Устройство для испытаний частотно-управляемого гребного электропривода системы электродвижения в условиях стенда

Изобретение относится к области электротехники и может быть использовано в судовых системах электродвижения с частотно-управляемым гребным электродвигателем при проведении приемосдаточных испытаний гребного электродвигателя (ГЭД) и системы электродвижения (СЭД) в условиях стенда. Техническим результатом является повышение эффективности испытаний СЭД с частотно-управляемым асинхронным ГЭД и возможность получения нагрузочной характеристики на валу ГЭД. В устройстве для испытаний генератор постоянного тока с независимым возбуждением (ГПТ), сочлененный с ГЭД, подключен к полупроводникому преобразователю электроэнергии (ППЭ), состоящему из преобразователя постоянного тока (ППН) и инвертора (И). ППЭ подключен к щиту сети (ЩС). Для обеспечения рекуперации энергии в сеть и получения винтовой нагрузочной характеристики ГЭД применена система регулирования по каналу управления момента на валу ГЭД и каналу управления напряжения ППЭ. В результате повышается эффективность испытаний СЭД с частотно-управляемым асинхронным ГЭД за счет снижения потерь активной мощности и обеспечения винтовой нагрузочной характеристики на валу ГЭД. 1 ил.

 

Предложение относится к судовым системам электродвижения с частотно-управляемым гребным электродвигателем и может быть использовано при проведении приемо-сдаточных испытаний гребного электродвигателя (ГЭД) и системы электродвижения (СЭД) в условиях стенда.

Известно устройство для испытаний асинхронных электродвигателей с помощью нагрузочного генератора постоянного тока, сочлененного с ГЭД [1].

Для данного устройства снятие рабочих характеристик и определение зависимости развиваемого двигателем вращающего момента от частоты вращения или скольжения производится при большом диапазоне изменения частоты вращения нагрузочного генератора. Поэтому необходимо чтобы номинальная мощность нагрузочного генератора была значительно (в несколько раз) больше номинальной мощности испытываемого двигателя.

Испытания проводятся как с поглощением энергии нагрузочного генератора в сопротивлении, так и с возвратом энергии в сеть постоянного тока. В последнем случае необходимо, чтобы номинальное напряжение нагрузочного генератора было как можно больше номинального напряжения сети, на которую он работает.

Изменение момента генератора может осуществляться либо изменением его возбуждения при неизменной величине нагрузочного сопротивления, либо изменением нагрузочного сопротивления при неизменном возбуждении. Практически приходится применять оба способа в комбинации.

Однако такому устройству для испытаний асинхронных двигателей присущи недостатки, заключающиеся в необходимости иметь нагрузочный генератор постоянного тока превышающий мощность испытываемого двигателя в несколько раз и больших потерях энергии в нагрузочном генераторе, а также в необходимости создавать сеть постоянного тока, что влечет за собой дополнительное преобразование энергии и соответственно ее потери.

Целью предлагаемого изобретения является повышение эффективности испытаний СЭД с частотно-управляемым асинхронным ГЭД, а также возможности получения нагрузочной характеристики на валу ГЭД близкой к винтовой.

Поставленная цель достигается тем, что генератор постоянного тока с независимым возбуждением, сочлененный с ГЭД, подключен к полупроводниковому преобразователю электроэнергии (ППЭ), обеспечивающему рекуперацию энергии в сеть.

На фигуре 1 изображена принципиальная схема для испытаний частотно-управляемого гребного электропривода СЭД в условиях стенда, состоящая из щита электродвижения ЩЭД (1), трансформатора напряжения ТН (2), преобразователя частоты ПЧ (3), гребного асинхронного электродвигателя ГЭД (4), генератора постоянного тока ГПТ (5), обмотки возбуждения генератора постоянного тока ОВГПТ (6), полупроводникового преобразователя П (7) для питания ОВГПТ, полупроводникового преобразователя электроэнергии ППЭ (8), представленного преобразователем постоянного напряжения ППН (9) и инвертором И (10), щита сети ЩС (11).

