Теплообменная труба

Изобретение относится к энергетике. Теплообменная труба, у которой канал выполнен с выступами и канавками, причем канал выполнен с геометрическими соотношениями: h/Д=0,03, l1=(90-100)/h, l2=(90-100)h, где h - высота выступа, мм, Д - внутренний диаметр теплообменной трубы, мм, l1 - длина выступа, мм, l2 - длина канавки, мм. Изобретение позволяет повысить энергетическую эффективность за счет снижения гидросопротивления. 4 ил., 1 табл.

 

Изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна теплообменная труба (канал «е»), в которой в качестве интенсификатора теплообмена (ИТО) служат узкие (L<<t) кольцевые канавки на внутренней поверхности трубы. В этом канале взаимодействие потока и стенки полностью определяется теплообменом и трением в пристенных внутренних пограничных слоях (ВПС) ВПС1 и ВПС2, турбулизацию которых обеспечивает рециркуляционная зона (РЗ) [Гортышов Ю.Ф., Олимпиев В.В., Абдрахманов А.Р. Расчет турбулентной теплоотдачи и сопротивления в каналах с поперечными кольцевыми канавками // Изв. вузов. Авиационная техника. 1997. №3. С.56-68]. Механизм ИТО заключается в том, что РЗ размещена в канавке, что позволяет сократить размеры РЗ. Опыты с кольцевыми канавками проведены только для наружной поверхности труб в межтрубном потоке теплообменного аппарата (ТА) в ограниченном диапазоне характеристических параметров - t ¯ 20 : Re=3·103-2·104, где t ¯ - относительный шаг выступов, Re - число Рейнольдса.

Наиболее близким аналогом к заявляемому изобретению является теплообменная труба (канал «б»), для которой характерны большой шаг t ¯ > 10 и узкие выступы [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) // Теплофизика высоких температур. 2007. №6. С.925-953]. Идея схемы потока следующая. После каждого выступа образуется РЗ1, на поверхности которой и далее за точкой присоединения xк≈6h, где h - высота выступа, развивается турбулентный внутренний пограничный слой - ВПС1 (толщиной δ). Под РЗ1 формируется возвратный ВПС2 (Малая РЗ2 не учитывается). Участок канала с шагом t - типовой (повторяющийся). Теплогидродинамическое взаимодействие потока со стенкой полностью определяется процессами переноса внутри ВПС1 и ВПС2. Основной вклад в интенсификацию теплообмена вносят факторы повышенной теплоотдачи в зоне присоединения и малого термического сопротивления тонкого обновленного турбулизированного ВПС1 за точкой присоединения. Главное назначение отрывной рециркуляционной области течения - РЗ1 - производство дополнительной турбулентности, воздействие которой на обновленный ВПС1 стимулирует процесс теплообмена около стенки (Отрыв потока, обновление пограничного слоя и образование РЗ1 - результат действия выступа).

Недостатком известных теплообменных труб является высокое гидросопротивление и низкая эффективность.

Задачей, на решение которой направлено заявляемое изобретение, является повышение энергетической эффективности за счет снижения гидросопротивления.

Технический результат достигается тем, что в теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению канал выполнен с геометрическими соотношениями:

h/Д=0,03, l1=(90-100)/h, l2=(90-100)h, где

h - высота выступа, мм;

Д - внутренний диаметр теплообменной трубы, мм;

l1 - длина выступа, мм;

l2 - длина канавки, мм.

Сущность изобретения поясняется чертежами и таблицей, где на фиг.1 изображен канал предлагаемой теплообменной трубы, на фиг.2, 3, 4, табл.1 показаны результаты расчетов эффективности (интенсивность теплоотдачи, коэффициент гидравлического сопротивления, относительный энергетический коэффициент) каналов «е», «б» и «в».

Таким образом, для достижения технического результата предложена заявляемая конструкция теплообменной трубы (канал «в»). Канал «в» является последовательностью широких канавок l2=(90-100)h и широких выступов l1=(90-100)/h. Модель течения (и механизм ИТО) в этом канале основывается на тонких (обновленных) ВПС1; 2; 3, которые турбулизируются (внешняя турбулентность) вихревыми возмущениями от РЗ1, образующейся за обратным уступом при входе потока в канавку, и возмущениями, возникающими на прямом уступе при натекании потока на выступ.

