Способ и система смазки газотурбинного двигателя

Изобретение относится к способу и к системе смазки, имеющей в своем составе по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения. Способ состоит в создании избыточного давления в камерах путем вдувания в эти камеры расхода сжатого воздуха через уплотнительные прокладки герметизации, причем в двух так называемых главных камерах создается давление, превышающее давление в оставшейся так называемой вторичной камере, в смазке подшипника качения в главных камерах, в смазке подшипника качения во вторичной камере только путем впрыскивания масляного тумана, поступающего из по меньшей мере одной из главных камер, причем упомянутый масляный туман направляется в результате разности давлений между главными камерами и вторичной камерой, в извлечении оставшейся части смазочного масла, впрыскиваемого в главные камеры, для его направления к масляному резервуару и в направлении воздушно-масляной смеси, поступающей из вторичной камеры, к масляному сепаратору. Технический результат изобретения - повышение эффективности смазки подшипников без использования сложного оборудования. 3 н. и 4 з.п. ф-лы, 2 ил.

 

Предшествующий уровень техники

Предлагаемое изобретение относится в целом к области динамической смазки авиационного газотурбинного двигателя.

Авиационный газотурбинный двигатель содержит множество элементов, требующих смазки; при этом речь идет, в частности, о подшипниках качения, используемых для поддержания вращающихся валов, а также зубчатых зацеплений блока приведения в движение вспомогательного оборудования.

В частности, для уменьшения трения, механического износа и нагревания, возникающих вследствие высокой скорости вращения валов газотурбинного двигателя, подшипники качения, которые поддерживают эти валы, должны смазываться. Поскольку простой смазки, осуществляемой путем впрыскивания смазочного масла только в процессе фаз технического обслуживания газотурбинного двигателя, оказывается недостаточно, обычно используют так называемую динамическую смазку.

Динамическая смазка состоит в обеспечении непрерывной циркуляции масла в смазочном контуре. Расход смазочного масла, поступающего из резервуара, направляется, таким образом, при помощи насосов на движущиеся части подшипников, причем эти подшипники размещаются в камерах, закрытых при помощи уплотнительных прокладок герметизации. Для устранения любых утечек смазочного масла из упомянутых камер на остальные части газотурбинного двигателя через уплотнительные прокладки герметизации некоторый расход воздуха, отбираемый на одном из компрессоров газотурбинного двигателя, вдувается через эти уплотнительные прокладки. Таким образом, эти камеры оказываются под повышенным давлением по отношению к атмосферному давлению.

При этом основная часть воздуха, вводимого в камеры, удаляется за пределы газотурбинного двигателя, проходя через специальный контур, предназначенный для удаления масла из этого воздуха и для контроля давления внутри этих камер. В том, что касается смазочного масла, впрыскиваемого в камеры, то оно извлекается в донной части камеры при помощи насосов извлечения через другой специальный контур. Для того, чтобы обеспечить полное осушение камеры, небольшая часть воздуха также всасывается через эти насосы и извлеченная таким образом смесь воздуха со смазочным маслом должна быть сепарирована перед возвращением освобожденного от воздуха масла обратно в резервуар.

Такой способ смазки представляет целый ряд недостатков. В частности, смазочное масло должно направляться посредством множества устройств, таких как трубопроводы, жиклеры, центробежные ковшовые маслосборники, центростремительные ковшовые маслосборники, лунки, каналы и т.п. Удаление смазочного масла и воздуха, насыщенного капельками масла, требует также использования насосов извлечения и масляного сепаратора, которые утяжеляют конструкцию газотурбинного двигателя.

С этими недостатками можно мириться в том случае, когда тепловая мощность, выделяемая подшипниками качения газотурбинного двигателя, является достаточно высокой для того, чтобы оправдать использование такой системы смазки. Этот случай имеет место, в частности, для газотурбинных двигателей, в которых скорость вращения подшипников качения является достаточно высокой в режиме большой мощности (например, порядка от 6000 до 8000 оборотов в минуту для вала низкого давления и порядка от 14000 до 20000 оборотов в минуту для вала высокого давления в двухконтурном газотурбинном двигателе).

