Способ запуска индивидуального изолирующего аппарата

Изобретение относится к способам запуска в работу индивидуальных дыхательных аппаратов изолирующего типа на химически связанном кислороде. Способ запуска индивидуального изолирующего аппарата с применением инициирующей жидкости заключается в том, что инициирующую жидкость подают на тепловой состав. Тепловой состав при контакте с инициирующей жидкостью разогревается и генерирует горячий водяной пар. Затем водяной пар подают в объем регенеративного продукта. Естественный дыхательный процесс по реакции с тепловыделением быстро (15-20 с) довершает процесс запуска. Тепловой состав имеет высокое удельное тепловыделение и значительно меньшую массу, что позволяет компактно разместить его в объеме регенеративного продукта. 1 ил.

 

Изобретение относится к способам запуска в работу индивидуальных дыхательных аппаратов изолирующего типа на химически связанном кислороде. Большинство известных индивидуальных средств защиты органов дыхания в настоящее время используют регенеративные продукты на основе надперекисей щелочных металлов. При дыхании регенеративный продукт в стационарном режиме поглощает углекислый газ и выделяет кислород.

Инициирование работы регенеративного продукта предполагает его предварительный разогрев, так как при относительно низких температурах (ниже плюс 20°С) регенеративный продукт трудно или не разрабатывается. Обычно инициирование работы регенеративного продукта производится путем подачи инициирующей жидкости на пусковой брикет пиротехнического действия. При контакте инициирующей жидкости с поверхностью пускового брикета брикет разогревается и генерирует кислород для заполнения дыхательного мешка. Затем тепло пускового брикета передается теплопроводностью регенеративному продукту и таким образом регенеративный продукт активизируется, то есть становится восприимчивым для выдыхаемой газовой смеси, инициирующей поглощение углекислого газа и соответствующего выделения кислорода.

Этот способ запуска широко известен и реализован во многих патентах, например, патент RU 2335314, А62В 7/08, 2006.01; патент RU 2223126, A62B 7/08, 2004.02; патент RU 2130789, A62B 19/00, A62B 7/08, 1997.09.

Недостатком способа является недостаточно быстрый разогрев регенеративного продукта при пониженных температурах среды (ниже 0°С) и таким образом замедленный его запуск (более 30 с). Очевидно, что последнее нарушает естественный ритм дыхания человека. При температурах внешней среды ниже минус 20°С известны случаи незапуска индивидуального изолирующего аппарата.

Другим недостатком способа является высокая пожароопасность пиротехнического брикета и, следовательно, изолирующего аппарата. В практике их применения известны случаи самопроизвольного запуска пускового брикета.

Реализованный в патенте RU 2130789 способ принят за прототип.

Задачами изобретения являются:

- снижение времени запуска в работу индивидуального изолирующего аппарата;

- повышение пожаробезопасности индивидуального изолирующего аппарата.

Для решения перечисленных задач предлагаемый способ запуска индивидуального изолирующего аппарата в работу с применением инициирующей жидкости отличается тем, что инициирующую жидкость подают на тепловой состав, который при контакте с жидкостью генерирует горячий водяной пар, после чего горячий водяной пар подают в объем (чаще в центр) регенеративного продукта.

Для запуска регенеративного продукта в работу (восприимчивости его к поглощению углекислого газа) необходимо выполнение двух условий:

- разогрев, по крайней мере, части продукта;

- наличие поверхностного слоя гидроокиси щелочного металла.

Сущность изобретения заключается в том, что подготовка поверхности в объеме и прогрев регенеративного продукта для поглощения углекислого газа производятся прямой подачей горячего водяного пара непосредственно в объем (центр) регенеративного продукта. При этом одновременно выполняются оба условия подготовки к работе регенеративного продукта.

В известном способе разогрев регенеративного продукта от пускового брикета производится через механизм теплопроводности. Этот процесс отличается малой скоростью теплопередачи, большими теплопотерями и прогревает только внешний слой регенеративного продукта. Однако этого еще недостаточно. Для начала работы (поглощения углекислого газа) требуется еще подготовить поверхность регенеративного продукта. Непосредственно с чистой надперекисью щелочного металла углекислый газ при пониженных температурах не взаимодействует. Необходимо, чтобы на поверхности регенеративного продукта присутствовал поверхностный слой гидроокиси. Холодный водяной пар для образования гидроокиси в этом способе поступает на продукт при дыхании, что в свою очередь требует времени. В сущности дальнейший разогрев продукта значительно дополняется за счет дыхания.

