Устройство для автоматического управления процессом нагрева жидкого металла в газовой отражательной печи

Изобретение относится к области автоматического управления процессом нагрева жидкого металла и может быть использовано для плавления алюминиевых сплавов в газовых отражательных печах ванного типа. Устройство управления содержит два датчика температуры с задатчиками температуры и управляемый силовой преобразователь. Первый датчик температуры размещен в поверхностном слое металла, а второй - на дне ванны. Устройство содержит сумматор с коэффициентом, первый и второй входы которого подключены к выходу первого датчика температуры и выходу его задатчика, сумматор с коэффициентом, первый и второй входы подключены к выходу второго датчика температуры металла и выходу его задатчика, сумматор, входы которого подключены к выходами упомянутых сумматоров с коэффициентами, релейный регулятор, вход которого соединен с выходом сумматора, входы которого подключены к выходам сумматоров с коэффициентами, блок формирования задержанной обратной связи, вход которого подключен к выходу датчика температуры поверхностного слоя, и сумматор, первый вход которого подключен к выходу релейного регулятора, второй вход - к блоку формирования задержанной обратной связи, а выход - к управляемому силовому преобразователю. Обеспечивается быстродействие устройства и гарантированное достижение температуры металла по глубине ванны. 3 ил.

 

Изобретение относится к устройствам автоматического управления процессом нагрева жидкого металла в газовых отражательных печах ванного типа для плавления алюминиевых сплавов и может быть использовано на печных агрегатах в металлургической, машиностроительной и других отраслях промышленности.

Известна система автоматического регулирования нагревательной печи (патент РФ №2030462, кл. C21D 11/00), содержащая датчик температуры, блок определения скорости изменения температуры нагреваемого металла, регуляторы температуры и блока определения теплопоглощения металла. В качестве блока определения скорости изменения температуры система содержит термопару, устанавливаемую в своде печи, выход которой подключен к дифференциатору.

Недостатки этой системы обусловлены тем, что в устройстве используется один датчик температуры расположенный в своде печи, способ управления требует прецизионной настройки уставок управляющего воздействия в целях недопущения перегрева верхних слоев металла и недогрева на дне ванны. Техническая реализация устройства сложна и не обеспечивает оптимальное управление по критериям быстродействия и энергосбережения.

Наиболее близким по технической сущности и достигаемому результату является устройство для управления процессом нагрева (патент РФ №2015183, кл. C21D 11/00), которое рассматривается в качестве прототипа. В рассматриваемом устройстве имеется два датчика температуры. Первый представляет собой термопару, при помощи которой измеряется температура печной атмосферы. Второй представляет собой бесконтактный датчик температуры, при помощи которого измеряется температура поверхности садки металла. Вычислительный блок устройства по измеренной температуре поверхности садки металла и по заданным теплофизическим параметрам рассчитывает температуру центра садки путем решения дифференциального уравнения теплопроводности при начальных и граничных условиях. По рассчитанной температуре центра садки металла формируется управляющее воздействие.

Недостатком устройства является во-первых, невозможность его использования в высокотемпературных газовых отражательных печах ванного типа, в связи с серьезными техническими трудностями размещения бесконтактного оборудования и непрерывного измерения температуры в агрессивной жидкометаллической среде. Сечение газовой отражательной печи представлено на фиг.1. Размещение термопар 2 возможно только в сливном кармане. Во-вторых, сигналы рассогласования в обоих контурах подаются на коммутатор через линейные регуляторы, где в зависимости от преобладающего значения коммутируются, таким образом формируется сигнал управления, который подается на исполнительный механизм. Рассматриваемое устройство управления не обеспечивает оптимальное управление по критериям быстродействия и энергопотребления. В-третьих, решение дифференциального уравнения теплопроводности в реальном времени для расчета температуры центра садки металла является избыточным, затратным по времени и может привести к неустойчивости системы регулирования в целом.

Техническим результатом изобретения является повышение быстродействия устройства, обеспечение гарантированного достижения температуры жидкого металла по глубине ванны за минимально возможное время при минимальном энергопотреблении, упрощение устройства.