Зато в том случае, когда движущиеся элементы одного из подшипников качения газотурбинного двигателя вращаются на относительно небольшой скорости (например, порядка 1000 оборотов в минуту), мощность, порождаемая движущимися элементами этого подшипника, оказывается слишком малой для того, чтобы оправдать использование подобной системы смазки. В такой ситуации получается, что избыточный расход смазочного масла впрыскивается в камеру, заключающую в себе этот подшипник качения при малой скорости вращения, что обусловливает опасность утечек масла за пределы камеры, которая содержит это смазочное масло.

Цель и краткое изложение предлагаемого изобретения

Таким образом, основная техническая задача данного изобретения состоит в том, чтобы устранить упомянутые выше недостатки и предложить способ и систему смазки газотурбинного двигателя, имеющего в своем составе по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения и которая позволяет обеспечить эффективную смазку подшипников качения без использования сложного оборудования.

В соответствии с предлагаемым изобретением эта цель достигается благодаря способу, состоящему:

- в создании избыточного давления в камерах при помощи вдувания в них расхода сжатого воздуха через уплотнительные прокладки герметизации, закрывающие упомянутые камеры, причем в двух из так называемых главных камер создается давление, превышающее давление в оставшейся так называемой вторичной камере;

- в смазке подшипника качения в главных камерах при помощи впрыскивания в эти камеры расхода смазочного масла, подаваемого из масляного резервуара газотурбинного двигателя;

- в смазке подшипника качения во вторичной камере только путем впрыскивания масляного тумана, поступающего из по меньшей мере одной из главных камер, причем упомянутый масляный туман направляется в результате разности давлений между главными камерами и вторичной камерой;

- в извлечении оставшейся части смазочного масла, впрыскиваемого в главные камеры, для его направления к масляному резервуару;

- в направлении воздушно-масляной смеси, поступающей из вторичной камеры, к масляному сепаратору с целью отделения воздуха от масла.

Здесь под выражением "масляный туман" следует понимать поток воздуха, насыщенный взвешенными капельками масла. В том случае, когда движущиеся части подшипников вторичной камеры имеют относительно небольшую скорость вращения по сравнению со скоростью вращения подшипников в главных камерах (например, порядка 1000 оборотов в минуту), использование упомянутого масляного тумана, поступающего из по меньшей мере одной из главных камер, оказывается полностью достаточным для обеспечения необходимой смазки этих подшипников качения. Это обстоятельство обеспечивает возможность упрощения и облегчения системы смазки (устранение масляного жиклера, насоса извлечения, трубопровода дегазации и масляного сепаратора).

При этом возможны различные варианты реализации такого способа.

В соответствии с первым способом реализации смазка подшипника качения вторичной камеры обеспечивается путем впрыскивания масляного тумана, поступающего из двух главных камер.

В соответствии со вторым способом реализации смазка подшипника качения вторичной камеры обеспечивается путем впрыскивания масляного тумана, поступающего только из одной из двух главных камер.

Объектом предлагаемого изобретения также является система смазки газотурбинного двигателя, имеющая в своем составе:

- по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения и каждая из которых закрыта при помощи уплотнительных прокладок герметизации;

- средства, предназначенные для введения расхода сжатого воздуха в упомянутые камеры через уплотнительные прокладки герметизации для обеспечения избыточного давления в этих камерах, причем в двух так называемых главных камерах создается давление, превышающее давление в оставшейся так называемой вторичной камере;

- средства, предназначенные для впрыскивания на подшипники качения главных камер расхода смазочного масла, поступающего из масляного резервуара газотурбинного двигателя;

- канал впрыскивания, связывающий по меньшей мере одну из главных камер с вторичной камерой для того, чтобы впрыскивать на подшипник качения вторичной камеры масляный туман, поступающий из по меньшей мере одной главной камеры;

- средства, предназначенные для извлечения на нижнем выходе главных камер остатка смазочного масла, впрыскиваемого в эти камеры, и для направления этого смазочного масла к масляному резервуару;

- средства, предназначенные для направления смеси воздуха со смазочным маслом, поступающей из нижнего выхода вторичной камеры, к масляному сепаратору.