При испытаниях ГЭД (4) тормозной момент создается системой ГПТ (5)-ППЭ (8). Система регулирования предлагаемого устройства обеспечивает изменение в широком диапазоне тормозного момента на валу ГЭД (4) в зависимости от частоты вращения ГЭД (4) - M=f(n) подобно характеристикам гребного винта судна.

Система регулирования имеет два канала управления: канал управления моментом на валу ГЭД (4) и канал управления напряжением ППЭ (8), что отображено на фигуре 1. Канал управления моментом на валу ГЭД (4) содержит: датчик момента ДМ (12), усилитель рассогласования по напряжению УР1 (13) с опорным напряжением Uоп1, логический блок управления ЛБУ1 (14), сигнал с которого управляет преобразователем П (7) обмотки возбуждения ОВГПТ (6).

Канал управления напряжения ППЭ (8) состоит из: датчика напряжения ДН (15), усилителя рассогласования по напряжению УР2 (16) с опорным напряжением Uоп2, логического блока управления ЛБУ2 (17), сигнал с которого воздействует на систему управления СУ (18) ППЭ (8), обеспечивая стабилизацию напряжения на входе и последующее преобразование напряжения постоянного тока в переменный с помощью инвертора И (10) и передачу энергии в сеть через щит сети ЩС (11).

Связанные между собой и управляемые задатчиком режима ЗР (19) логические блоки управления (14) и (17), управляют преобразователем (7) и системой управления (18) ППЭ (8).

Таким образом, предложенное устройство позволяет повысить эффективность испытаний СЭД с частотно управляемым асинхронным ГЭД за счет снижения потерь активной мощности путем рекуперации энергии в сеть и обеспечения винтовой нагрузочной характеристики на валу ГЭД.

Источники информации

1. Жерве Г.К. Промышленные испытания электрических машин. Часть 4, п.4-16 (аналог).

Устройство для испытаний частотно-управляемого гребного электропривода системы электродвижения (СЭД) в условиях стенда, содержащее щит электродвижения (ЩЭД), трансформатор напряжения (ТН), преобразователь частоты (ПЧ), асинхронный гребной электродвигатель (ГЭД), вал которого сочленен с генератором постоянного тока (ГПТ) с обмоткой независимого возбуждения (ОВГПТ), подключенной к полупроводниковому преобразователю (П), отличающееся тем, что, с целью повышения эффективности испытаний СЭД и снижения потерь активной мощности в сети, а также получения нагрузочной характеристики на валу ГЭД, близкой к винтовой, ГПТ подключен к полупроводниковому преобразователю электроэнергии (ППЭ), состоящему из преобразователя постоянного напряжения (ППН) и инвертора (И) и обеспечивающему рекуперацию энергии в сеть через щит сети (ЩС), а датчик момента (ДМ) канала управления по моменту на валу ГЭД подключен к усилителю рассогласования по напряжению (УР1) с опорным напряжением (Uоп1), выход УР1 соединен с логическим блоком управления (ЛБУ1), по выходу соединенному с полупроводниковым преобразователем (П) питания обмотки возбуждения генератора постоянного тока ОВГПТ, а выход датчика напряжения (ДН) канала управления по напряжению ППЭ соединен с усилителем рассогласования по напряжению ППН (УР2) с опорным напряжением (Uоп2), в свою очередь, выход УР2 подключен к логическому блоку управления (ЛБУ2), выход которого соединен с системой управления (СУ) ППЭ, при этом логические блоки управления ЛБУ1 и ЛБУ2 связаны между собой и с задатчиком режима (ЗР), задающим параметры винтовой нагрузочной характеристики ГЭД.



 

Похожие патенты:

Изобретение относится к области электротехники и электромашиностроения, в частности к способам согласования магнитопроводов ротора и статора в двухмерных электрических машинах, и может быть использовано для технико-экономической и конструктивной совместимости концентрически расположенных магнитопроводов (внешнего ротора и внутреннего якоря с коллектором) двухмерных электрических машин-генераторов (ДЭМ-Г).

