Способ получения углеводородного топлива для ракетной техники

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники, включающего ректификацию предварительно стабилизированного газового конденсата Валанжинской залежи с выделением низкокипящей фракции, выкипающей внутри интервала температур 130-250°С, и ректификацию предварительно стабилизированного газового конденсата Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей внутри интервала температур 170-250°С, и последующее смешение полученных дистиллятов в соотношении от 70%-30% до 30%-70% масс. Технический результат - получение углеводородного топлива повышенной плотности для ракетной техники типа Т-1п/п. 3 пр.

 

Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения реактивного топлива, который включает гидрогенизационную обработку нефтяных дистиллятов и каталитическую депарафинизацию при повышенных температуре и давлении в присутствии катализаторов. Изобретение касается способа, где в качестве сырья используют прямогонные керосиногазойлевые дистилляты, которые последовательно подвергают сначала каталитической депарафинизации в присутствии молибденового или никель-молибденового катализатора на цеолитсодержащем носителе, затем гидроочистке в присутствии алюмоникель- или алюмокобальт-молибденового катализатора, причем соотношение объемов катализаторов стадий каталитической депарафинизации и гидроочистки составляет соответственно от 25-60 об.% до 75-40 об.%.

(Патент РФ № 2352613, 20.04.2009 г.)

Способ позволяет получить малосернистое реактивное топливо типа РТ.

Недостатком способа является невозможность получения углеводородного топлива повышенной плотности для ракетной техники типа Т-1п/п. Другим недостатком способа является сложная двухстадийная схема гидрирования исходного сырья.

Известен также способ, заключающийся в гидрогенизационном облагораживании легкого газойля каталитического крекинга, при котором происходит глубокое гидрирование соединений серы и непредельных углеводородов при давлении 30 МПа. Затем осуществляют дополнительную стадию гидродепарафинизации на палладиевом или никель-молибденовом катализаторе, что позволяет существенно снизить содержание ароматических углеводородов, в том числе, нафталиновых.

(Е.Д.Радченко, В.А.Хавкин и др. Гидрогенизационные процессы производства реактивных топлив «Химия и технология топлив и масел» № 9, 1993г., с. 32).

Способ позволяет получать различные топлива с пониженным содержанием ароматических углеводородов и высоким содержанием нафтеновых углеводородов.

К недостаткам способа относятся применение сложной двухстадийной технологиии гидрогенизационной обработки сырья, применение высокого давления водорода (30 МПа), невозможность регулирования необходимых констант качества получаемого продукта: температуры начала кристаллизации, плотности и др., а также невозможность получения углеводородного топлива повышенной плотности для ракетной техники типа Т-1п/п.

Следует отметить, что топливо Т-1 повышенной плотности, выпускаемое ранее - это продукт прямой перегонки Троицко-Анастасиевской (IV горизонт) малосернистой нефти нафтенового основания с пределами выкипания 130-280°С. В связи с истощением запасов этой нефти остро встал вопрос о необходимости разработки альтернативных способов получения этого вида топлива, в частности для ракетной техники (типа Т-1п/п).

Задачей предлагаемого изобретения является разработка способа получения углеводородного топлива повышенной плотности для ракетной техники типа Т-1п/п, соответствующего ГОСТ 1022786, характеризующегося плотностью при 20°С - более 820 кг/м3 , содержанием ароматических соединений не более 20% масс, и температурой начала кристаллизации не более минус 60°С.

Поставленная задача решается способом получения углеводородного топлива повышенной плотности для ракетной техники путем ректификации предварительно стабилизированного газового конденсата парафинового основания Валанжинской залежи с выделением низкокипящей фракции, выкипающей внутри интервала температур 130-250°С, и ректификации предварительно стабилизированного газового конденсата нафтенового основания Сеноманской залежи Заполярного месторождения, с выделением высококипящей фракции, выкипающей внутри интервала температур 170-250°С, и последующего смешения полученных дистиллятов в соотношении от 70%-30% до 30%-70% масс.

Преимуществом данного способа является возможность путем подбора композиций в рамках указанных соотношений компонентов достигнуть получения углеводородного топлива с необходимыми параметрами - температурой начала кристаллизации и плотностью. Также при использовании предложенного способа обеспечивается требуемый фракционный состав, содержание ароматических углеводородов и др., что соответсвует ГОСТ 1022786 на углеводородное топливо повышенной плотности для ракетной техники Т-1п/п.