Целью предлагаемого изобретения также является газотурбинный двигатель, имеющий в своем составе систему смазки описанного выше типа.

Краткое описание приведенных в приложении фигур

Другие характеристики и преимущества предлагаемого изобретения будут лучше поняты из приведенного ниже описания со ссылкой на прилагаемые чертежи, иллюстрирующие не имеющие ограничительного характера примеры его реализации. На фигурах:

- фиг.1 представляет собой схематический вид системы смазки в соответствии с первым способом реализации предлагаемого изобретения;

- фиг.2 представляет собой схематический вид системы смазки в соответствии со вторым способом реализации предлагаемого изобретения.

Подробное описание способа реализации изобретения

Предлагаемое изобретение применяется к любому авиационному газотурбинному двигателю, имеющему в своем составе по меньшей мере три камеры, заключающие в себе подшипники качения. Говоря более конкретно, это изобретение применяется к газотурбинным двигателям с двухступенчатым вентилятором с противоположными направлениями вращения.

На фиг.1 весьма схематическим образом представлена система смазки, применяемая в газотурбинных двигателях с двухступенчатым вентилятором с противоположными направлениями вращения.

Такой газотурбинный двигатель, имеющий продольную ось Х-Х, содержит три различные кольцевые камеры, а именно: две так называемые главные камеры 10, 10', сформированные на входе газотурбинного двигателя, каждая из которых заключает в себе по меньшей мере один подшипник качения, Р1 и Р'1 соответственно, и одну так называемую вторичную камеру 12, сформированную на выходе двигателя и заключающую в себе по меньшей мере один подшипник Q1 качения. Для удобства восприятия на фиг.1 представлен только один подшипник качения в каждой камере. При этом, разумеется, каждая камера может содержать несколько таких подшипников.

Хорошо известным образом эти различные подшипники качения (которые могут представлять собой шариковые подшипники или роликовые подшипники) поддерживают во вращательном движении различные корпусы газотурбинного двигателя. На фиг.1 и 2 позицией 13 обозначены участки валов корпусов газотурбинного двигателя или участки кожуха, на которых закрепляются кольца подшипников качения.

В то же время, принимая во внимание режимы вращения валов газотурбинного двигателя, подшипники Q1 качения вторичной камеры 12 вращаются на относительно небольшой скорости (например, порядка от 1000 до 2000 оборотов в минуту) по сравнению с подшипниками Р1, Р'1 качения главных камер 10, 10' (вращающихся, например, на скорости порядка от 6000 до 20000 оборотов в минуту).

Главные камеры 10, 10' и вторичная камера 12 отличаются друг от друга и каждая из них закрыта герметичным образом на своих переднем и заднем концах при помощи кольцевых уплотнительных прокладок 14 герметизации. Эти уплотнительные прокладки герметизации представляют собой, например, уплотнительные прокладки лабиринтного типа, уплотнительные прокладки щеточного типа или уплотнительные прокладки с углеродным кольцом.

Для уменьшения трения, механического износа и нагревания, которые возникают, в частности, вследствие высокой скорости вращения валов газотурбинного двигателя, подшипники качения главных камер и вторичной камеры должны быть смазанными. Эта смазка обеспечивается при помощи способа и системы, подробно описаные в последующем изложении.

Подшипники Р1, Р'1 качения в главных камерах 10, 10' смазываются путем непрерывного впрыскивания смазочного масла между кольцами их движущихся элементов. Это впрыскивание реализуется посредством сопел 16 впрыскивания, открывающихся напротив этих колец. На фиг.1 это впрыскивание смазочного масла схематически представлено стрелками Fhuile.

Масло, используемое для смазки этих подшипников Р1, Р'1 качения, поступает из масляного резервуара 18 газотурбинного двигателя. Это масло отбирается из упомянутого резервуара 18 посредством питающего масляного насоса 20 и подается в масляный контур 22, связанный с каждым соплом 16 впрыскивания.

