Способ измерения параметров перемещения источника зондирующих сигналов

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения зондирующих сигналов гидролокаторов, установленных на подвижном носителе. Достигаемый технический результат - обеспечение возможности измерения скорости подвижного носителя и дистанции до него. Для достижения указанного технического результата производится последовательное измерение временных интервалов между моментами приема нескольких зондирующих сигналов, вычисляется разность интервалов соседних парных измерений, определяется расстояние, проходимое движущимся гидролокатором между соседними излучениями как произведение разности интервалов на скорость звука, определяется средний интервал между двумя следующими один за другим зондирующими сигналами, средний интервал между тремя зондирующими сигналами, средний интервал между четырьмя зондирующими сигналами и среднее время между средними интервалами, после чего определяют радиальную скорость движущегося гидролокатора, а для определения дистанции излучения последнего зондирующего сигнала определяют разность между временем приема последнего сигнала и временем приема предыдущего сигнала, из полученной разности вычитают интервал времени между зондирующими сигналами и последнюю разность умножают на скорость звука. 1 ил.

 

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения гидролокационных сигналов (ОГС) в современных гидроакустических комплексах.

Зондирующие сигналы, излучаемые гидролокаторами, размещенными на различных носителях, в том числе и подвижных, могут быть обнаружены на больших дистанциях с использованием известных систем обнаружения гидролокационных сигналов.

(Ю.А. Корякин С.А. Смирнов Г.В. Яковлев «Корабельная гидроакустическая техника» СПб., Наука, 2004 г., стр.89-92). При обнаружении этих сигналов возникает задача измерения параметров зондирующего сигнала, а так же задача определения скорости перемещения источника зондирующего сигнала и дистанции до него.

Известны методы обнаружения местоположения источника зондирующих сигналов, изложенные в работе А.А. Простаков «Гидроакустические средства флота» М., 1974 г., стр.90. В работе рассматривается задача определения места случайной цели, излучающей импульсные сигналы при использовании нескольких приемных постов. Измеряются разности времени прихода звука к каждому приемнику, которые в свою очередь соответствуют разности расстояний от источника звука до соответствующих приемников. Как известно, геометрическим местом точек разность расстояний которых до приемников постоянна, является гипербола. Определив точку пересечения рассчитанных гипербол, можно найти место источника звука и соответственно дистанцию до него.

В ряде случаях эта задача может быть решена с использованием триангуляционного метода при применении нескольких приемников или по оценке нескольких пеленгов. (В.И. Дмитриев и др. «Навигация и лоция» М., 2009 г., стр.278). Аналогично можно определить местоположение объекта при приеме серии импульсов и при сложном маневрировании, для чего необходимо длительное время работы гидролокатора и длительное время фиксированного маневрирования, что не всегда возможно и целесообразно (Сборник «50 лет ЦНИИ «Морфизприбор» СПб., 1999 г., стр.149. Ю.А. Корякин С.А.Смирнов Г.В.Яковлев «Корабельная гидроакустическая техника» СПб., Наука, 2004 г. стр.67). Тем не менее, этот способ является наиболее близким аналогом и может быть принят за прототип.

Способ содержит следующие операции:

- производят последовательный прием зондирующих сигналов,

- определяют момент времени прихода первого принятого зондирующего сигнала

- измеряют направление прихода сигнала,

- изменяют собственное положение приемника зондирующих сигналов,

- определяют скорость движения приемника зондирующих сигналов,

- определяют время приема следующего сигнала в новой точке местоположения приемника,

- измеряют направление на источник сигнала в новой точке нахождения приемника.

По измеренным пеленгам и по измеренному пройденному расстоянию определяют положение точки пересечения;

По двум углам и стороне определяют стороны треугольника, которые и будут равны дистанции до источника зондирующих сигналов.

Повторив измерения и получив новую дистанцию, можно определить скорость перемещения источника излучения.