Первой особенностью способа (первый отличительный признак) является то, что инициирующую жидкость подают на тепловой элемент. В качестве инициирующей жидкости может быть использована чистая вода. Тепловой элемент (тепловыделяющий состав) при сбросе жидкости автоматически разогревается и, таким образом, нагревает воду до парообразного состояния. Тепловой элемент размещают в объеме регенеративного продукта. Количество тепла, выделяемое тепловым элементом, не трудно связать и рассчитать на потребное количество тепла для парообразования воды.

Второй особенностью способа (второй отличительный признак) является то, что водяной пар автоматически подают в объем регенеративного продукта для его разогрева и непосредственной реакции горячего водяного пара с образованием гидроокиси и одновременным выделением кислорода. Прогрев продукта паром - процесс значительно более быстрый, чем нагрев продукта, например, теплопроводностью.

В совокупности перечисленных выше отличительных признаков выражается сущность изобретения.

Данный способ может быть реализован, например, в устройстве, схема которого показана на чертеже.

Тепловой элемент 1 размещен в объеме регенеративного продукта 2. Тепловыделяющий состав 3 помещен в корпусе теплового элемента 1. Трубка 4 для подачи инициирующей жидкости из ампулы (на рисунке не показана) соединена с корпусом теплового элемента 1.

При запуске инициирующую жидкость из ампулы (на рисунке не показана) по трубке 4 сбрасывают в тепловой элемент 1 непосредственно на тепловыделяющий состав 3. При контакте с инициирующей жидкостью тепловыделяющий состав 3 разогревается и превращает воду инициирующей жидкости в горячий водяной пар. Горячий водяной пар в свою очередь через верхнюю перфорированную часть теплового элемента поступает в объем регенеративного продукта и таким образом инициирует его работу.

Пример 1. Температура внешней среды плюс 20°С. В качестве инициирующей жидкости используется чистая вода. Количество подаваемой жидкости - 2 г. Время сброса инициирующей жидкости составляет примерно 1-2 с. Время начала реакции воды с тепловыделяющим составом (время задержки) составляет 2-3 с. Время окончания реакции (время испарения воды) и выброса пара в объем продукта составляет 10-12 с. Общее время готовности регенеративного продукта к работе составляет 15-20 с. Выделение кислорода регенеративным продуктом начинается с момента подачи пара в его объем, то есть через 3-4 с и заканчивается через 20 с.

Для сравнения время готовности регенеративного продукта к работе согласно способу по патенту RU 2130789 составляет 35-40 с, то есть примерно в два раза больше.

Масса теплового элемента - 10 г. Масса тепловыделяющего состава - 2 г. Теплота разложения теплового состава - 1,2-1,4 ккал/г.

Поскольку тепловой состав расположен в объеме регенеративного продукта и имеет сравнительно с пусковым брикетом значительно меньшую массу, то он не повышает пожароопасность изолирующего аппарата.

Пример 2. Температура внешней среды минус 20°С. В качестве инициирующей жидкости используется раствор серной кислоты (20%). Количество подаваемой жидкости - 2 г. Время сброса инициирующей жидкости составляет примерно 2 с. Время начала реакции воды с тепловыделяющим составом (время задержки) составляет 4-8 с. Время окончания реакции (время испарения воды) и выброса пара в объем продукта составляет 20-30 с. Общее время готовности регенеративного продукта к работе составляет 25-40 с.

Масса теплового элемента - 10 г. Масса тепловыделяющего состава - 2 г.

Таким образом, преимущества предлагаемого способа заключаются в сокращении времени запуска индивидуального изолирующего аппарата примерно в два раза, а также в возможности запуска аппарата при низких температурах.

В сравнении со способом, использующим пиротехнический пусковой брикет, данный способ позволяет конструктивно снизить массу пусковой части примерно в 3-4 раза, объем пусковой части - также примерно в 3-4 раза. Поскольку тепловой состав расположен в объеме регенеративного продукта и имеет сравнительно с пусковым брикетом значительно меньшую массу, то он не повышает пожароопасность изолирующего аппарата.

В числе других достоинств предлагаемого способа следует отметить отсутствие выделения высокодисперсного дыма, неизбежно сопровождающего работу пиротехнического брикета и трудно фильтруемого.

Способ запуска индивидуального изолирующего аппарата с применением инициирующей жидкости, отличающийся тем, что инициирующую жидкость подают на тепловой состав, который при контакте с инициирующей жидкостью разогревается и генерирует горячий водяной пар, который затем подают в объем регенеративного продукта.