Расход сжатого воздуха также вводится в главные камеры 10, 10' и во вторичную камеру 12 через их соответствующие уплотнительные прокладки 14 герметизации. Этот расход воздуха, который поступает, например, в результате отбора воздуха от компрессора высокого давления газотурбинного двигателя, схематически представлен стрелками Fair на фиг.1. Этот воздух обеспечивает создание избыточного давления в этих камерах для того, чтобы исключить возможность выхода смазочного масла за пределы этих камер.

В то же время, в соответствии с предлагаемым изобретением в главных камерах 10, 10', создается более высокое давление, чем во вторичных камерах 12, то есть это означает, что давление внутри каждой из главных камер превышает давление внутри вторичной камеры. Это становится возможным в результате введения более значительного расхода сжатого воздуха в главные камеры, чем во вторичную камеру.

Что касается подшипника Q1 качения вторичной камеры 12, то он смазывается путем впрыскивания масляного тумана, поступающего из каждой из главных камер 10, 10'. Этот масляный туман направляется посредством по меньшей мере одного канала 24 впрыскивания, связывающего в верхней части первые выходы 26, 26' (называемые верхними выходами) главных камер с входом 28 вторичной камеры, причем этот вход открывается напротив подшипника Q1 качения этой камеры. Принимая во внимание разность давлений, существующую между главными камерами и вторичной камерой, отсутствует всякая необходимость в использовании насоса для того, чтобы обеспечить циркуляцию этого масляного тумана из главных камер ко вторичной камере.

Этот масляный туман представляет собой поток воздуха, насыщенный взвешенными капельками смазочного масла, причем эти капельки масла исходят из смазки подшипников Р1, Р'1 качения в главных камерах. Поскольку подшипники Q1 качения вторичной камеры вращаются на относительно небольшой скорости по отношению к скорости вращения других подшипников, их смазка может быть обеспечена одним впрыскиванием этого масляного тумана. Также никакое впрыскивание смазочного масла посредством сопла впрыскивания (или любого другого эквивалентного устройства) не предусматривается для обеспечения смазки этого подшипника Q1.

Каждая главная камера 10, 10' содержит также в своей нижней части специальный второй выход 30, 30' (называемый нижним выходом), обеспечивающий возможность извлечения оставшейся части смазочного масла, впрыскиваемого в эти камеры. Для реализации этой функции каждый из этих нижних выходов 30, 30' открывается в канал 32, 32' отведения, связанный с масляным резервуаром газотурбинного двигателя (посредством воздушно-масляных сепараторов, не показанных на фиг.1). При этом насосы 34, 34' отведения позволяют направить оставшуюся часть смазочного масла к масляному резервуару 18.

Что касается вторичной камеры 12, то она также содержит в своей нижней части специальный нижний выход 36, обеспечивающий возможность извлечения смеси воздуха с маслом, поступающей в результате смазки подшипника Q1, для направления этой смеси в направлении масляного сепаратора 38. Для этого нижний выход 36 связан с масляным сепаратором 38 при помощи канала 40 отведения. Масляный сепаратор обеспечивает отделение воздуха от масла, причем масло перенаправляется в масляный резервуар 18 газотурбинного двигателя (механизм перенаправления не представлен на фиг.1), а воздух удаляется из этого сепаратора наружу (удаление воздуха представлено на фиг.1 стрелкой Fevacuation).

Теперь со ссылкой на фиг.2 будет описан второй вариант реализации способа и системы смазки в соответствии с предлагаемым изобретением. В этом способе реализации газотурбинный двигатель также содержит две главные камеры 10, 10' и вторичную камеру 12.

Зато этот второй способ реализации отличается от первого способа реализации тем, что канал 24 впрыскивания связывает только одну из главных камер (а именно, в рассматриваемом здесь случае, главную камеру 10') с вторичной камерой 12. Таким образом, подшипник Q1 качения вторичной камеры 12 смазывается только путем впрыскивания масляного тумана, поступающего только из одной из двух главных камер.

Разумеется, канал впрыскивания с таким же успехом может связывать другую главную камеру (а именно, камеру 10) с вторичной камерой 12. Как и для другого способа реализации, никакое впрыскивание смазочного масла посредством сопла впрыскивания (или любого другого эквивалентного устройства) не предусматривается для смазки подшипника Q1 качения во вторичной камере.