Предлагаемое техническое решение подтверждено следующими примерами.

Пример 1.

Ректификации подвергают предварительно стабилизированный газовый конденсат Валанжинской залежи с выделением фракции, выкипающей в пределах 130-250°С (низкокипящая фракция). Данная фракция характеризуется плотностью при 20°С - 820 кг/м3, температурой начала кристаллизации - ниже минус 60, вязкостью при 20°С - 1,55 ест, содержанием серы - 0,08% масс, содержанием ароматических углеводородов - 12,0% масс.

Также ректификации подвергают предварительно стабилизированный газовый конденсат Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей в пределах 170-250°С. Данная фракция характеризуется плотностью при 20°С - 872 кг/м3, температурой начала кристаллизации - минус 80°, вязкостью при 20°С - 3,8 сСт, содержанием серы - 0,01% масс, содержанием ароматических углеводородов - 4,5% масс.

Выделенные фракции смешивают в соотношении: 70% масс - низкокипящая фракция и 30% масс - высококипящая фракция.

Полученная смесь характеризуется плотностью при 20°С - 835 кг/м3, температурой начала кристаллизации - минус 67°С, вязкостью при 20°С - 2,3 сСт, содержанием серы - 0,08% масс, содержанием ароматических углеводородов - 10,0% масс, что соответствует ГОСТ 1022786 на углеводородное топливо повышенной плотности для ракетной техники Т-1п/п.

Пример 2.

Ректификации подвергают предварительно стабилизированный газовый конденсат Валанжинской залежи с выделением низкокипящей фракции, выкипающей в пределах 135-240°С, Данная фракция характеризуется плотностью при 20°С - 815 кг/м3, температурой начала кристаллизации - ниже минус 60°, вязкостью при 20°С - 1,45 сСт, содержанием серы - 0,07% масс, содержанием ароматических углеводородов - 11,0% масс.

Также ректификации подвергают предварительно стабилизированный газовый конденсат Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей в пределах 170-230°С. Данная фракция характеризуется плотностью при 20°С - 860 кг/м3, температурой начала кристаллизации - минус 82°, вязкостью при 20°С - 3,6 сСт, содержанием серы - 0,008% масс, содержанием ароматических углеводородов - 4,1% масс.

Выделенные фракции смешивают в соотношении: 50% низкокипящая фракция и 50% - высококипящая фракция.

Полученная смесь характеризуется плотностью при 20°С - 837 кг/м3, температурой начала кристаллизации - минус 65°С, вязкостью при 20°С - 2,6 ест, содержанием серы - 0,039% масс, содержанием ароматических углеводородов - 7,5% масс, что соответствует ГОСТ 1022786 на углеводородное топливо повышенной плотности для ракетной техники Т-1п/п.

Пример 3.

Ректификации подвергают предварительно стабилизированный газовый конденсат Валанжинской залежи с выделением низкокипящей фракции, выкипающей в пределах 140-220°С. Данная фракция характеризуется плотностью при 20°С - 802 кг/м3, температурой начала кристаллизации - ниже минус 60°, вязкостью при 20°С - 1,38 сСт, содержанием серы - 0,065% масс, содержанием ароматических углеводородов - 10,5% масс.

Также ректификации подвергают газовый конденсат Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей в пределах 180-215°С. Данная фракция характеризуется плотностью при 20°С - 838 кг/м3, температурой начала кристаллизации - минус 87°, вязкостью при 20°С - 3,4 сСт, содержанием серы - 0,008% масс, содержанием ароматических углеводородов - 3,8% масс.

Выделенные фракции смешивают в соотношении: 30% низкокипящая фракция и 70% - высококипящая фракция.

Полученная смесь характеризуется плотностью при 20°С - 827 кг/м3, температурой начала кристаллизации - минус 71°С, вязкостью при 20°С - 3,0 сСт, содержанием серы - 0,039% масс, содержанием ароматических углеводородов - 7,0% масс, что соответствует ГОСТ 1022786 на реактивное топливо повышенной плотности Т-1п/п.

Таким образом, предлагаемый способ позволяет получить дефицитное высокоплотное углеводородное топливо для ракетной техники, потребности современного рынка в котором не удовлетворены в связи с истощением запасов месторождений, подходящих для его получения.