Для осуществления этого способа необходимо, чтобы источник зондирующего сигнала (гидролокатор), параметры которого определяют, работал непрерывно, а это не всегда имеет место. Другим недостатком способа является необходимость сложной схемы маневрирования приемника зондирующих сигналов, которая требует много времени. За это время положение движущегося гидролокатора может существенно измениться, что приведет к ошибке определения скорости перемещения источника зондирующего сигнала и дистанции до него

В задачах обнаружения гидролокационных сигналов принимаются сигналы от гидролокаторов, установленных на движущихся носителях, при этом время излучения этих сигналов ограничено, и задача определения радиальной скорости движущегося гидролокатора и дистанции до него существующими методами не может быть решена.

Техническим результатом предлагаемого технического решения является обеспечение возможности определения скорости перемещения источника зондирующего сигнала и дистанции до него.

Для достижения указанного технического результата в способ содержащий, последовательный прием зондирующих сигналов перемещающегося источника, определение момента времени прихода первого принятого зондирующего сигнала, введены дополнительные признаки, а именно: последовательно измеряют моменты времени ti приема еще n зондирующих сигнала, где n не менее 3-х, определяют временной интервал Tk между моментами прихода каждых двух следующих друг за другом зондирующих сигналов Tk=ti+1-ti, определяют разность измеренных временных интервалов ΔTm=Tk+1-Tk, измеряют скорость звука С, определяют расстояние, проходимое перемещающимся источником зондирующего сигнала за время между двумя следующими один за другим зондирующими сигналами L=СΔTm, определяют половину временного интервала между моментами прихода первых двух зафиксированных следующих один за другим зондирующих сигналов Tcpk=(ti+1-ti)/2, определяют средний временной интервал между моментами прихода первого и третьего зондирующих сигналов Tcpk+1=(ti+2- ti)/3, первого и четвертого зондирующих сигналов Tcpk+2=(ti+3-ti)/4, определяют средний временной интервал Тср как Тср=(Tcpk+Tcpk+1+Tcpk+2)/3, и радиальную скорость перемещающегося источника зондирующего сигнала Vp определяют как Vp=L/Тср, а для определения дистанции Дп до перемещающегося источника зондирующего сигнала в момент tn приема зондирующего сигнала определяют время распространения этого зондирующего сигнала Траспр как интервал между временем приема зондирующего сигнала в момент tn и временем приема предыдущего зондирующего сигнала Tk=tn- tn-1 за вычетом среднего интервала между зондирующими сигналами Траспр.=Tkср и Дп определяют как Дпраспр.С, а дистанцию до перемещающегося источника зондирующего сигнала в момент излучения первого принятого зондирующего сигнала Д0 определяют из выражения Д0п-nL с учетом знака измерения L.

Поясним достижение технического результата.

Как правило, работа гидролокатора, являющегося источником зондирующего сигнала, имеет свой целью обзор пространства и обнаружение какого - либо объекта по наличию эхосигнала от него. Дальность распространения зондирующего сигнала гидролокатора существенно больше, чем дальность обнаружения отраженного эхосигнала. Поэтому зондирующий сигнал обнаруживается приемным устройством системы ОГС практически всегда при первых же сигналах излучения, вероятность пропуска такого сигнала прямого распространения чрезвычайно мала. Излучения зондирующего сигнала происходят в фиксированных точках по дистанции при движении гидролокатора, через определенный интервал времени, величина которого выбирается в зависимости от шкалы работы гидролокатора и определяется частотой повторения зондирующего сигнала или скважностью излучения. Если гидролокатор неподвижен и приемник неподвижен, то интервал времени между зондирующими сигналами и интервал времени между принятыми приемным устройством системы ОГС сигналами будут одинаковы. Если излучатель движется или приемник движется, то интервал времени между принятыми зондирующими сигналами будет отличаться от интервала времени между излученными зондирующими сигналами. При сближении объектов интервал времени между принятыми зондирующими сигналами будет меньше, чем интервал времени между излученными зондирующими сигналами. При расхождении объектов интервал времени между принятыми сигналами будет больше, чем интервал времени между излученными сигналами. Изменение величины интервала будет определяться скоростью изменения расстояния. Величину изменения интервала времени между принимаемыми зондирующими сигналами можно определить, если измерить разность между интервалами времен прихода нескольких следующих друг за другом зондирующих сигналов, первый сигнал из которых принимается за опорный. Для этого необходимо зафиксировать время прихода первого зондирующего сигнала и относительно него зафиксировать время прихода трех следующих друг за другом зондирующих сигналов. После этого определяют попарно интервалы времени между моментами прихода этих зондирующих сигналов. На следующем этапе измеряется разность интервалов времени, измеренных попарно. Эта разность интервалов и будет определять скорость изменения расстояния между принятыми зондирующими сигналами, которая зависит от скорости движения гидролокатора и от времени излучения зондирующих сигналов гидролокатора. Некоторое отличие имеет флюктуационный характер и определяется ошибкой точности измерения времени приема сигналов, флюктуацией распространения зондирующего сигнала в среде и стабильностью положения источника зондирующего сигнала в пространстве и приемника. Расстояние, проходимое гидролокатором за интервал времени между зондирующими сигналами, можно получить, если умножить измеренный временной интервал на измеренную скорость распространения звука в морской воде. Это расстояние между точками по дистанции, в которых происходит излучение зондирующих сигналов движущегося с постоянной скоростью гидролокатора. Для определения величины скорости сближения или расхождения гидролокатора необходимо определить время между зондирующими сигналами гидролокатора или скважность излучения.