Первый выход 26 в верхней части главной камеры 10, не связанный с вторичной камерой 12, связан с масляным сепаратором 38 посредством канала 42 для того, чтобы отделять воздух от масла из масляного тумана, поступающего из этой главной камеры.

И наконец, здесь следует отметить, что насос 20 питания смазочным маслом, насосы 34 отведения и масляный сепаратор 38 в двух этих способах реализации могут быть соединены с блоком приведения в движение вспомогательного оборудования газотурбинного двигателя (не показано) для их приведения в движение при помощи этого блока. Альтернативным образом некоторые из этих вспомогательных устройств, или вся их совокупность, могут иметь электрический привод.

1. Способ смазки газотурбинного двигателя, имеющего в своем составе по меньшей мере три различные камеры (10, 10', 12), каждая из которых заключает в себе по меньшей мере один подшипник (P1, P1, Q1) качения, отличающийся тем, что состоит из этапов, на которых:
- создают избыточное давление в камерах путем вдувания в эти камеры расхода сжатого воздуха через уплотнительные прокладки (14) герметизации, закрывающие упомянутые камеры, причем в двух из камер, так называемых главными камерами (10, 10'), создается более высокое давление, чем в оставшейся, так называемой вторичной камере (12);
- смазывают подшипник (Р1, Р'1) качения в главных камерах путем впрыскивания в эти камеры расхода смазочного масла, поступающего из масляного резервуара (18) газотурбинного двигателя;
- смазывают подшипник (Q1) качения во вторичной камере только путем впрыскивания масляного тумана, поступающего из по меньшей мере одной из главных камер, причем упомянутый масляный туман направляется в результате разности давлений между главными камерами и вторичной камерой;
- извлекают оставшуюся часть смазочного масла, впрыскиваемого в главные камеры, для его направления к масляному резервуару;
- направляют воздушно-масляную смесь, поступающую из вторичной камеры, к масляному сепаратору (38) с целью отделения воздуха от масла.

2. Способ по п.1, в котором подшипник (Q1) качения из вторичной камеры (12) смазывается путем впрыскивания масляного тумана, поступающего из двух главных камер (10, 10').

3. Способ по п.1, в котором подшипник (Q1) качения из вторичной камеры (12) смазывается путем впрыскивания масляного тумана, поступающего только от одной из двух главных камер (10, 10').

4. Система смазки газотурбинного двигателя, имеющая в своем составе:
- по меньшей мере три различные камеры (10, 10', 12), каждая из которых заключает в себе по меньшей мере один подшипник (Р1, Р'1, Q1) качения и каждая из которых закрыта при помощи уплотнительных прокладок (14) герметизации;
- средства, предназначенные для введения расхода сжатого воздуха в камеры через уплотнительные прокладки герметизации для обеспечения избыточного давления этих камер, причем в двух из камер, так называемых главными камерами (10, 10'), создается более высокое давление, чем в оставшейся, так называемой вторичной камере (12);
- средства (16), предназначенные для впрыскивания в подшипники (Р1, Р'1) качения главных камер расхода смазочного масла, поступающего из масляного резервуара (18) газотурбинного двигателя;
- канал (24) впрыскивания, связывающий по меньшей мере одну из главных камер с вторичной камерой для того, чтобы впрыскивать на подшипник качения вторичной камеры масляный туман, поступающий из по меньшей мере одной главной камеры;
- средства (32, 32', 34, 34'), предназначенные для извлечения из нижнего выхода (30, 30') главных камер остатка смазочного масла, впрыскиваемого в эти камеры, и для направления этого смазочного масла к масляному резервуару;
- средства (40), предназначенные для направления смеси воздуха со смазочным маслом, поступающей из нижнего выхода (36) вторичной камеры, к масляному сепаратору (38).

5. Система по п.4, в которой канал (24) впрыскивания связывает две главные камеры (10, 10') с вторичной камерой (12) для того, чтобы впрыскивать на подшипник (Q1) качения во вторичной камере масляный туман, поступающий из двух главных камер.