Технический результат достигается тем, что предлагаемое устройство содержит датчик температуры поверхностного слоя металла, датчик температуры металла на дне ванны, задатчик температуры поверхностного слоя металла, задатчик температуры металла на дне ванны, сумматор с коэффициентом, в котором первый и второй входы подключены к выходу датчика температуры поверхностного слоя металла и выходу задатчика температуры поверхностного слоя металла, сумматор с коэффициентом, в котором первый и второй входы подключены к выходу датчика температуры металла на дне ванны и выходу задатчика температуры металла на дне ванны, сумматор, в котором входы подключены к выходами сумматоров с коэффициентами, релейный регулятор вход которого соединен с выходом сумматора, блок формирования задержанной обратной связи, вход которого подключен к выходу датчика температуры поверхностного слоя, и сумматор, у которого первый вход подключен к выходу релейного регулятора, второй - к блоку формирования задержанной обратной связи, а выход - к управляемому силовому преобразователю, управляемый силовой преобразователь, выход которого управляет горелками газовой отражательной печи.

Устройство изображено на фиг.2, где представлена его блок схема. Устройство содержит (фиг.2) задатчик температуры поверхностного слоя металла 1, сумматоры с коэффициентами 2 и 11, блок формирования задержанной обратной связи 3, датчик температуры поверхностного слоя металла 4, сумматоры 5 и 7, релейный регулятор 6, управляемый силовой преобразователь 8, распределенный объект управления 9, в качестве которого понимается распределенная температура жидкого металла в ванне газовой отражательной печи, задатчик температуры металла на дне ванны 10, датчик температуры металла на дне ванны 12.

Устройство работает следующим образом, в момент включения устройства сигнал с датчика температуры поверхностного слоя металла 4 вычитается из сигнала задатчика температуры поверхностного слоя металла 1 в сумматоре 2, разность сигналов с весом c1 поступает на первый вход сумматора 5, сигнал датчика температуры металла на дне ванны 12 вычитается из сигнала задатчика температуры металла на дне ванны 10 в сумматоре 11, разность сигналов с весом c2 поступает на второй вход сумматора 5, сигнал с выхода сумматора 5 поступает на релейный регулятор 6. Подобное соединение элементов позволяет реализовать закон управления в устройстве следующим образом:

где - функция переключения; , - расчетное значение температуры в конечный момент оптимального процесса управления; T1, T2 - текущее значение температуры жидкого металла в ванной печи в двух точках по глубине; c1, c2 - постоянные коэффициенты. Расчетное значение температуры в конечный момент оптимального управления задается в задатчике температуры поверхностного слоя металла 1, а задается в задатчике температуры металла на дне ванны 10. Функция переключения S1(T1,T2) реализуется в сумматорами 2, 5 и 11. Релейный регулятора 6 формирует выходной сигнал Qmax=1 при функции переключения S1(T1,T2)>0 и Qmin=0 при S1(T1,T2)<0. Постоянные коэффициенты c1 и c2 рассчитываются в случае S1(T1,T2)=0, при значениях температур конечного распределения, полученных в результате решения системы дифференциальных уравнений с граничными и начальными условиями. На графике (фиг.3) представлен вид управляющего воздействия. На интервале времени от 0 до t1 действует максимальное управляющее воздействие Qmax=1. На интервале времени от t2 до t3 действует минимальное управляющее воздействие Qmin=0. Промежуточный интервал времени от t1 до t2 необходим для ограничения температуры поверхностного слоя металла на допустимом уровне, то есть исключается перегрев поверхности жидкого металла. Управление на промежуточном интервале формируется на выходе сумматора 7 при подаче на первый вход максимального управляющего воздействия с выхода релейного регулятора 6 и при подаче на второй вход управляющего сигнала с блока формирования задержанной обратной связи 3. Блок формирования задержанной обратной связи 3 работает только на интервале времени t1-t2, он формирует задержанный экспоненциальный сигнал вычитаемый из максимального управляющего воздействия в сумматоре 7. Моментом запуска формирования управления блоком формирования задержанной обратной связи 3 считается превышение сигнала температуры поверхностного слоя металла допустимого уровня, величина которого считается фиксированной и задается при проектировании. Формируемый с выхода сумматора 7 управляющий сигнал (фиг.3) подается на управляемый силовой преобразователь 8, который управляет газовыми грелками в распределенном объекте управления 9, нагревая жидкий металл в ванне газовой отражательной печи.