Временной интервал между зондирующими сигналами можно определить как среднее значение от трех полученных оценок времени. Первая оценка времени соответствует половине времени между моментами приема первых двух зондирующих сигналов, вторая оценка времени соответствует времени между первым зондирующим сигналом и третьим зондирующим сигналом, деленным на 3, третья оценка соответствует времени между приемом первого зондирующего сигнала и временем приема четвертого зондирующего сигнала, деленного на 4.

Окончательную оценку скважности излучения зондирующих сигналов можно получить, определив среднее от трех полученных оценок. Полученная окончательная оценка приближенно будет близка к искомому интервалу времени между излучениями зондирующих сигналов гидролокатора. Таким образом, имеется расстояние, проходимое гидролокатором за время между моментами приема зондирующего сигнала и средняя оценка интервала между моментами приема зондирующего сигнала. Разделив измеренное расстояние, проходимое гидролокатором между моментами излучения зондирующего сигнала, на среднюю оценку интервала между моментами приема зондирующих сигналов получим скорость движения гидролокатора. Для определения дистанции излучения последнего принятого зондирующего сигнала гидролокатора необходимо определить время распространения последнего сигнала гидролокатора до места нахождения приемника системы ОГС. Для этой цели определяют временной интервал между моментом приема последнего сигнала и моментом приема предыдущего сигнала, после чего из полученной разности вычитают среднюю оценку временного интервала между принятыми зондирующими сигналами и получают время распространения последнего зондирующего сигнала от гидролокатора до приемника. Умножая время распространения последнего зондирующего сигнала гидролокатора до приемника на скорость звука, можно получить дистанцию от приемника системы ОГС до точки излучения последнего зондирующего сигнала гидролокатора. Дистанция, на которой был излучен первый принятый зондирующий сигнал гидролокатора, определяется как разность дистанции излучения последнего зондирующего сигнала гидролокатора и произведения числа посылок на измеренное расстояние, проходимое гидролокатором между излучаемыми зондирующими сигналами, с учетом знака измеренной оценки расстояния. Последнее условие определяет сближения приемника и гидролокатора или их расхождение. При сближении измеренная оценка расстояния имеет отрицательный знак, что говорит о сокращении расстояния, и при вычислении исходной дистанции происходит сложение последней дистанции и пройденных расстояний между зондирующими сигналами. При расхождении гидролокатора и приемника величина оценки расстояния между зондирующими сигналами гидролокатора имеет положительный знак, и при вычислении исходной дистанции первого принятого зондирующего сигнала гидролокатора из оценки дистанции последнего зондирующего сигнала будет вычитаться произведение числа посылок без одной на измеренное расстояние.

Сущность изобретения поясняется фиг.1, на которой приведена блок-схема устройства, реализующего предлагаемый способ.