6. Система по п.4, в которой канал (24) впрыскивания связывает только одну из двух главных камер (10') с вторичной камерой (12) для того, чтобы впрыскивать на подшипник качения во вторичной камере масляный туман, поступающий только из этой главной камеры, причем другая главная камера (10) связана с масляным сепаратором (38) при помощи канала (42).

7. Газотурбинный двигатель, имеющий в своем составе систему смазки в соответствии с любым из пп.4-6.



 

Похожие патенты:

Турбинная установка, содержащая, по меньшей мере, одно первое и одно второе рабочие колеса, вал и систему подшипников. Задние поверхности рабочих колес обращены друг к другу.

Устройство разъединения опоры (7) подшипника в газотурбинном двигателе. Опора (7) подшипника содержит переднюю часть (1) и заднюю часть (2), содержащие соответственно множество передних отверстий (10) и задних отверстий (20), через которые проходят предохранительные винты (3).

Изобретение относится к турбомашинам, а именно к смазочным устройствам подшипников опор роторов турбин газотурбинных двигателей. .

Изобретение относится к опоре роторов турбин высокого и низкого давления высокотемпературного газотурбинного двигателя, интегрированной с сопловым аппаратом турбины низкого давления.

Изобретение относится к смазке подшипников скольжения и, в частности, к распределению холодной смазки на опорной поверхности подшипника скольжения и отводу горячей смазки от опорной поверхности и может быть использовано в компрессорах, турбинах, насосах и других устройствах с вращающимися валами.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к размещению опор для вращающихся с большой частотой вращения роторов турбомашин, и может использоваться в наиболее напряженных опорах.

Изобретение относится к турбомашинам, а именно к смазочным устройствам подшипников опор роторов турбин газотурбинных двигателей. .

Изобретение относится к области двигателестроения, в частности к маслосистеме энергетической газотурбинной установки, применяемой на газоперекачивающих и электрических станциях для привода различных агрегатов (насосов, газовых и воздушных компрессоров, электрогенераторов и т.п.).

Изобретение относится к устройству возврата масла, содержащего промежуточный корпус турбины, на котором установлены верхняя по потоку подшипниковая опора, в которой образовано первое отверстие, и нижняя по потоку подшипниковая опора, в которой образовано второе отверстие, причем в каждой опоре установлен подшипник.

Коренная шейка содержит средство удержания уплотнительной втулки (200), охватывающей упомянутый вал. Средство удержания содержит сплошной радиальный кольцевой фланец, выполненный с входной стороны на аксиальной цилиндрической части шейки, и средства тангенциального блокирования. Сплошной фланец предназначен для аксиального упора в кольцевой радиальный фланец уплотнительной втулки. Средства тангенциального блокирования выполнены на выходной стороне аксиальной цилиндрической части шейки и предназначены для тангенциального блокирования уплотнительной втулки относительно коренной шейки. Узел включает в себя кольцевой радиальный фланец, содержащий смазочное кольцо, смазочное кольцо находится в поверхностном контакте с внутренней поверхностью шейки, которое своим входным краем аксиально упирается в радиальный кольцевой фланец аксиального упора, выполненный в шейке. Достигается ограничение износов за счет разнесения тангенциальных и аксиальных напряжений в коренной шейке. 4 н. и 18 з.п. ф-лы, 25 ил.