Способ получения углеводородного топлива повышенной плотности для ракетной техники путем ректификации предварительно стабилизированного газового конденсата Валанжинской залежи с выделением низкокипящей фракции, выкипающей внутри интервала температур 130-250°С, и ректификации предварительно стабилизированного газового конденсата Сеноманской залежи Заполярного месторождения, с выделением высококипящей фракции, выкипающей внутри интервала температур 170-250°С, и последующего смешения полученных дистиллятов в соотношении от 70%-30% до 30%-70% масс.



 

Похожие патенты:

Изобретение относится к области переработки газового конденсата и легкой нефти. Способ включает предварительный подогрев исходного сырья, отгонку в первой ректификационной колонне легкой нафты, подачу кубового остатка во вторую ректификационную колонну и отгонку в ней тяжелой нафты, керосиновой фракции и дизельной фракции с получением в качестве остатка мазута.

Изобретение относится к нефтеперерабатывающей промышленности. .

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в нефтепереработке для удаления сероводорода из высококипящих нефтепродуктов.

Изобретение относится к нефтепереработке и нефтехимии, в частности к специальной обработке нефти не синтезированным растворителем. .
Изобретение относится к нефтеперерабатывающей промышленности, а именно к перегонке нефти, и может быть использовано для разделения ее на фракции. .

Изобретение относится к области химической переработки углеводородного сырья и может быть использовано для низкотемпературного пиролиза изношенных автомобильных шин и других вторичных полимерсодержащих материалов с получением продуктов пиролиза, используемых в промышленности в качестве энергоносителей и сырья для дальнейшей химической переработки.

Изобретение относится к области нефтегазопереработки, в частности к фракционированию и разделению газов каталитического крекинга газойля и может быть использовано в нефтеперерабатывающей промышленности.
Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано для увеличения глубины переработки углеводородсодержащего сырья.
Изобретение относится к процессам получения моторных топлив, преимущественно авиационных, используемых в газотурбинных двигателях, и предназначенных для использования в основном на местах добычи и переработки углеводородного сырья.

Изобретение относится к способу переработки тяжелого нефтяного сырья и может быть использовано в нефтеперерабатывающей промышленности. .

Изобретение относится к нефтепереработке. Изобретение касается способа облагораживания битуминозной нефти, которая поступает в колонну фракционирования и контактирует с нагретыми газами из реактора с псевдоожиженным слоем.

Изобретение относится к области химической переработки углеводородного сырья и может быть использовано для низкотемпературного пиролиза изношенных автомобильных шин и других вторичных полимерсодержащих материалов с получением продуктов пиролиза, используемых в промышленности в качестве энергоносителей и сырья для дальнейшей химической переработки.

Изобретение относится к установке для производства сырья, горючих материалов и топлива из органических веществ. .

Изобретение относится к области нефтепереработки, в частности к висбрекингу тяжелых нефтяных остатков и быстрому коксованию. .

Изобретение относится к энергетике, в частности водородной энергетике и производству углеродных материалов, и может быть использовано для получения энергетического углеводородного топлива, технического водорода и широкого класса углеродных материалов из биомассы.
Изобретение относится к области переработки органосодержащего сырья, в частности угля, сланцев, торфа, древесины, продуктов растениеводства, отходов животноводства, промышленных, городских отходов, с целью извлечения различных видов жидкого и твердого топлива и может найти применение в теплоэнергетике, коммунальном и сельском хозяйстве, лесоперерабатывающей, химической и других отраслях промышленности.

Изобретение относится к топливной промышленности , предназначено для получения жидких и газообразных продуктов путем термической переработштвердого углеродсодержащего топлива и позволяет увеличить выход смолы и термический КПД процесса Твердое топливо сушат и полукоксуют газовым циркуляционным теплоносителем, который предварительно нагревают в теплообменнике .
Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники из нефтей Ванкорского месторождения путем выделения фракции, выкипающей внутри интервала температур 120-270°C с получением топлива. Технический результат - получение дефицитного высокоплотного углеводородного топлива для ракетной техники. 4 пр.

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники, включающего ректификацию предварительно стабилизированного газового конденсата Валанжинской залежи с выделением низкокипящей фракции, выкипающей внутри интервала температур 130-250°С, и ректификацию предварительно стабилизированного газового конденсата Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей внутри интервала температур 170-250°С, и последующее смешение полученных дистиллятов в соотношении от 70-30 до 30-70 масс. Технический результат - получение углеводородного топлива повышенной плотности для ракетной техники типа Т-1пп. 3 пр.

Наверх