Устройство содержит антенну 1, соединенную через приемное устройство 2, блок 4 определения моментов времени приема зондирующих сигналов, первый выход блока 5 определения временных интервалов между моментами прихода зондирующих сигналов, блок 6 определения временных интервалов со входом блока 8 определения радиальной скорости движения источника зондирующих сигналов. Измеритель 3 скорости звука через первый вход блока 7 определения расстояния, проходимого гидролокатором за временной интервал между моментами излучения зондирующих сигналов, соединен со вторым входом блока 8, а второй выход блока 5 соединен со вторым входом блока 7. Второй выход блока 4 соединен со вторым входом блока 6. Третий выход блока 4 соединен с первым входом блока 9 определения дистанции, на которой был излучен принятый зондирующий сигнал. Второй вход блока 9 соединен со вторым выходом блока 6, а третий его вход с третьим выходом блока 7.

Работу предлагаемого способа целесообразно рассмотреть совместно с описанием работы устройства, реализующего способ.

Зондирующие сигналы движущегося источника (гидролокатора) принимаются антенной 1 и поступают на вход приемного устройства 2, где усиливаются, подвергаются фильтрации и преобразуются в цифровой вид, удобный для дальнейшей обработки и измерения с необходимой точностью. Антенна 1, приемное устройство 2 являются известными устройствами, реализованными в системах обнаружения гидролокационных сигналов ОГС. Сигналы, преобразованные в цифровой вид, обрабатываются специальными цифровыми процессорами на основе разработанных алгоритмов, (см. Ю.А. Корякин С.А. Смирнов Г.В. Яковлев «Корабельная гидроакустическая техника» СПб., Наука, 2004 г., стр.164-176, стр.278-295). В процессоре реализуются все блоки предлагаемого устройства. В блоке 4 происходит определение моментов времени прихода последовательности принятых зондирующих сигналов, запоминаются времена прихода и передаются измеренные оценки в блок 5 определения временных интервалов между последовательными сигналами и определение разности временных интервалов принятых последовательных сигналов. Измеренная оценка разности временных интервалов поступает в блок 7 для определения расстояния, проходимого движущимся гидролокатором между моментами излучения зондирующих сигналов, на второй вход которого поступает среднее значение скорости звука для данного района работы из блока 3 измерителя скорости звука. Измеритель скорости звука является известным устройством, который используется во всех гидроакустических комплексах, (см. Ю.А. Корякин С.А. Смирнов Г.В. Яковлев «Корабельная гидроакустическая техника» СПб., Наука, 2004 г., стр.300). В блоке 7 определяется расстояние, проходимое движущимся гидролокатором между излучениями зондирующего сигнала, полученная оценка расстояния между зондирующими сигналами передается в блок 8 измерение радиальной скорости движения. Со второго выхода блока 4 моменты времени передаются на второй вход блока 6, где определяется средний временной интервал между принятыми сигналами движущегося гидролокатора, который поступает на второй вход блока 8. Для определения дистанции до источника в момент излучения последнего принятого зондирующего сигнала, выбирается интервал времени между моментом приема последнего зондирующего сигнала и моментом приема предыдущего зондирующего сигнала, которые поступают из блока 4 определения моментов времени приема последовательности сигналов в блок 9 определения дистанции, на второй вход которого поступает значение среднего временного интервала между зондирующими сигналами из блока 6, а на третий вход из блока 7 поступает расстояние между сигналами и используемая скорость звука. В блоке 9 производятся элементарные вычислительные операции, результатами которых является оценка дистанции от приемника до точки, на которой был излучен последний принятый сигнал и оценка дистанции до точки, на которой был излучен первый принятый сигнал.

Таким образом, без маневрирования, только путем измерения временных интервалов и скорости звука, а так же простых математических операций над ними удается определить дистанцию до перемещающегося источника зондирующего сигнала и его радиальную скорость.

