Установка сжижения природного газа

Установка сжижения природного газа включает подающую и возвратную магистрали, последовательно расположенные по прямому потоку первый и второй двухпоточные теплообменники, расширительное устройство и сепаратор, и магистраль детандирования. Установка снабжена трехпоточным теплообменником, расположенным между первым и вторым теплообменниками, первым и вторым волновыми детандерами-компрессорами и магистралью компримирования, соединяющей возвратную магистраль на участке сброса в газовую магистраль низкого давления и подающую магистраль после входа в магистраль детандирования и проходящую через компрессорные части второго и первого детандеров-компрессоров. Магистраль детандирования соединяет подающую магистраль на входе и возвратную магистраль между трехпоточным и вторым двухпоточным теплообменниками и проходит последовательно через детандерную часть первого детандера-компрессора, трехпоточный теплообменник и детандерную часть второго детандера-компрессора. Задачей изобретения является повышение надежности работы установки при гарантии получения незагрязненного маслом продукционного потока. 1 ил.

 

Изобретение относится к газоперерабатывающей промышленности и может быть использовано для сжижения природного газа.

Известна двухкаскадная криогенная установка сжижения природного газа, содержащая компрессор, блок предварительного охлаждения газа, детандеры верхнего и нижнего температурных каскадов и теплообменники (см. а.с. СССР №823781, кл. F25J 1/02, 1981).

Приведенная схема характерна для установок сжижения небольшой производительности. Наличие в схеме разветвлений прямого потока приводит к уменьшению объемного расхода через детандеры и снижению их эффективности.

Наиболее близкой к заявленному изобретению является известная из патента РФ №2272971, кл. F25J 1/00, 2006, установка сжижения природного газа, включающая подающую и возвратную магистрали, последовательно расположенные по прямому потоку первый и второй двухпоточные теплообменники, расширительное устройство и сепаратор, и магистраль детандирования.

Недостатками данной установки являются наличие высокооборотного (с числом оборотов 30000 об/мин) детандера-компрессора с маслосмазываемыми подшипниками. Это определяет низкую надежность всего агрегата и наличие вероятности загрязнения продукционного потока лубрикантом.

Задачей предлагаемого технического решения является повышение надежности работы установки при гарантии получения незагрязненного маслом продукционного потока.

Поставленная задача решается тем, что установка сжижения природного газа, включающая подающую и возвратную магистрали, последовательно расположенные по прямому потоку первый и второй двухпоточные теплообменники, расширительное устройство и сепаратор, и магистраль детандирования, снабжена трехпоточным теплообменником, расположенным между первым и вторым теплообменниками, первым и вторым волновыми детандерами-компрессорами и магистралью компримирования, соединяющей возвратную магистраль на участке сброса в газовую магистраль низкого давления и подающую магистраль после входа в магистраль детандирования и проходящую через компрессорные части второго и первого детандеров-компрессоров, а магистраль детандирования соединяет подающую магистраль на входе и возвратную магистраль между трехпоточным и вторым двухпоточным теплообменниками и проходит последовательно через детандерную часть первого детандера-компрессора, трехпоточный теплообменник и детандерную часть второго детандера-компрессора.

Использование волнового детандер-компрессора в качестве расширительного устройства, число оборотов которого не превышает 3000 об/мин, и отсутствие маслосмазываемых подшипников позволяет увеличить надежность работы установки, а использование очищенного газа обратного потока для безмасляного компремирования в компресионной части волнового детандера - компрессора гарантирует чистоту получаемого продукта.

Сущность изобретения поясняется чертежом, на котором представлена предлагаемая установка сжижения газа.

Установка сжижения природного газа, преимущественно для установки на газораспределительных станциях, содержит подающую и возвратную магистрали 1 и 2, магистрали компримирования и детандирования в детандер-компрессоре 11 и 12, первый и третий метановые противоточные теплообменники 3 и 5, второй трехпоточный метановый теплообменник 4, сепаратор 6, состоящий из газовой и жидкостной частей, атмосферный воздушный охладитель 10, расширительное устройство на подающей магистрали 1, выполненное в виде дросселя 9, которое расположено между третьим метановым противоточным теплообменником 5 и сепаратором 6, первое и второе расширительные устройства на магистрали детандирования 12, выполненные в виде детандерных частей волновых детандеров-компрессоров 7 и 8.