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Изобретение относится к области электротехники и может быть использовано для закрывания, затемнения защиты от солнца или для экранирования в здании. .

Изобретение относится к электротехнике и, в частности, к электрифицированному инструменту, бытовым и промышленным электроприборам, приборам специального назначения.
Изобретение относится к области управления стрелочными электроприводами и получения информации о предполагаемом остаточном ресурсе работоспособности стрелочного привода в целом или его отдельных узлов и деталей.

Изобретение относится к области электротехники и может быть использовано для экспресс-контроля работоспособности электрических машин. .

Изобретение относится к области диагностики электромеханического оборудования, применяемого на железнодорожном транспорте, а также других отраслях промышленности, в частности к диагностике асинхронных электрических двигателей.

Изобретение относится к электротехнике и предназначено для испытания электрических машин постоянного тока. .
Изобретение относится к области электротехники, в частности к способам, предназначенным для диагностирования электрических и механических повреждений асинхронного двигателя.

Изобретение относится к системам сигнализации и предназначено для использования на наземной мобильной технике для предотвращения столкновения с линиями электропередач (ЛЭП).

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из естественной координатной системы в прямоугольную стационарную систему координат. Запоминают полученные значения модуля вектора тока статора, напряжений в прямоугольной стационарной системе координат, частоты вращения вала электродвигателя и используют их для определения активного сопротивления и эквивалентной индуктивности обмотки статора, приведенных к статору активного сопротивления и эквивалентной индуктивности обмотки ротора, и индуктивности, обусловленной магнитным потоком в воздушном зазоре электродвигателя, путем глобальной оптимизации функции. Затем определяют приведенный к валу электродвигателя суммарный момент инерции и момент сопротивления нагрузки путем глобальной оптимизации функции. Технический результат заключается в упрощении способа. 1 табл., 2 ил.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей. Новым является то, что контроль качества пропитки осуществляют по коэффициенту пропитки, определяемому по измеренным значениям эквивалентной теплоемкости обмоток до и после пропитки. При этом эквивалентные теплоемкости каждой контролируемой обмотки определяют путем подвода к проводу непропитанной и пропитанной обмотки постоянного стабилизированного тока, в течение разных времен t1 и t2 соответственно и определения подведенной к проводу энергии и температуры провода обмоток, как в момент подвода к их проводу постоянного стабилизированного тока, так и по истечении времен t1 и t2. Времена t1 и t2 определяют из сравнения характеристик реальной непропитанной и пропитанной обмотки с идеализированной непропитанной и пропитанной обмоткой. Под идеализированной обмоткой понимают такую обмотку, теплопроводность компонентов которой является бесконечно большой, и обмотка идеально теплоизолирована от внешней среды и магнитного сердечника. В изобретении указывается, как определить упомянутые времена t1 и t2, в которые можно считать реальную обмотку идеальной. Используя времена t1 и t2 при контроле качества пропитки, можно предельно уменьшить методические погрешности. Технический результат - повышение точности и достоверности контроля качества пропитки. 4 ил., 8 табл.

Изобретение относится к области электротехники и касается электрических машин и преобразователей угла. Предлагаемое устройство контроля содержит регулируемый стабилизированной источник постоянного тока (1), ключ (2), регулируемый резистор (3), первый усилитель (4), второй усилитель (5), компаратор (6), инвертор (7), первую схему И (8), мультивибратор (9), вторую схему И (10), первый счетчик (11), второй счетчик (12), первый регистр (13), второй регистр (14), компьютер (15), измеритель сопротивления (16), проверяемую электрическую машину (17), датчик углового положения (ДУП) (18), редуктор (19), электродвигатель (20), блок управления (БУ) (21), состоящий из следующих элементов: Т-триггера (22), третьей схемы И (23), реле (24) с его обмоткой (25) и с нормально замкнутым контактом (26), второго источника питания (27) и тумблера (28) СТАРТ. Технический результат, достигаемый при использовании настоящего изобретения, состоит в повышении достоверности и точности контроля подшипникового узла и электрической машины в целом. 1 з.п. ф-лы, 2 ил.