Вся система управления обладает высоким быстродействием вследствие того, что все расчеты коэффициентов оптимального управления выполняются на этапе проектирования, и в процессе установки системы управления возможны корректировки на реальном промышленном объекте управления. Реализуемый алгоритм управления обеспечивает оптимальное управление по совокупности критериев быстродействия и энергосбережения, при условии ограничения на максимальную температуру поверхности жидкого металла в ванне печи.

Устройство для автоматического управления процессом нагрева жидкого металла в газовой отражательной печи, содержащее два датчика температуры, два задатчика температуры и управляемый силовой преобразователь, отличающееся тем, что один датчик температуры размещен в поверхностном слое металла, а другой датчик температуры - на дне ванны печи, один задатчик температуры предназначен для датчика температуры поверхностного слоя металла, а другой - для температуры металла на дне ванны, в него введен сумматор с коэффициентом, в котором первый и второй входы подключены к выходу датчика температуры поверхностного слоя металла и выходу задатчика температуры поверхностного слоя металла, сумматор с коэффициентом, в котором первый и второй входы подключены к выходу датчика температуры металла на дне ванны и выходу задатчика температуры металла на дне ванны, сумматор, в котором входы подключены к выходам сумматоров с коэффициентами, релейный регулятор, вход которого соединен с выходом сумматора, блок формирования задержанной обратной связи, вход которого подключен к выходу датчика температуры поверхностного слоя, и сумматор, у которого первый вход подключен к выходу релейного регулятора, второй - к блоку формирования задержанной обратной связи, а выход - к управляемому силовому преобразователю.



 

Похожие патенты:

Изобретение относится к области черной металлургии, в частности к способам и устройствам термической обработки железнодорожных рельсов. .

Изобретение относится к области черной металлургии, в частности к термической обработке железнодорожных рельсов. .

Изобретение относится к области термической обработки стали и сплавов и может быть применено для построения кадастра жидкостей по их охлаждающей способности. .

Изобретение относится к области черной металлургии, в частности к способам и устройствам термической обработки железнодорожных рельсов. .

Изобретение относится к области термической обработки стальных изделий, в частности полосовой и тонколистовой стали. .

Изобретение относится к области термической обработки деталей из стали, в том числе деталей, имеющих сложную форму. .

Изобретение относится к поверхностной закалке деталей и может быть использовано в различных отраслях промышленности. .

Изобретение относится к области термической обработки стали и сплавов для повышения их механических свойств. .