Отрезок t канала «в» - типовой. При h/Д<0,05 происходит быстрая релаксация ВГТС1; 3 к состоянию «стандартного» ВПС на гладкой стенке. Соотношения толщин ВПС1 и ВПС3 - δ1; δ3 «Д» - позволяют отождествлять течение в трубе с течением на плоской стенке и для расчета ВПС воспользоваться теорией переноса на пластине. Целесообразно использовать интенсифицирующие процесс теплообмена элементы с размерами, не более толщины пограничного слоя. Это резко уменьшит гидравлическое сопротивление.

Основная часть термического сопротивления в потоке газов и жидкостей приходиться на пристенную область. Для чисел Прандтля Pr от 0,72 до 20 основная часть термического сопротивления потока приходится на вязкостный подслой и промежуточную область пограничного слоя (от 84% до 99%) (N.H.Afgan, FundamentalHeatandMassTransferResearchInTheDevelopmentOfNewHeatExchangersConcepts // 1993CHMTInternationalSymposiumOnNewDevelopmentInHeatExchangers.Lisbon. Portugal. PaperL.l). Поэтому интенсификация конвективной теплоотдачи должна осуществляться в вязкостном подслое и переходной области развитой турбулентности, что полностью подтверждает допущение о том, что высота элементов, интенсифицирующих процесс теплообмена, должна быть сравнима по размеру с суммарной толщиной вязкостного подслоя и промежуточной области пограничного слоя.

Оптимальная высота hопт выступов, шероховатостей и т.п. в трубах при течении газов и жидкостей определяется формулой:

h о п т = n R Re ( ε / 8 ) , где

ε - коэффициент гидравлического сопротивления в трубе, который зависит от числа Рейнольдса Re (для турбулентного режима течения в трубе рассчитывается по формуле Блазиуса: ε=0,3164/Re0,25);

R - радиус трубы по гладкой части;

n - коэффициент, для газов n=30, для жидкостей n=5 (Мигай В.К. Повышение эффективности современных теплообменников. М.: Энергия, 1980).

Повышение теплоотдачи в трубе посредством кольцевых поперечных выступов αигли - коэффициент теплоотдачи в теплообменной трубе с кольцевыми поперечными выступами, αгл - коэффициент теплоотдачи в гладкой пустой трубе) позволяет получать более выгодное соотношение между количеством тепла Q, снятого со стенки трубы, и мощностью прокачивания теплоносителя через трубу N (Калинин Э.К. и др. Интенсификация теплообмена в каналах. М.: Машиностроение, 1972). Оптимальная высота выступов hопт в теплообменной трубе, позволяющая обеспечивать максимум соотношения αигл при возможно наибольшей величине Q/N, зависит от параметров потока в трубе: чисел Прандтля Pr и Рейнольдса Re, которые связаны с типом и расходом теплоносителя, его температурой. Оптимальная высота выступов hопт уменьшается при увеличении чисел Pr и Re турбулентного режима.

Расчет канала строится следующим образом.

Вычисляются местные коэффициенты αx для ВПС1 на отрезке от хk до l2

N u x = 0,029 Re x 0,8 Pr 0,43 T w T f

Nuxx·х/λ; Rex=w·x/v;

w - среднерасходная скорость в канале ⌀Д; λ, ν - коэффициенты теплопроводности и кинематической вязкости. Вносится поправка на влияние внешней турбулентности (Tu) на теплоотдачу ВПС 1

αхиx=1+[0,41·th(0,2Tu)].

T u = T u max [ ( x / Д ) + T u max T u max ] n 1 ,

n1=3,71·10-3·Tumax1,41.

αхи - местное истинное значение; Tu - локальная величина; Tumax=10%. Местные касательное напряжение трения и коэффициент сопротивления для ВПС1

; c f x 2 = 0,029 Re x 0,2 .