Заявленная группа изобретений относится к измерительной технике и, в частности, предназначена для мониторинга вала вращающейся машины. Способ мониторинга сигналов, имеющих отношение к валу вращающейся машины, содержит этапы, на которых принимают сигналы напряжения, имеющие отношение к валу, принимают сигналы тока, имеющие отношение к валу, вычисляют и анализируют тенденцию максимальных значений напряжения и тока по валу, вычисляют и анализируют тенденцию средних значений напряжения и тока по валу, вычисляют и анализируют тенденцию коэффициента гармоник напряжения по валу, принимают сигнал синхронизации, позволяющий синхронизировать принятый сигнал тока с колебательным сигналом возбуждения, разрешают по времени сигнал тока, связывают группу разрешенных по времени сигналов тока с неисправным состоянием, определяют неисправное состояние, используя максимальные значения напряжения и тока по валу, средние значения напряжения и тока по валу, коэффициент гармоник напряжения по валу и группу разрешенных по времени сигналов тока, и если имеется неисправное состояние, уведомляют пользователя о его наличии. Система мониторинга сигналов содержит модуль приема сигналов напряжения от щетки напряжения, модуль приема сигналов тока от щетки тока, модуль синхронизации, процессор, базу данных, интерфейс пользователя, модуль сигнализации. Технический результат заявленной группы изобретений - повышение точности и надежности определения неисправностей. 2 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники, а именно к испытательной технике и электрооборудованию, в частности может быть использовано для испытания электроприводов с асинхронными двигателями. Стенд содержит программируемый контроллер с ПИД-регулятором, преобразователь частоты, измерительный комплект и испытуемый электродвигатель соединенный обмотками статора с сетью через измерительный комплект, автоматический выключатель и преобразователь частоты с двумя входами, соединенными с одной стороны с датчиком температуры, установленном на корпусе электродвигателя, а с другой стороны с программируемым контроллером, имеющим панель ввода данных режима питания электромагнитов нагрузочного модуля и режима управления преобразователем частоты, при этом измерительный комплект, например, «Ресурс-2М», включен между выходом преобразователя частоты и обмотками статора испытуемого электродвигателя, а программируемый контроллер с ПИД-регулятором двумя входами соединен с датчиком частоты вращения испытуемого электродвигателя и с датчиком угла поворота вторичного поворотного вала электромагнитного нагрузочного модуля и двумя выходами, первый из них соединен с преобразователем частоты для управления его режимом работы, а второй с электромагнитами электромагнитного нагрузочного модуля для имитации нагрузки стандартных режимов работы электроприводов и формирования нагрузочных диаграмм. Технический результат заключается в расширении функциональных возможностей стенда для исследования и испытания электроприводов в основных режимах электрических машин, в том числе и многоскоростных, с обеспечением плавной регулировки и создания импульсно-переменной нагрузки на валу испытываемого электродвигателя, снижение потерь мощности, затрачиваемой при испытаниях, а также обеспечение возможности фиксации и записи измеряемых параметров и характеристик. 9 ил.

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока. Сущность: создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой следования, например, 50 импульсов в секунду на коллектор относительно корпуса. Фиксируют наличие дефекта витковой изоляции с помощью индукционного датчика астатической конструкции с ферромагнитным сердечником, имеющим воздушный зазор-щель, ориентированный вдоль выводов витков у петушков коллектора секций с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей относительно места возбуждения, и измерителя импульсных магнитных полей с электронной ячейкой памяти по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД с измерителем импульсных магнитных полей и фиксируют при срабатывании его электронной ячейки памяти в автоматическом режиме испытаний при каждом прохождении под датчиком ИД выводов витков дефектной секции и секций, непосредственно соединенных с ней уравнителями, и которые создаются только током в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре. Технический результат: фиксация наличия дефекта витковой изоляции, приводящего к образованию короткозамкнутого витка, возникающего под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре. 11 ил.