Турбомашина включает статор, ротор, вращающийся в одном заданном направлении, и узел подшипника. Узел подшипника содержит первую часть, присоединенную к статору турбомашины при помощи набора болтов и гаек, вторую часть, присоединенную к ротору, и подшипник качения, расположенный между первой и второй частями узла подшипника. Болты, присоединяющие первую часть узла подшипника к статору турбомашины, имеют направление завинчивания, противоположное направлению вращения ротора турбомашины. Изобретение позволяет исключить вывинчивание болтов при разбалансировке ротора турбомашины. 5 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к авиационной технике, в частности к газотурбинному двигателю со свободной турбиной. Газосборник газотурбинного двигателя содержит корпус с двумя внешними кольцевыми фланцами, соединенными между собой продольными и радиальными ребрами, цилиндрической оболочкой, конической мембраной с поддерживающими ребрами и криволинейной оболочкой, образующими контур отвода горячих газов, и корпус подшипников турбины, размещенный во внутренней части корпуса газосборника с магистралью маслоподачи на форсунки охлаждения и смазки подшипников турбины, магистралью маслоудаления, полостью подачи холодного воздуха от компрессора для охлаждения стенок корпуса подшипников турбины, масла в магистралях маслоподачи и маслоудаления, для подачи холодного воздуха к лабиринтным уплотнениям подшипников турбины и штуцерами магистралей маслоподачи и маслоудаления, при этом корпус газосборника снабжен внутренним фланцем, корпус подшипников турбины выполнен в виде ступенчатой втулки с упорным и цилиндрическим фланцами, втулка запрессована в газосборник по двум разнесенным цилиндрическим поясам, с упором по фланцам, между ступенями втулки установлена дополнительная цилиндрическая оболочка, герметизирующая полость подачи холодного воздуха, а магистраль маслоподачи выполнена в виде каналов, образованных в теле втулки. Одно из поддерживающих ребер газосборника может быть установлено между штуцерами магистрали маслоудаления а ступенчатая втулка может быть изготовлена из монолитного стального прутка. Технический результат - повышение надежности газосборника и за счет этого увеличение эксплуатационной надежности двигателя, увеличение ресурса, упрощение и улучшение качества его ремонта. 2 з.п. ф-лы, 3 ил.

Изобретение относится к упругодемпферным опорам газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора газотурбинного двигателя содержит расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник. Роликоподшипник снабжен зигзагообразным упругим элементом с прорезями. Длина прорезей, выполненных на зигзагообразном упругом элементе роликоподшипника, меньше в 1,5…5 раз длины прорезей, выполненных на упругом элементе шарикоподшипника. Изобретение позволяет повысить надежность опоры газотурбинного двигателя. 1 з.п. ф-лы, 4 ил.

Газотурбинная установка содержит газотурбинный двигатель с компрессором, устройство воздухоподготовки газотурбинного двигателя, топливную систему с камерами сгорания, устройством подачи и регулирования топлива, масляную систему узлов трения газотурбинного двигателя и исполнительных агрегатов с теплообменником охлаждения масла, нагнетающим насосом, теплообменником подогрева топлива, выполненными в отдельном регулируемом циркуляционном контуре. Газотурбинная установка дополнительно снабжена тепловым насосом, содержащим последовательно соединенные, по меньшей мере, один испарительный теплообменник, одно устройство повышения давления, один конденсаторный теплообменник, одно устройство понижения давления. Вход испарительного теплообменника подключен к выходу устройства воздухоподготовки газотурбинного двигателя. Выход испарительного теплообменника соединен с входом компрессора. Вход конденсаторного теплообменника соединен с устройством подачи топлива, а выход - с теплообменником подогрева топлива. Изобретение направлено на повышение экономичности газотурбинной установки с различными газовыми и жидкими топливами, на снижение влияния параметров атмосферного воздуха на параметры ее работы, а также на повышение безопасности системы подогрева топлива газотурбинной установки. 1 ил.

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке. Полка образует с внутренней поверхностью разрезного кольца лабиринтное уплотнение. Между корпусом турбины и осевым кольцевым выступом стопорного кольца сопловой лопатки установлена лента с образованием кольцевых замкнутых полостей между лентой и корпусом. Разрезное кольцо выполнено с коническим, направленным к сопловой лопатке ребром с образованием кольцевой воздушной полости. На входе полость соединена с воздушной полостью охлаждения сопловой лопатки, а на выходе - с проточной частью турбины через щелевую кольцевую полость. Кольцевая полость образована верхней полкой сопловой лопатки и коническим ребром. Щелевая полость расположена с внутренней стороны от верхней полки рабочей лопатки. Отношение шага кольцевых микрогребешков на внутренней поверхности разрезного кольца к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом составляет 1…2. Отношение высоты кольцевых микрогребешков к радиальному зазору 0,8…1,8. Отношение длины торцевой поверхности кольцевого микрогребешка к радиальному зазору 0,3…0,8. Отношение радиального зазора между задним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом 1,5…2,5. Изобретение позволяет повысить надежность турбины. 2 ил.