Расчет ВПС3 аналогичен.

Расчет локальной теплоотдачи для ВПС2 проводится с помощью универсальной функции для обратного уступа αx2xk=f(х/xk), где αxk вычисляется для ВПС1. Одинаковым образом рассчитывается трение ВПС2. Осреднение местных параметров ВПС1; 2; 3 позволяет получить средние величины α; τw на участке t (и во всем канале).

Суммарные потери давления на отрезке t

ΔρΣ=Δpm+Δpp+Δpc;

Δpm =Rm/(πД2/4):Rm=πДtτw;

Δpm - потери на трение; Rm - сила трения; Δрр; Δpc - местные потери на внезапные расширение и сужение при обтекании канавки. Коэффициент ε на участке t (и во всем канале) находится из формулы Дарси

.

Модель универсальна по числам Re и Pr.

При сравнении характеристик каналов условия их расчета одинаковы. h=0,03 принята из рекомендованного диапазона, Re=104-106. Проведены многовариантные расчеты с различными сочетаниями геометрических параметров ИТО для каждого канала. Например, в расчетах канала «в» размеры канавки и выступа изменялись (в различных комбинациях) в пределах l 2 ¯ = l 2 / h = 9 100 ; l 1 ¯ = l 1 / h = 8 100 ;

В качестве критерия эффективности канала и оптимального варианта размеров ИТО служил относительный энергетический коэффициент . При сопоставлении вариантов одного канала (при каждом Re) показателем наиболее высокой эффективности канала и оптимальных размеров ИТО являлся случай E ¯ ' = max .

Некоторые результаты расчетов эффективности для всех каналов даны в табл.1 и на фиг.2-4.

Теплофизическое существо механизмов ИТО в этих каналах принципиально аналогичное, поэтому интенсивность теплоотдачи в них почти одинакова (см. табл.1, фиг.2). При детальной оценке можно отметить, что N u ¯ в > N u ¯ б > N u ¯ e , при этом N u ¯ в превышает N u ¯ б примерно на 2%.

Относительная теплоотдача не зависит от числа Re ( N u ¯ f ( Re ) ), т.к. характер функций Nu=f(Ren), идентичный для гладкого канала и каналов «е», «б» и «в». Модели всех каналов объективно отражают их свойства: при повышенных числах Re и h ¯ = c o n s t нарастание сопротивления обгоняет увеличение теплоотдачи ε ¯ > N u ¯ (см. табл.1).

Таблица 1
Эффективность и оптимальные размеры каналов
Канал «е» (t/h=100)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406
ε/εгл 0,948 1,128 1,248 1,341 1,418 1,765 2,12 2,521 2,79 2,998
(Е'/Е'гл)max 1,483 1,247 1,127 1,049 0,992 0,797 0,663 0,558 0,504 0,469
Канал «б» (t/h=100)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414
ε/εгл 1,011 1,193 1,314 1,408 1,486 1,836 2,194 2,598 2,868 3,078
(Е'/Е'гл)max 1,399 1,186 1,076 1,004 0,952 0,77 0,645 0,544 0,493 0,46
Канал «в» (l1=100h, l2=100h)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436
ε/εгл 1,483 1,588 1,655 1,707 1,748 1,929 2,105 2,297 2,423 2,519
(Е'/Е'гл)max 0,968 0,904 0,867 0,841 0,821 0,747 0,682 0,625 0,593 0,57

Размерные коэффициенты ε для всех каналов автомодельны относительно числа Re-ε≠f/(Re), что свойственно дискретной и песчано-зернистой шероховатости Никурадзе в режиме полного проявления шероховатости.

На большей части диапазона чисел Re сопротивление канала «в» заметно ниже величины (до 20%), (см. фиг.3), что связано с меньшим количеством РЗ на единицу длины в канале «в». Улучшенная теплоотдача и пониженное сопротивление привели к повышенной эффективности канала «в» по сравнению с другими (см. табл.1, фиг.4). В равных условиях эффективность канала «в» выше, чем показатель проверенного практикой высокоэффективного канала «б» (см. фиг.4).