Изобретение относится к области металлургии. Для обеспечения контролируемого равномерного охлаждения рулона горячей полосы и получения однородных свойств рулон (1) горячей полосы (2) размещают в устройстве промежуточного хранения, при этом рулон опирают и вращают (100) посредством контакта его боковой поверхности (5) с, по меньшей мере, одним элементом для охлаждения в виде ролика (3, 7). Управление процессом охлаждения намотанной в рулон (1) горячей полосы (2) осуществляют с помощью устройства, содержащего машиночитаемый программный код, который имеет управляющие команды. 4 н. и 21 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии и машиностроения. Для предотвращения брака по механическим свойствам непрерывно отожженной металлической заготовки и обеспечения максимального выхода годного осуществляют управление непрерывной термообработкой металлических заготовок, которое включает неразрушающий непрерывный контроль получаемой в результате термообработки характеристики механических свойств, при этом в качестве контрольной характеристики используют значение удельных энергозатрат, проводят сравнение значений текущих энергозатрат со значениями энергозатрат, полученными из предварительно установленных регрессионных зависимостей механических свойств от удельных энергозатрат, обеспечивающими получение необходимых механических свойств, и регулируют режим термообработки заготовки, обеспечивая попадание величины удельных энергозатрат в интервал допустимых значений. 5 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к способу контроля охлаждения движущейся полосы (в) в охлаждающей секции линии непрерывной обработки и к охлаждающей секции непрерывной обработки полосы. Охлаждение полосы осуществляют распылением на полосе жидкости или смеси, состоящей из газа и жидкости на полосу. Охлаждение зависит от параметров, включающих в себя температуру и скорость потока охлаждающей текучей среды. В способе контроля определяют одну или более зон, в которых параметры охлаждения являются такими, чтобы могло произойти или произошло локальное исчезновение паровой пленки на поверхности горячей полосы, в результате чего происходит повторное смачивание полосы. В качестве параметра охлаждения в определенной или определенных таким образом зоне или зонах применяют, по меньшей мере, температуру охлаждающей жидкости, чтобы сохранить или вернуться к охлаждению в паровой пленке на поверхности полосы, появляющейся в результате явления пленочного вскипания охлаждающей жидкости при контакте с горячей полосой. 3 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к металлургии. Технический результат - повышение качества управления. Способ включает следующие стадии: определяют расход каменноугольного газа и расход воздуха в каждой секции с использованием датчика расхода каменноугольного газа и датчика расхода воздуха. Суммируют расходы каменноугольного газа и воздуха с получением их общего входного расхода. Вычисляют давление в печи до сгорания, исходя из общего входного расхода каменноугольного газа и общего входного расхода воздуха. Определяют составляющие каменноугольного газа и соотношение каменноугольного газа к воздуху, определяют температуру газа в печи перед сгоранием с использованием термопары. Прогнозируют составляющие газа после сгорания и общий объем газа, исходя из уравнений химической реакции горения и исходя из входных расходов каменноугольного газа воздуха, составляющих каменноугольного газа и соотношения каменноугольного газа к воздуху. Определяют температуру газа в печи после сгорания и вычисляют давление газа в печи после сгорания исходя из давления газа в печи до сгорания, температуры газа до сгорания и температуры газа после сгорания. Вычисляют степень открытия вентилятора отработанного газа исходя из давления газа в печи до сгорания и давления газа в печи после сгорания и используют указанную степень открытия для управления вентилятором отработанного газа. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии, в частности к охлаждению толстолистовой стали в линии прокатного стана. Для обеспечения ровности толстолистовой стали при одновременной высокой производительности прокатного стана осуществляют охлаждение листового металла (В) на участке (1) охлаждения прокатного стана с помощью множества устройств (2) подачи охладителя для охлаждения верхней стороны (О) листа и нижней стороны (U) листового металла с обеспечением посредством охлаждения заданного целевого состояния листового металла (В) в референтной точке при выходе и/или после выхода из участка (1) охлаждения, определяют подачу охладителя для первого и второго устройства (2) подачи охладителя, которые размещены противоположно относительно листового металла (В), при этом определение подачи охладителя для первого и второго устройства (2) подачи охладителя осуществляют на основе заданного подлежащего отводу теплового потока от обращенной к соответствующему устройству (2) подачи охладителя стороне (О, U) листа, причем для соответствующего подлежащего отводу теплового потока учитывают температуру, в частности, температуру (То, Tu) поверхности соответствующей стороны (О, U) листа. Управление охлаждением листа проводят, используя машиночитаемый программный код. 5 н. и 15 з.п. ф-лы, 4 ил.

Изобретение относится к области термической обработки стали и сплавов и может быть использовано в конструкции устройств для определения охлаждающей способности закалочных сред. Установка содержит основание с вертикальной стойкой, трубчатую печь, емкость с закалочной средой и с нагревателем закалочной среды, датчик теплового потока, связанный с компьютером, установленный на вертикальной стойке механизм переноса упомянутого датчика из трубчатой печи в емкость с закалочной средой и систему управления. При этом установка снабжена подвижным столом, установленным на основании, а механизм переноса датчика теплового потока выполнен в виде захвата, установленного на упомянутой стойке с возможностью вертикального перемещения по ней. Трубчатая печь и емкость с закалочной средой расположены на упомянутом столе с возможностью поочередного размещения под захватом с датчиком теплового потока при продольном перемещении стола по основанию относительно вертикальной стойки. Использование изобретения позволяет упростить конструкцию установки за счет применения плоскопараллельного переноса датчика теплового потока и одновременно повысить точность его позиционирования. 1 ил.