Способ измерения параметров перемещения источника зондирующих сигналов, содержащий последовательный прием зондирующих сигналов перемещающегося источника, определение момента времени прихода первого принятого зондирующего сигнала, отличающийся тем, что: последовательно измеряют моменты времени ti приема еще n зондирующих сигналов, где n не менее 3-х, определяют временной интервал Тk между моментами прихода каждых двух следующих друг за другом зондирующих сигналов Tk=ti+1-ti, определяют разность измеренных временных интервалов ΔТmk+1-Tk, измеряют скорость звука С, определяют расстояние, проходимое перемещающимся источником зондирующего сигнала за время между двумя следующими один за другим зондирующими сигналами L=СΔТm, определяют половину временного интервала между моментами прихода первых двух следующих один за другим зондирующих сигналов Tcpk=(ti+1-ti)/2, определяют средний временной интервал между моментами прихода первого и третьего зондирующих сигналов Tcpk+1=(ti+2-ti)/3, первого и четвертого зондирующих сигналов Tcpk+2=(ti+3-ti)/4, определяют средний временной интервал Тср как Тср=(Tcpk+Tcpk+1+Tcpk+2)/3, и радиальную скорость перемещающегося источника зондирующего сигнала Vp определяют как Vp=L/Тср, а для определения дистанции до перемещающегося источника зондирующего сигнала Дп определяют время распространения последнего сигнала как разность между временем приема последнего сигнала и временем приема предыдущего сигнала Tk=tn-tn-1 за вычетом среднего интервала между принятыми зондирующими сигналами Траспр.=Tkср и Дп определяют как Дп=Tpacпp.C, a дистанцию до перемещающегося источника зондирующего сигнала в момент излучения первого принятого зондирующего сигнала Д0 определяют из выражения Д0п-nL с учетом знака измерения L.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано при решении задач радиопеленгации с помощью переносных (малогабаритных) средств в декаметровом и метровом диапазонах радиоволн.

Изобретение относится к измерительной технике, в частности к пеленгаторам. .

Изобретение относится к области радиолокации и может быть использовано в радиолокаторах поиска и слежения. .

Изобретение относится к радиотехнике и может быть использовано для обнаружения и пеленгации фазоманипулированных сигналов. .

Изобретение относится к вычислительной технике. .

Изобретение относится к тепловым выключателям, предназначенным для защиты электронных и электрических приборов от перегрева при неисправностях, позволяет повысить надежность термовыключателя.

Изобретение относится к конструктивному выполнению средств гидрофизических исследований и может быть использовано, например, при реализации систем акустической томографии или систем пассивного обнаружения шумящих объектов.

Изобретение относится к измерительной технике, в частности к средствам исследования движения, и может быть использовано в биомеханике для изучения движений пациента, в строительстве для управления подземным бурением, в компьютерных играх и в других областях науки и техники.

Изобретение относится к радиотехнике и может быть использовано для повышения точности пеленгации радиосигналов в коротковолновом (КВ) диапазоне частот. .

Использование: в устройстве для обнаружения сигналов и определения направления на их источник. Сущность: устройство для обнаружения сигналов и определения направления на их источник содержит выполненную определенным образом дискретную антенную решетку (ДАР), включающую N ненаправленных пассивных и М активно-пассивных электроакустических преобразователей, соответствующие им I каналы передачи информации, блок управления характеристикой направленности, блок вычисления относительных координат элементов ДАР, пороговое устройство, вычислитель порога принятия решения, индикатор, блок управления активно-пассивными элементами ДАР, а также формирователь характеристик направленности с временной задержкой сигналов. Формирователь характеристики направленности дополнительно содержит запоминающее устройство и блок определения среднего значения отклика обнаружителя, с возможностью вычитания вычитающим устройством среднего значения отклика обнаружителя из выходного сигнала запоминающего устройства. Технический результат: число нелинейных операций при формировании отклика обнаружителя уменьшено до двух; упрощение конструкции обнаружителя; снижение требования к средствам обработки процессов при сохранении эффективности решения задач обнаружителем, повышение быстродействия тракта обнаружения и точности пеленгования объектов. 3 з.п. ф-лы, 1 ил.