Согласно расчетам предлагаемая теплообменная труба (интенсифицированный канал «в») при Re>2·105 обладает высокой теплогидравлической эффективностью.

Особое позитивное качество предлагаемой теплообменной трубы типа «в»: в широкой области чисел Re максимальная эффективность E ¯ ' = max достигается при одинаковых размерах выступа и канавки l1=l2=100/г, табл.1. В случае формирования (производства) интенсификаторов методом накатки внутренняя и наружная поверхности теплообменной трубы будет иметь одинаковые форму и размеры, тогда в частных условиях Re; Pr=idem для трубного и продольного межтрубного потоков в ТА (например, водо-водяных) эффективность и коэффициенты а внутри и снаружи трубы будут равны.

Использование предлагаемой теплообменной трубы позволит повысить энергетическую эффективность за счет снижения гидросопротивления.

Следовательно, открывается возможность реализации высокоэффективного варианта теплообменного аппарата (ТА) и значительной экономии электроэнергии и конструкционных материалов.

Теплообменная труба, канал которой выполнен с выступами и канавками, отличающаяся тем, что канал выполнен с геометрическими соотношениями:
h/Д=0,03, l1=(90-100)h, l2=(90-100)h, где
h - высота выступа, мм
Д - внутренний диаметр теплообменной трубы, мм
l1 - длина выступа, мм
l2 - длина канавки, мм



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников. Трубчатый теплообменник содержит трубы с ребрами.

Изобретение относится к конструкции теплообменника, в частности к теплообменнику металлическому системы отопления помещения. Теплообменник содержит трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также внешние элементы теплопередачи, которые закреплены к одному концевому участку.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий и может быть использовано при изготовлении теплообменника металлического системы отопления помещения.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий, в частности к способу изготовления теплообменника металлического системы отопления.

Изобретение относится к конструкции элементов системы отопления помещения, в частности к теплообменнику металлическому, и может быть использовано при изготовлении системы отопления помещения.

Изобретение относится к области теплотехники и предназначено для использования в теплообменном оборудовании микрогазотурбинных двигателей (µГТД). .

Изобретение относится к термоэлектрическим устройствам нагрева-охлаждения циркулирующих потоков жидкости или газа и может найти применение в энергетической, химической, нефтехимической, пищевой и других отраслях промышленности.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. .

Изобретение относится к теплотехнике и может быть использовано при производстве оребренных труб для теплообменных аппаратов. .

Изобретение относится к области теплотехники и может быть использовано в устройствах косвенного теплообмена. .

Теплообменник содержит корпус с первым и вторым каналами для теплоносителей и сферические теплопередающие элементы, размещенные в сферических лунках. Каналы разделены теплопередающей поверхностью, входными и выходными патрубками первого канала, входными и выходными патрубками второго канала. Сферические теплопередающие элементы размещены в сферических лунках на теплопередающей поверхности и на внутренней поверхности корпуса. Изобретение позволяет улучшить теплоотдачу от разделяющей каналы теплообменника теплопередающей поверхности. 2 ил.

Заявленное изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств. Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости. На поверхности турбулизатора выполнены отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором. Внутри теплообменной трубы концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором. Использование изобретения позволит интенсифицировать теплообмен за счет практически полного удаления пограничного слоя с наружной и внутренней поверхностей теплопроводной трубы с нагреваемой (или охлаждаемой) средой. Это влечет за собой увеличение коэффициента теплопередачи между теплоносителем и нагреваемой (или охлаждаемой) средой до 10 и более раз, соответствующее этому уменьшение необходимой теплообменной поверхности, длины струйных теплообменников, их массы и габаритных размеров. 2 ил.

Изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств. Теплообменник типа «труба в трубе», во внутренней трубе и в межтрубном пространстве которого установлены винтовые вставки. Внутреннее пространство внутренней трубы и межтрубное пространство между внутренней и наружной трубами представляют из себя винтовые полости, образованные стенками труб и винтовыми вставками. Винтовые вставки установлены таким образом, что внутренняя винтовая вставка соединена преимущественно с помощью сварки или пайки с внутренней поверхностью внутренней трубы. Винтовая вставка в межтрубном пространстве соединена таким же образом с наружной поверхностью внутренней трубы и с внутренней поверхностью наружной трубы. Материалы внутренней трубы, винтовых вставок и мест стыков винтовых вставок со стенками внутренней трубы должны иметь минимальное термическое сопротивление. Потоки жидких или газообразных сред во внутренней трубе и в межтрубном пространстве протекают по винтовым спиралям. Изобретение позволяет сократить длину теплообменников «труба в трубе» до десяти и более раз и уменьшить массу и габаритные размеры теплообменника. 2 ил.

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и узкими канавками с геометрическими соотношениями: h/D=0.1, (t-l)/h=1, l/h<(3-5), где h - высота выступа, мм, D - внутренний диаметр теплообменной трубы, мм, t - длина типового участка канала с выступом и канавкой, мм, l - длина канавки, мм. Технический результат - использование предлагаемой теплообменной трубы позволит в 2,5-4 раза уменьшить расход энергии на прокачивание теплоносителей через теплообменный аппарат (ТА), по сравнению с гладкотрубным теплообменным аппаратом, за счет снижения гидросопротивления. 4 ил., 1 табл.

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором теплообмена в виде дискретных канавок, поперечных к потоку, причем канал выполнен с геометрическими соотношениями: l2=(90-100)h; l1=(90-100)h; l'/l1=0,05; h/D=0.03, где l2 - длина канавки, мм; l1 - длина выступа, мм; l' - длина участка выступа между неглубокими канавками, мм; h - высота выступа, мм; D - внутренний диаметр теплообменной трубы, мм. Технический результат - повышение энергетической эффективности за счет снижения гидросопротивления. 4 ил., 1 табл.

Изобретение относится к теплотехнике, в частности к гелиотехнике, и может использоваться в солнечных коллекторах, предназначенных для нагрева воды от солнечного излучения. Для реализации этого процесса теплообменная панель с поглощающим покрытием помещается в теплоизолированный корпус со стеклом, через которое солнечный свет падает на поверхность этой панели, нагревает ее и прикрепленную к ней трубку с теплоносителем, по которой нагретый теплоноситель поступает в накопитель потребителя. Теплообменная панель и способ ее сборки содержит элементы из алюминиевых профилей со вставленной в их каналы трубкой теплоносителя, причем плоская поверхность алюминиевого профиля теплообменной панели изготовлена с V-образными продольными каналами шириной и глубиной 0,5 мм с шагом между центрами в 10 мм и покрыта жаропрочной нитрокраской, разведенной растворителем, а элементы алюминиевого профиля выполнены по противоположным краям с кромками, которые при стыковке одного элемента с другим образуют замкнутый контур вокруг трубки теплоносителя, являясь частью теплопроводящего сечения панели, и обжимают ее за счет некоторого конструктивно заданного натяга. Циркуляция теплоносителя по контуру позволяет накапливать горячую воду за счет охлаждения теплообменной панели. Для максимальной производительности этого процесса необходимо, чтобы теплообменная панель обладала минимальной теплоемкостью, но вместе с тем максимально быстро передавала тепло теплоносителю. В предлагаемом изобретении это реализуется путем изготовления теплообменной панели из материала с хорошей теплопроводностью - алюминия - и оптимизацией конструкции теплопроводящего сечения панели для наилучшего теплового контакта с трубкой теплоносителя. В этом случае профиль не имеет никаких дополнительных поверхностей, не участвующих в процессе теплопередачи. Вместе с тем обеспечивается максимальная теплопередача на трубку теплоносителя за счет плотного ее охвата одной стороной профиля и замыкания ее другой стороной с обеспечением необходимого поджима. 4 ил.

