железа при весовом соотношении указанных компонентов смеси и молибденсодержащего продукта (0,3-1,0):(0,05-0,1):1 при температуре не ниже 200°С до содержания влаги в молибденовом концентрате не более 5% с последующим выщелачиванием примесей. Выщелачивание ведут водой при весовом соотношении воды и молибденового концентрата (1,0-10,0):1. Техническим результатом является получение высококачественного молибденового концентрата с содержанием молибдена не менее 52,5%, примесей меди - не более 0,5% и железа - не более 0,8% при извлечении молибдена не менее 52%. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению благородных металлов и сульфидных минералов с ассоциированными благородными металлами из измельченного сырья, и может быть использовано при исследовании новых флотационных реагентов, предназначенных для обогащения платиносодержащих руд и продуктов обогащения, содержащих благородные металлы. Способ подготовки минералов для исследования действия флотационных реагентов, для обогащения платиносодержащих руд и продуктов их обогащения включает перемешивание минерала с платиносодержащим реагентом, выделение, промывание водой и высушивание на воздухе твердой фазы. В качестве платиносодержащего реагента используют коллоидный золь платины, полученный при соотношении платинохлористоводородной кислоты и восстановителя со стабилизирующими свойствами 1:(0,1-0,75). Технический результат - повышение эффективности подготовки минералов для исследования действия новых флотореагентов. 2 ил., 1 табл., 1 пр.
Наверх