Изобретение относится к радионавигации и может использоваться в радионавигационных системах для измерения угловых координат подвижных объектов как в азимутальной, так и в угломестной плоскостях относительно задаваемого наземным радиомаяком направления. Сущность изобретения заключается в том, что радиомаяк одновременно из двух пространственно разнесенных в плоскости измерений точек с известными координатами излучает ортогонально линейно поляризованные электромагнитные волны. На подвижном объекте принимаются электромагнитные волны в линейном поляризационном базисе, составляющем угол 45° с плоскостью измерений. По принятым сигналам на выходе линейного поляризационного разделителя формируются суммарный и разностные сигналы и измеряется разность фаз между ними, после чего рассчитывается угловая координата подвижного объекта. Достигаемый технический результат - предлагаемая угломерная система обеспечивает более высокое быстродействие и точность измерений при наличии жестких ограничений на габариты приемной антенны подвижного объекта, где масса и габариты антенны приобретают первостепенное значение. 2 ил.

Изобретение относится к радиотехнике, а именно к области пеленгации. Достигаемый технический результат - расширение возможностей пеленгации, сокращение времени расчета угловых параметров многолучевого ионосферного сигнала. Технический результат достигается тем, что круговую антенную систему, расположенную на поверхности земли, дополняют линейной системой вибраторов, расположенных вдоль вертикали к поверхности земли. С помощью сформированной таким образом антенной системы (трехмерная антенная система), многоканального приемника, многоканального аналого-цифрового преобразователя (АЦП) и временного преобразования Фурье формируют пространственно-временной массив комплексных данных E ∧ n , m , отображающий значения напряженности поля в n точках трехмерного пространства (n - номер вибратора) и в m-е моменты времени, с интервалами 1-2 секунды (индекс m определяет номер временного среза данных на n вибраторах, m=1÷M+1). Количество временных срезов данных берется на единицу больше, чем количество лучей М. Затем осуществляют соответствующую математическую обработку, фильтруют однолучевые поля из совокупности полей ионосферного сигнала, формируют для каждого выделенного поля диаграммы направленности, сканируют диаграммой направленности в диапазоне оценочных максимумов и углов места и оценивают азимуты, углы места и амплитуды по максимуму диаграммы направленности для М лучей ионосферного сигнала. 6 ил.

Изобретение относится к радиотехнике и может быть использовано при разработке систем для определения координат источника радиоизлучения (ИРИ), а также в пассивной радиолокации. Достигаемый технический результат - повышение точности оценки разности моментов приема сигналов источника радиоизлучения, в двух разнесенных приемных пунктах. Указанный результат достигается за счет того, что в заявленном способе осуществляют прием сигнала в двух разнесенных приемных пунктах, оцифровку напряжения с выхода антенны, обнаружение сигнала, в каждом приемном пункте, оценку разности моментов приема, включающем оценку задержки отраженного сигнала относительно прямого в каждом приемном пункте, оценку разности моментов приема отраженных сигналов, вычисление разности моментов приема прямых сигналов как суммы задержки между прямым и отраженным сигналом в первом приемном пункте и задержки между отраженными сигналами в первом и во втором приемном пункте, минус задержка между прямым и отраженным сигналом во втором приемном пункте. 4 ил.

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ, и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций. Технической задачей изобретения является повышение помехоустойчивости и достоверности приема и демодуляции сложных сигналов с фазовой манипуляцией путем подавления узкополосных помех. Устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ содержит одетый на служебную собаку 1 ошейник 2, мобильный первичный преобразователь 3 и вторичный преобразователь 12. Первичный преобразователь 3 содержит тактильные сенсоры 4.1 и 4.2, коммутатор 5, усилитель 6, модулятор 7, радиопередатчик 8, источник 9 питания, световой 10 и звуковой 11 маячки, задающий генератор 18, фазовый манипулятор 19, триггер 17, однополярный вентиль 20, интегратор 21, пороговый блок 22, ключ 23, усилитель 24 мощности и передающую антенну 25. Вторичный преобразователь 12 содержит вибраторную антенну 26, рамочную антенну 27, усилители 28 и 29 высокой частоты, амплитудные детекторы 30 и 31, блок 32 деления, пороговый блок 33, ключ 15, демодуляторы 14 и 44, перемножители 34, 35, 38 и 39, узкополосные фильтры 36 и 40, фильтры 37 и 41 нижних частот, фазоинверторы 42 и 43, блок 45 вычитания и регистратор 16. 7 ил.

Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования. Технический результат - повышение устойчивости функционирования методов оценки напряженности электромагнитного или акустического поля Для этого на каждом элементе антенной решетки записывают интервал на временном интервале [0,Т], производят формирование дискретного спектра напряженности поля с использованием процедуры преобразования Фурье, при этом. для каждой из полученных спектральных компонент находят вектор комплексных амплитуд/вспомогательных источников как приближенное решение матрично-векторного уравнения с использованием процедуры квазирешения. Число вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее определяют значения поля спектральной компоненты в произвольной точке плоскости антенной решетки (формируют «виртуальный» канал приема сигналов) как скалярное произведение найденного вектора комплексных амплитуд вспомогательных источников и соответствующего вектора «виртуального» канала приема сигналов. 4 з.п. ф-лы, 1 ил.

Изобретение относится к системам управления безопасностью полетов. Достигаемый технический результат - повышение эффективности систем управления безопасностью полетов. Способ основан на введении в бортовое оборудование воздушных судов системного процессора, который объединен с бортовой системой объективного контроля, бортовой и наземной аппаратурой моноимпульсных вторичных радиолокаторов, работающих в дискретно-адресном режиме и модернизированных до режима «8», радиовещательного автоматического зависимого наблюдения, аппаратурой международной системы спасания терпящих бедствие КОСПАС-САРСАТ, устанавливаемой на навигационных искусственных спутниках Земли Глонасс-К1 и его модификациях. Системный процессор обеспечивает формирование признаков наличия или отсутствия целостности воздушных судов с последующей передачей их экипажу, центрам управления и спасания на основе указанного объединения, что позволяет осуществить в реальном масштабе времени упреждающие, коррективные действия, необходимые для поддержания требуемого уровня безопасности полетов от взлета до посадки, а также оперативное определение местоположения воздушного судна в случае аварийной посадки без использования аварийных бортовых устройств регистрации. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - возможность частотной и пространственной селекции источников сигналов. Технический результат достигается тем, что устройство для определения направления на источник сигнала, содержит первую магнитную антенну, ориентированную в направлении Север - Юг, вторую магнитную антенну, ориентированную в направлении Запад - Восток, электрическую антенну с круговой диаграммой направленности, шесть усилителей, десять аналого-цифровых преобразователей (АЦП), персональную электронно-вычислительную машину (ПЭВМ или микропроцессор), блок системы единого времени (GPS или Глонасс), блок связи с абонентами, четыре смесителя, десять управляемых фильтров, четыре коммутатора, пять цифроаналоговых преобразователей (ЦАП), четыре калибратора, формирователь, третью магнитную антенну с круговой диаграммой направленности, а также гониометр. Перечисленные средства выполнены и соединены между собой определенным образом. 1 ил.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый техническим результат - возможность частотной и пространственной селекции источников сигналов. Указанный результат достигается тем, что устройство для определения направления на источник сигнала содержит первую магнитную антенну, ориентированную в направлении Север-Юг, первый усилитель, вторую магнитную антенну, ориентированную в направлении Запад-Восток, второй усилитель, последовательно соединенные третью антенну с круговой диаграммой направленности, третий усилитель, а также первый, второй и третий аналого-цифровые преобразователи (АЦП), персональную электронно-вычислительную машину (ПЭВМ или микропроцессор), дополнительно содержит блок системы единого времени (GPS или Глонасс), блок связи с абонентами, первый коммутатор, второй коммутатор, первый управляемый фильтр, четвертый АЦП, третий коммутатор, четвертый коммутатор, второй управляемый фильтр, пятый АЦП, первый цифроаналоговый преобразователь (ЦАП), первый калибратор, второй ЦАП, второй калибратор, третий ЦАП, третий калибратор, четвертый ЦАП, формирователь, а также третий, четвертый и пятый управляемые фильтры, первый и второй смесители, а также гониометр. Перечисленные средства определенным образом выполнены и соединены между собой. 1 ил.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения. Юстировочный щит находится в дальней зоне антенны радиопеленгатора и содержит лазерный и инфракрасный излучатели. Для имитации сигналов от приемоответчика ракеты и сигналов, отраженных от цели, щит снабжен генератором радиоимпульсов с синтезатором частот. Достигается повышение точности юстировки. 3 ил.
Наверх