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационных газотурбинных двигателей. При экстремальных условиях работы двигателя (например, при фигурных полетах самолета) вследствие роста гидравлического сопротивления в магистралях откачки, увеличения перемешивания масла с воздухом и интенсификации процесса растворения воздуха в масле, на входе откачивающих насосов образуется масловоздушная эмульсия с большим процентным содержанием в ней воздуха, что может привести к снижению напора и падению производительности откачивающего насоса, являющегося наименее надежным звеном маслосистемы. Баланс подачи и откачки масла в масляной полости, обслуживаемой проблемным насосом, нарушается, и она начинает переполняться маслом, которое быстро перегревается. Переполнение масляной полости маслом сопровождается его уходом из маслобака, что грозит потерей масла и появлению на двигателе режима «масляное голодание». Технический результат изобретения - возможность корректировки гидравлического сопротивления магистрали откачки масла проблемного откачивающего насоса, что позволяет восстановить баланс подачи и откачки масла в масляной полости, обслуживаемой этим насосом, и избежать появления дефектов на двигателе. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника ротора гидромотора, работающего на энергии масла, подающегося на смазку опорного подшипника ротора. Для этого откачивающий насос в масляной полости опорного подшипника ротора выполнен конструктивно двухсекционным. Секции кинематически связаны, а гидравлически разобщены между собой. Одна из секций насоса выполняет функции гидравлического привода другой, для чего ее масляная полость последовательно включена в магистраль подвода масла в коллектор форсунок подачи масла. Как правило, давление подачи масла в несколько раз превышает давление масла в магистрали откачки, что позволяет преобразовать некоторую часть потенциальной энергии давления подачи масла в кинетическую энергию вращения шестерен откачивающего насоса. Такое решение позволит отказаться от использования редуктора, понижающего число оборотов при передаче вращения от ротора турбомашины к откачивающему насосу и упростить конструкцию опоры ротора турбомашины. 1 з.п.ф-лы, 1 ил.

Изобретение относится к области авиационной техники, а именно к процессу запуска газотурбинных двигателей. В начальный момент запуска газотурбинного двигателя обмотка якоря основного генератора и обмотка возбуждения возбудителя через блок управления подключаются к источнику питания, при этом блок управления обеспечивает опережение вектора магнитного потока основного генератора относительно оси полюса ротора и начальная раскрутка газотурбинного двигателя осуществляется реактивным моментом, а с увеличением частоты вращения индуцированная электродвижущая сила в обмотке якоря возбудителя, выпрямленная блоком вращающегося выпрямителя, питает обмотку возбуждения основного генератора, создавая активный вращающий момент и, при достижении заданной частоты вращения, блок управления отключается от обмотки основного генератора, а бесконтактный явнополюсный синхронный генератор с вращающимся выпрямителем переходит в генераторный режим. Технический результат изобретения - снижение балластной полетной массы и упрощение конструкции. 3 ил.

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13). Полость (13) на входе соединена с воздушной полостью (14) кожуха вала (15), а на выходе, через наклонные к оси (16) опоры (1) пазы (17) и каналы (18) в лабиринте (11) и (19) в валу (6), с внутренней полостью (20) вала (6). Пазы (17) от входа (21) к выходу (22) направлены по направлению (23) вращения вала (6). С внешней стороны дополнительного фланца (12) установлен дефлектор (25) с байонетным креплением (26) внутреннего хвостовика (27) на дополнительном фланце (12) с образованием щелевой воздушной полости (28). Ближний к диску (8) турбины лабиринт (31) опоры выполнен с уплотнительными микрогребешками (34) на рабочей поверхности (35) обода (33) увеличенной толщины. Отношение высоты h микрогребешка (34) к величине радиального зазора δ в ближнем к диску (8) лабиринте (31) находится в пределах 1,5…2,5. Отношение максимального диаметра D ближнего к диску лабиринта (31) к минимальной толщине Н обода (33) лабиринта (31) находится в пределах 20...40. Путем снижения поступающих в масляную полость опоры тепловых потоков повышается надежность опоры турбины, а также снижаются термические напряжения в ближнем к диску турбины лабиринте опоры. 4 ил.
Наверх