Изобретение относится к контрольно-измерительной технике. Устройство включает помещенные в корпус фильтры частот и соответствующие им интеграторы, блок обработки сигналов, порт с выводами на средства индикации и визуализации. Дополнительно в устройство введены преобразователь тока и преобразователь напряжения, выполненные на основе датчиков Холла и установленные дистанционно с возможностью подключения их к шине питания электродвигателя постоянного тока. В корпус устройства также дополнительно введены усилитель, амплитудный селектор, источник опорного напряжения, блок измерения разности фаз и блок допускового контроля разности фаз, порт с клеммами для передачи информационных сигналов, порт с клеммами для дополнительного питания дистанционных элементов. В качестве фильтров частот использованы фильтр нижних частот и полосовой фильтр, каждый из которых образует с соответствующим ему интегратором параллельные электрические цепи. Вышеназванные блоки и элементы устройства соединены следующим образом: амплитудный селектор - с усилителем, с источником опорного напряжения и посредством вышеуказанных параллельных электрических цепей - с блоком обработки сигналов, который подключен к источнику опорного напряжения, к порту с выводами на средства индикации и визуализации, к блоку допускового контроля разности фаз, связанному с блоком измерения угла разности фаз. Последний соединен с портом с клеммами для передачи информационных сигналов, который подключен к усилителю. Порт с клеммами для подключения питания дистанционных элементов соединен с источником опорного напряжения. Технический результат заключается в упрощении конструкции устройства и повышении точности измерения. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в электрических машинах переменного тока. Техническим результатом является расширение функциональных возможностей и области применения, повышение чувствительности. Способ защиты от эксцентриситета ротора машины переменного тока основан на измерении параметров внешнего магнитного поля машины и формировании сигнала на отключение. Сигнал с измеренными параметрами магнитного поля машины переменного тока преобразуют в однополярный, выделяют из него гармонические составляющие с частотами fc(ν-1/p) и fc(ν+1/p). Если величина хотя бы одной из частот превысит первую пороговую величину, то формируют сигнал о наличии эксцентриситета ротора. Если величина хотя бы одной из частот превысит вторую пороговую величину, то формируют сигнал на отключение машины от сети, где ν принимает значения 0, 1, 2…; p - число полюсов, fc - частота основной гармонической сети Использование способа защиты позволяет своевременно определить критическую величину эксцентриситета ротора и отключить электрическую машину от сети, а следовательно, сократить время и стоимость послеаварийного ремонта на таких машинах с любым числом полюсов. 3 ил.

Изобретение относится к области электротехники и может быть использовано для испытания синхронных машин на электромашиностроительных заводах, ремонтных предприятиях и при эксплуатации. Техническим результатом является повышение точности измерения КПД, расширение функциональных возможностей по величине передаваемой мощности. В способе нагрузки синхронной машины в качестве нагрузочной машины используют асинхронную машину с фазным ротором. Возбуждение ротора осуществляют от источника трехфазного тока с независимо задаваемой нулевой частотой, с поворотом поля ротора на любой заданный угол и возможностью нагрузки испытываемой машины в двигательном и генераторном режимах, в том числе и при углах нагрузки больше критического. 5 з.п. ф-лы, 7 ил.

Изобретение относится к диагностике технического состояния силового электрооборудования. Осуществляют запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения. Обрабатывают сигналы фильтром низких частот. Определяют расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы. Рассчитывают коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, используя фильтр низких частот. Отфильтровывают спектр исследуемых частот от общего сигнала. Затем определяют уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и на основе получаемых данных с учетом текущего задания выходной координаты определяют техническое состояние электропривода и оценивают остаточный ресурс. Технический результат заключается в повышении эффективности обнаружении неисправности на ранней стадии возникновения. 1 ил.
Наверх