 

Похожие патенты:

Изобретение относится к индивидуальным изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека в атмосфере, непригодной для дыхания. .

Изобретение относится к устройствам, предназначенным для использования в аварийных ситуациях или при работе в непригодной для дыхания атмосфере. .

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде, предназначенным для защиты органов дыхания в аварийной ситуации. .

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде, предназначенным для защиты органов дыхания в аварийной ситуации. .

Изобретение относится к устройствам для защиты органов дыхания в аварийной ситуации. .

Изобретение относится к устройствам для защиты органов дыхания изолирующего типа на химически связанном кислороде. .

Изобретение относится к индивидуальным устройствам для защиты органов дыхания, используемым в атмосфере, непригодной для дыхания. .

Изобретение относится к пусковым устройствам изолирующих дыхательных аппаратов. .

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде. .

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде, предназначенным для защиты органов дыхания в аварийной ситуации. .
Способ получения дыхательной смеси из закиси азота в смеси с инертными газами для обеспечения жизнедеятельности человека при его нахождении в средах, непригодных для дыхания, и оказания помощи, связанной с дыхательной функцией, позволяет контролировать запас защитной способности, делать перерывы в работе, и превосходит известные способы создания искусственной атмосферы для дыхания по соотношению времени защитного действия к массе устройства.

Изобретение относится к устройствам регенерации воздуха в непригодной для дыхания атмосфере, закрытых помещениях, и может быть использовано, например, в респираторах горноспасателей. Система регенерации воздуха содержит поглотительный патрон, который снаряжен поглотителем углекислого газа, и баллон с кислородом. Поглотительный патрон снаряжен брикетом перекиси или окиси лития. Кроме того, поглотительный патрон выполнен с использованием раствора гидроокиси лития и парогазовой фазы. Устройство позволяет значительно снизить массогабаритные показатели системы регенерации. 1 з.п. ф-лы, 3 ил.

Изолирующий дыхательный аппарат на химически связанном кислороде предназначен для защиты органов дыхания в аварийной ситуации. Изолирующий дыхательный аппарат на химически связанном кислороде содержит установленный в дыхательном мешке и соединенный с узлом изоляции органов дыхания снаряженный регенеративным продуктом корпус в виде оболочки из полимерной пленки. В корпусе помещен упругий элемент и закреплены пластины регенеративного продукта. Согласно изобретению, противоположные стороны упругого элемента закреплены на стенках дыхательного мешка. Изобретение обеспечивает создание избыточного давления в аппарате, исключающего подсос окружающего воздуха при нарушении герметичного прилегания к лицу узла изоляции органов дыхания. 5 з.п. ф-лы, 16 ил.

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, использующим химические продукты, конкретнее к холодильному устройству компрессионного типа для охлаждения дыхательной смеси изолирующего аппарата. В качестве источника холода для дыхательной смеси используется холодильное устройство компрессионного типа, у которого компрессирующий элемент (компрессор) устройства выполнен в форме эластичных камер, расположенных под подошвой обуви, а в качестве источника механической энергии устройства используется энергия ступни человека. Такое конструктивное выполнение устройства для охлаждения дыхательной смеси позволяет исключить традиционный компрессор из схемы холодильного устройства и, таким образом, радикально снизить массу, уменьшить габариты и исключить использование электроэнергии в холодильном устройстве. 3 ил.

Изобретение относится к средствам защиты органов дыхания на химически связанном кислороде. Изолирующий дыхательный аппарат содержит корпус, выполненный в виде пакета из полимерной пленки, разделенный сварными швами на снабженные окнами карманы. В карманах установлены пластины регенеративного продукта. Корпус, выполненный в виде пакета, помещен в дыхательном мешке, причем между лицевой частью и корпусом установлен переключатель потока, соединенный клапаном вдоха с полостью дыхательного мешка. В окнах корпуса установлены дистанционирующие вставки. Корпус соединен с дыхательным мешком лентами, являющимися продолжением крепления аппарата на пользователе. Корпус и дыхательный мешок снабжены клинообразными выступами для соединения с переключателем потока. Конструкция аппарата позволяет улучшить основные эксплуатационные характеристики - снизить сопротивление дыханию и повысить удобство пользования. 5 з.п. ф-лы, 16 ил.