Возвратная магистраль 2 начинается на газовой части сепаратора 6, проходит через третий метановый противоточный теплообменник 5, второй метановый трехпоточный теплообменник 4, первый метановый противоточный теплообменник 3 и соединяется с газовой магистралью низкого давления. Магистраль компримирования 11 начинается на возвратной магистрали на участке сброса в газовую магистраль низкого давления, проходит через компрессорные части второго и первого детандеров-компрессоров 8 и 7, атмосферный воздушный охладитель 10 и соединяется с газовой магистралью. Магистраль детандирования 12 начинается на входе подающей магистрали 1, проходит через детандерную часть первого детандера-компрессора 7, второй трехпоточный метановый теплообменник 4, детандерную часть второго детандера-компрессора 8 и соединяется с возвратной магистралью 2 между третьим противоточным теплообменником 5 и вторым трехпоточным метановым теплообменником 4.

Установка работает следующим образом.

Природный газ из газовой магистрали подают на вход подающей магистрали 1. Основной поток последовательно проходит теплообменники 3, 4 и 5, где он охлаждается обратным потоком, расширяется в дросселе 9 и поступает в сепаратор 6. В сепараторе газ разделяется на жидкую и газообразную фазы. Жидкая фаза направляется потребителю, а газообразная подается в качестве обратного потока в теплообменник 5. Часть прямого потока на входе подающей магистрали 1 отделяют и подают в магистраль детандирования 12, где она расширяется в детандерной части волнового детандер-компрессора 7, проходит через теплообменник 4 в качестве второго обратного потока, дополнительно расширяется в детандере волнового детандер-компрессора 8 и подается в возвратную магистраль 2 после теплообменника 5. 1/4 часть потока из обратной магистрали на выходе из теплообменника 3 отводится в магисталь компремирования 11, где последовательно сжимается в компрессорной части волновых детандеров-компрессоров 8 и 7, охлаждается в воздушном охладителе 10 и поступает в подающую магистраль в точку между отводом в магистраль 12 и входом в теплообменник 3.

Установка сжижения природного газа, включающая подающую и возвратную магистрали, последовательно расположенные по прямому потоку первый и второй двухпоточные теплообменники, расширительное устройство и сепаратор, и магистраль детандирования, отличающаяся тем, что установка снабжена трехпоточным теплообменником, расположенным между первым и вторым теплообменниками, первым и вторым волновыми детандерами-компрессорами и магистралью компримирования, соединяющей возвратную магистраль на участке сброса в газовую магистраль низкого давления и подающую магистраль после входа в магистраль детандирования и проходящую через компрессорные части второго и первого детандеров-компрессоров, а магистраль детандирования соединяет подающую магистраль на входе и возвратную магистраль между трехпоточным и вторым двухпоточным теплообменниками и проходит последовательно через детандерную часть первого детандера-компрессора, трехпоточный теплообменник и детандерную часть второго детандера-компрессора.



 

Похожие патенты:

Изобретение относится к низкотемпературному заполнению и хранению сжиженного природного газа (СПГ) в хранилищах. .

Изобретение относится к криогенной технике, а именно к технологии сжижения природных или других нефтехимических газов. .

Изобретение относится к топливно-энергетическому комплексу и может быть применено при отработке нефтяных месторождений в экстремальных климатических условиях для повышения эффективности эксплуатации месторождений за счет максимально полной утилизации и использования попутного нефтяного газа.

Изобретение относится к технике получения сжиженных углеводородных газов и их очистки от метанола и может быть использовано в газовой, нефтяной, нефтеперерабатывающей, нефтехимической и химической отраслях промышленности.

Изобретение относится к холодильной технике и может быть использовано для производства бинарного льда (жидкого гелеобразного льда, ледяной шуги, айс-сларри) в холодильно-технологическом комплексе для предварительного охлаждения и временного хранения рыбы.

Изобретение относится к энергетическому машиностроению и может быть использовано в газовой и криогенной промышленности. .