Изобретение относится к области металлургии, в частности к термической обработке стального изделия, проката различной формы, в т.ч. листового проката, фасонного проката, в частности железнодорожных рельсов. Для равномерного распределения охлаждающей среды по площади охлаждаемой поверхности изделия проводят дифференцированное охлаждение стального изделия с прокатного и/или повторного нагрева от температуры не ниже температуры аустенизации, при этом охлаждение осуществляют охлаждающей средой, формирующейся в сопловых отверстиях пластины, установленной на выходном отверстии коллектора, путем эжектирования воды потоками газовой среды, которая из системы трубопроводов газовой среды поступает в коллектор и далее в сопловые отверстия пластины, а вода из системы трубопроводов воды поступает в сопловые отверстия пластины по каналам, выполненным в пластине с сопловыми отверстиями. 2 н. и 14 з.п. ф-лы, 11 ил.

Изобретение относится к термосиловой обработке длинномерных осесимметричных деталей типа вал. Для повышения качества деталей в процессе их эксплуатации на наружной поверхности детали нарезают резьбу и ввинчивают её в вертикальном положении в подвижные траверсы, в центре которых имеются резьбовые втулки. Между подвижными траверсами монтируют управляемые силовые цилиндры. Деформацию растяжением осуществляют с усилием, в пределах 2-4% превышающим предел упругости материала детали. После установки детали в подвижных траверсах её нагревают по всей длине до температуры отпуска и создают напряжения растяжения посредством управляемых силовых цилиндров с помощью штоков, закрепленных в подвижных траверсах через сферические опоры. Контроль равномерности нагрева осуществляют с помощью бесконтактного датчика-тепловизора. Далее оценивают равномерность деформации, сравнивают ее с заданной, а при неудовлетворительном результате повторяют деформацию. Для обработки детали по всей её длине траверсы с силовыми приводами перемещают до конца по участкам детали, равным межтраверсному расстоянию. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области металлургии. Для повышения стойкости к водородному растрескиванию магистральной трубы с толщиной стенки 20 мм или больше и пределом прочности при растяжении, равным 560 МПа или выше, ее выполняют из стали, содержащей С, Si, Mn, Р, S, Al, Nb, Ca, N и О, один или несколько компонентов, выбранных из Cu, Ni, Cr, Mo, V и Ti, Fe и неизбежные примеси - остальное. Микроструктура в направлении толщины трубы имеет 90% или больше бейнита и 1% или меньше мартенсито-аустенита в области, которая простирается от позиции, находящейся на расстоянии 2 мм от внутренней поверхности, до позиции, находящейся на расстоянии 2 мм от внешней поверхности. Твердость по толщине трубы в области, отличной от зоны осевой ликвации, составляет 220 Hv10 или меньше, а твердость в зоне осевой ликвации составляет 250 Hv10 или меньше. Главные оси пор, включений и кластеров включений, присутствующих на участке, который простирается от позиции, находящейся на расстоянии 1 мм от внутренней поверхности, до позиции, находящейся на расстоянии 3/16 толщины трубы, и на участке, который простирается от позиции, находящейся на расстоянии 1 мм от внешней поверхности, до позиции, находящейся на расстоянии 13/16 толщины трубы в направлении ее толщины, составляют 1,5 мм или меньше. 3 н. и 3 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии. Для обеспечения устойчивости к водородному растрескиванию поверхности магистральной трубы, используемой для высокосернистого газа, имеющей толщину 20 мм или более и прочность на разрыв 560 МПа или более, труба выполнена из стали, содержащей химическую композицию С, Si, Mn, Р, S, Al, Nb, Са, N и О, а также один или более компонентов, выбираемых из Cu, Ni, Cr, Mo, V и Ti, в качестве необязательных компонентов, и остальное Fe и неизбежные примеси. Микроструктура в направлении по толщине трубы содержит 90% или более бейнита в области, которая простирается от положения 2 мм от внутренней поверхности до положения 2 мм от внешней поверхности. Твердость по толщине трубы распределена таким образом, что твердость областей, отличных от области осевой ликвации, составляет 220 Hv10 или менее, а твердость области осевой ликвации составляет 250 Hv0,05 или менее. Длина главных осей пор, включений и кластеров включений, присутствующих на участке, который простирается от положения 1 мм от внутренней поверхности до положения 3/16 толщины трубы, и на участке, который простирается от положения 1 мм от внешней поверхности до положения 13/16 толщины трубы, в направлении по толщине трубы составляет 1,5 мм или менее. 3 н. и 3 з.п. ф-лы, 3 табл.
Наверх