Изобретение относится к изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека в атмосфере, непригодной для дыхания. Данный аппарат может применяться горноспасателями для работы в шахтах. Изолирующий дыхательный аппарат содержит баллон со сжатым кислородом, дыхательный мешок и маску с клапанами вдоха и выдоха. Дополнительно изолирующий дыхательный аппарат содержит абсорбер, использующий жидкий регенерируемый поглотитель углекислого газа и электрохолодильное устройство, работающее по принципу Пельтье. Такое конструктивное выполнение аппарата позволяет исключить использование расходуемых материалов, кроме кислорода, и обеспечить подачу потребителю охлажденной дыхательной смеси и, таким образом, исключить необходимость в запасах льда. Последнее обстоятельство особенно важно, так как горноспасателям, как правило, приходится работать при повышенных температурах среды (после пожара). 1 ил.

Изолирующий дыхательный аппарат на химически связанном кислороде предназначен для защиты органов дыхания в аварийной ситуации и содержит корпус из пленки, в котором помещен регенеративный продукт в виде армированных пластин. Корпус выполнен из отдельных секций, параллельно соединенных с узлом изоляции, и каждая секция дополнительно снабжена запорным элементом, установленным на входе и на выходе каждой секции. Запорный элемент выполнен в виде хомута из термоусадочной пленки, полученной путем растягивающей деформации пленки из фторопласта Ф-4 МБ. Между секциями установлена термоизоляция. Изобретение обеспечивает равномерную отработку пластин регенеративного продукта, что позволяет снизить массу аппарата, уменьшить сопротивление дыханию и повысить удобство пользования изолирующим дыхательным аппаратом как в рабочем положении, так и при ношении его. 6 з.п. ф-лы, 8 ил.

Изолирующий дыхательный аппарат на химически связанном кислороде предназначен для защиты органов дыхания в аварийной ситуации с повышенной комфортностью. Изолирующий дыхательный аппарат на химически связанном кислороде содержит лицевую часть, регенеративный патрон, пусковое устройство, клапанную коробку, дыхательный мешок, хемосорбент, шланги вдоха и выдоха, установленное на шланге выдоха устройство регулирования, выполненное в виде воздуховода с распределительным клапаном, управляемым гибкой связью, закрепленной на противоположной клапану стороне дыхательного мешка. Согласно изобретению хемосорбент расположен в дыхательном мешке и соединен параллельно на линии выдоха с регенеративным патроном через устройство регулирования, расположенное внутри дыхательного мешка, осуществленное в виде воздуховода с распределительным клапаном, соединенным гибкой связью с дыхательным мешком, причем вход хемосорбента в дыхательном мешке соединен последовательно с клапаном вдоха клапанной коробки и лицевой частью, а выход - с регенеративным патроном. Изобретение обеспечивает одновременное увеличение времени защитного действия на тяжелых режимах дыхания, снижение сопротивления дыханию и снижение температуры на вдохе. 1 з.п. ф-лы, 1 ил., 2 табл.

Изолирующий дыхательный аппарат на химически связанном кислороде предназначен для защиты органов дыхания в аварийной ситуации. Изолирующий дыхательный аппарат на химически связанном кислороде содержит установленный в дыхательном мешке патрон с регенеративным продуктом и промежуточной камерой со штуцером, соединенным гофрированной трубкой с узлом изоляции органов дыхания, и снабженной окнами, соединяющими камеру с полостью дыхательного мешка. В промежуточной камере установлено распределительное устройство, а окна снабжены запорными элементами, выполненными в виде клапанов вдоха. Изобретение обеспечивает удобство применения за счет комфортности дыхания, а также упрощает конструкцию. 3 з.п. ф-лы, 10 ил.

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно наносят с одной либо обеих сторон хладагент, в качестве которого используют смесь твердых высокомолекулярных углеводородов предельного характера, модифицированную наноматериалом. В качестве хладагента используют смесь модифицированных парафинов с различной температурой фазового перехода. В качестве наноматериала используют углеродный наноструктурный материал «Таунит» - смесь углеродных нанотрубок типа «Таунит» либо «Таунит-М» в количестве мас. % от 0,5 до 10 либо нанографит (полиграфен) в количестве мас. % от 0,2 до 6. В зазор между волокнистыми подложками с нанесенным хладагентом помещают безузловую сетку. Использование предлагаемого способа позволяет повысить эффективность охлаждения ДГС на 25-40°С до создания комфортных условий для дыхания. Техническим результатом является упрощение обслуживания средств защиты дыхательных путей и обеспечение возможности длительного хранения их в снаряженном состоянии. 4 з.п. ф-лы, 2 табл., 1 ил.
Наверх