Установка для производства бинарного льда содержит замкнутый контур хладагента, включающий последовательно соединенные трубопроводом первый компрессор, маслоотделитель, конденсатор, ресивер, отделитель жидкости, первый электромагнитный клапан, четыре параллельные линии, каждая из которых содержит терморегулирующий вентиль и кристаллизатор-испаритель. Все кристаллизаторы-испарители выходами связаны с отделителем жидкости, контур рассола включает последовательно соединенные трубопроводом рассола первый кран, фильтр грубой очистки, фильтр тонкой очистки, циркуляционный насос, регулирующий вентиль, цилиндры кристаллизаторов-испарителей, трехходовой кран и первое устройство выдачи льда. Выход маслоотделителя масляным трубопроводом соединен через второй кран, второй электромагнитный клапан и смотровое стекло с указанным компрессором. Использование данного изобретения обеспечивает упрощение конструкции, повышение надежности и снижение энергопотребления установки. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области сжижения газов и их смесей, в частности к частичному сжижению природного газа на газораспределительных станциях. Способ включает разделение потока природного газа высокого давления на технологический и продукционный потоки. Продукционный поток подвергают осушке и очистке от CO2, последовательно охлаждают в предварительном, основном и дополнительном теплообменниках, дросселируют и разделяют образованную парожидкостную смесь на паровую и жидкостную фазы с последующим направлением в обратный поток несконденсировавшегося природного газа. Технологический поток газа осушают, охлаждают, после чего расширяют в дроссельном вентиле первой ступени, затем дополнительно охлаждают и расширяют в дроссельном вентиле второй ступени и смешивают с нагретым в дополнительном теплообменнике обратным потоком несконденсировавшегося природного газа. Температуру газа перед дроссельным вентилем второй ступени выбирают минимальнодопустимой, при которой не происходит кристаллизация CO2 после прохождения газа через дроссельный вентиль второй ступени. Изобретение позволяет повысить производительность и надежность процесса сжижения природного газа, имеющего в исходном составе большое содержание диоксида углерода, а также уменьшить долю высококипящих компонентов в сжиженном природном газе. 2 ил.

Изобретение относится к низкотемпературному сжижению газа, например природного газа. При реализации способа вихревую трубу размещают вертикально в трехсекционной емкости-сепараторе, разделенной горизонтальными перегородками. В средней секции горячий конец вихревой трубы охлаждают холодным потоком, поступающим тангенциально из нижней секции после рекуперации теплоты при охлаждении исходного потока газа на входе в вихревую трубу в нижней секции. Из горячего потока сепарируется жидкая фаза, которая смешивается с поступающей жидкой фазой холодного потока и с отсепарированной остаточной жидкой фазой, выделенной в верхней секции емкости-сепаратора. Газообразная фракция выводится из верхней секции, а сжиженная фракция выводится из средней секции. Устройство содержит адсорбер, фильтр, теплообменник, вихревую трубу с охлаждаемым горячим концом трубы. Горячий конец трубы имеет сепарационное устройство в виде соосно установленного внутреннего конуса в конической части горячего конца с возможностью изменения зазора между коническими поверхностями. Внутренний конус в верхней части имеет донышко, соединенное с цилиндической частью, в верхней части которой имеются сквозные прямоугольные окна, находящиеся в верхней секции емкости. Цилиндрическая часть соединена со штоком с рукояткой, выходящей за пределы емкости, шток закреплен во втулке с резьбой. В верхней секции емкости размещено регулирующее устройство для изменения расхода газа. Использование изобретения позволит повысить эффективность сжижения газа. 2 н.п. ф-лы, 4 ил.