Изобретение относится к области теплотехники и может быть использовано при изготовлении бойлерных труб. Способ изготовления бойлерных труб с различной ребристой внутренней поверхностью заключается в том, что рассчитанный по размерам шпиндель с каналом, имеющим заданную форму внешней поверхности, выполняют с навивкой в канал проволокообразного элемента, формирующего на нем обратное изображение заданной структуры ребристости трубы. На внешнюю поверхность проволокообразного элемента наносят паяльную металлическую пасту и шпиндель вводят в трубу. Проволокообразный элемент, для обеспечения его адаптации к внутренней поверхности трубы, освобождают от шпинделя и нагревают трубу до температуры плавления паяльной металлической пасты для соединения проволокообразного элемента с внутренней поверхностью трубы, и затем трубу охлаждают. Технический результат - упрощение формирования, введения и закрепления ребер внутри трубы. 3 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к холодильному контуру. Сущность изобретения: холодильный контур (3) для бытовой техники, в частности бытовой техники для охлаждения, такой как холодильники и морозильники, включает первый теплообменник (5), выполненный с возможностью гидравлического сообщения с компрессором (4), обеспечивающий охлаждение проходящей через него охлаждающей текучей среды и ее переход по существу в жидкую фазу. Также он включает второй теплообменник (7), гидравлически сообщающийся с указанным первым теплообменником (5) и действующий в пространстве (2), подлежащем охлаждению. Второй теплообменник (7) обеспечивает частичный переход охлаждающей текучей среды в газообразную фазу с поглощением тепла, посредством чего охлаждается указанное пространство (2). Охлаждающая текучая среда циркулирует от первого теплообменника (5) ко второму теплообменнику (7) и, таким образом, поступает в компрессор (4) для следующего цикла. Капиллярное устройство (6), расположенное между первым теплообменником (5) и вторым (7) теплообменником, для расширения указанной охлаждающей текучей среды. Один из указанных первого теплообменника (5) и второго теплообменника (7) включает гибкую трубу (9), причем участок указанной трубы (9) имеет такой гофрированный профиль, который придает ей гибкость, и указанная труба (9) в сечении включает слой (100) из пластмассы и слой (101), включающий металлический материал. Металлический слой (101) соединен со слоем пластмассы, а указанный металлический материал выполнен с возможностью образования барьера против влаги. Указанный слой (100) из пластмассы представляет собой слой, конструкционное назначение которого состоит в сохранении формы трубы (9), и предпочтительно изготовлен из термопластичного материала. Металлический слой (101) является гибким, не выполняет функции опорной конструкции и включает однослойную металлическую пленку или многослойную пленку, включающую одну или несколько металлических пленок, соединенных или не соединенных со слоем материала, выполненного с возможностью сохранения формы. Техническим результатом изобретения является повышение эффективности теплообмена и обеспечение водонепроницаемости. 3 н. и 13 з.п. ф-лы, 27 ил., 1 табл.

Изобретение предназначено для применения в теплотехнике и может быть использовано в теплообменных аппаратах с оребренными трубами. В теплообменном аппарате оребренная теплообменная труба диаметром d выполнена серпантинообразной с внешним диаметром оребрения D и толщиной ребер L1, расположенных на расстоянии L2 друг от друга, при этом амплитуда серпантина A по внешнему диаметру оребрения составляет не менее A = D × ( 2 + 1 L 1 + L 2 L 1 − 1 ) период волны серпантина P не менее P = 2 D × ( 1 + 1 L 1 + L 2 L 1 − 1 ) Технический результат: интенсификация теплообмена за счет турбулизации потока, проходящего внутри оребренных серпантинообразных труб, и увеличение площади теплообмена аппарата. 22 з.п. ф-лы, 8 ил., 2 табл.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Теплообменная труба, в которой канавки глубиной 0,3H до 0,5H, где H - толщина стенки трубы, нанесенные с шагом на наружной поверхности трубы и соответствующие им выступы на внутренней поверхности трубы, выполнены по винтовой линии с шагом, который находится в диапазоне от D до 8D, где D - наружный диаметр трубы. В винтовых канавках располагается оребрение, выполненное из проволоки с внедрением во внутреннее пространство трубы с шагом от 2D до 16D под прямым углом к оси трубы. Технический результат - повышение теплообмена. 1 ил.
Наверх