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Способ заключается в том, что попутный нефтяной газ после охлаждения в рекуперативном теплообменнике сепарируют в многоступенчатом центробежном сепараторе от нефтебензиновых жидких фракций, водного конденсата и механических примесей, которые выводят для дальнейшей переработки на газофракционирующую установку, а газообразную фракцию направляют на двухступенчатое компремирование. На первую ступень совместно с отсепарированной газообразной фракцией подают паровую фазу из наземного изотермического хранилища для повторного сжижения, а сжатый после первой ступени газ направляют на сжижение в трехпоточную вихревую трубу с образованием холодного, горячего газообразных и жидкого потоков. На вторую ступень компремирования направляют смесь горячего потока из вихревой трубы и холодного потока после рекуперативных теплообменников. Сжатый на второй ступени поток газа после рекуперативного охлаждения направляют в сепаратор, после чего газообразную фракцию направляют в магистральный газопровод или топливную сеть, а сжиженный газ совместно с отсепарированной из горячего потока вихревой трубы жидкой фазой в наземное изотермическое хранилище. Использование изобретения позволит повысить эффективность технологических процессов для выделения целевых углеводородных фракций. 1 ил.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. В способе частичного сжижения природного газа прямой поток после охлаждения дросселируют и разделяют на продукционный и технологический потоки. Продукционный поток охлаждают, дросселируют, разделяют в ректификационной колонне на жидкую фракцию и паровую фракцию. Паровую фракцию направляют на реконденсацию с последующим направлением части реконденсированного продукционного потока в ректификационную колонну в качестве флегмового орошения. Другую часть реконденсированного продукционного потока дросселируют и разделяют на жидкостную фазу, являющуюся готовым продуктом, и паровую фазу, направляемую далее в качестве обратного потока для охлаждения прямого потока. Предварительно охлажденный технологический поток дросселируют, испаряют за счет реконденсации продукционного потока, а после повторного дросселирования направляют в обратный поток. Также описан вариант способа частичного сжижения природного газа. Предложенная группа изобретения позволит получить сжиженный природный газ с малым содержанием высококипящих компонентов, в том числе диоксида углерода, обладающего повышенными эксплуатационными характеристиками, при снижении энергетических затрат на его производство. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию. Исходный поток охлаждают, сепарируют и выделяют легкую часть низкомолекулярного углеводородного сырья с последующим его сжижением с выделением жидкой пропан-бутановой фракции в вихревом энергетическом разделителе. Вихревой энергетический разделитель представляет собой трехсекционную емкость, в которой вертикально размещена вихревая труба таким образом, что разделена на три секции горизонтальными перегородками - верхнюю, среднюю и нижнюю. При этом в верхней секции размещен холодный конец с теплообменником-змеевиком вихревой трубы, в средней - горячий конец, а в нижней - регулирующее устройство расхода горячего потока и сепарационное устройство по отделению из горячего потока жидкой фазы, содержащее клапан. Изобретение направлено на повышение ресурсов чистого углеводородного сырья, используемого во многих отраслях промышленности, когда исходное сырье содержит много нежелательных примесей. 2 ил.

Группа изобретений относится к системе и способу сжижения газа. Способ сжижения газа содержит следующие этапы. Подаваемый поток вводят в ожижитель, содержащий, по меньшей мере, теплый расширитель и холодный расширитель. Подаваемый поток сжимают в ожижителе до давления выше критического давления и охлаждают сжатый подаваемый поток до температуры ниже критической температуры для образования плотнофазного потока высокого давления. Плотнофазный поток высокого давления отводят из ожижителя и снижают давление плотнофазного потока высокого давления в устройстве расширения для образования результирующего двухфазного потока. Затем непосредственно подают результирующий двухфазный поток в резервуар для хранения. Выделенную часть результирующего двухфазного потока объединяют мгновенно с выкипающим паром жидкости в резервуаре для хранения для образования объединенного потока пара. Причем температура плотнофазного потока высокого давления ниже, чем температура выпускного потока холодного расширителя. Также описана система сжижения атмосферного газа. Группа изобретений направлена на создание простого и недорого способа сжижения с эффективным и полезным извлечением мгновенно выделяющихся паров из резервуаров. 2 н. и 13 з.п. ф-лы, 4 ил., 2 табл.

Способ и система предназначены для оптимизации операций изоляции диоксида углерода и направлены на управление рабочими параметрами наземной установки для сжатия диоксида углерода (CO2) или трубопровода для поддержания потока CO2 в жидком или сверхкритическом состоянии при транспортировке к месту изоляции. В способах и системе используют датчики для определения, является ли течение однофазным или двухфазным, и обратную связь для регулировки давления и/или температуры на входе трубопровода. Техническим результатом является снижение потерь полезной мощности, вырабатываемой электростанцией при разделении и сжатии потока CO2, текущего в трубопроводе. 3 н. и 11 з.п. ф-лы, 16 ил., 1 табл.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины. Техническим результатом изобретения является создание высокоэффективного способа раздачи природного газа с одновременным получением максимального количества сжиженного газа за счет механической энергии, полученной при расширении от перепада давлений в магистральном трубопроводе высокого давления и трубопроводе низкого давления. 2 з.п. ф-лы, 1 ил.

Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения, используя смешанный хладагент, переохлаждают газообразным азотом в теплообменнике переохлаждения, давление переохлажденного СПГ снижают в жидкостном детандере, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа. Установка для сжижения газа содержит теплообменник предварительного охлаждения, пять сепараторов, два дросселя, теплообменник сжижения, три компрессора, предназначенных для сжатия смешанного хладагента, пять воздушных охладителей, два насоса, жидкостный детандер, теплообменник переохлаждения, турбодетандерный агрегат, включающий детандер и компрессор, два компрессора азотного цикла. Технический результат, достигаемый группой изобретений, заключается в снижении энергетических затрат, необходимых для выполнения процесса сжижения газа. 2 н.п. ф-лы, 1 ил.
Наверх