Способ активной радиолокации

Изобретение относится к радиолокации и, в частности, к активной радиолокации. Достигаемый технический результат изобретения - расширение области применения за счет повышения информативности способа. Способ заключается в излучении многочастотных зондирующих сигналов из ri(i=1, …, N) точек передающей антенны, приеме отраженных сигналов, в независимой регистрации частных радиоголограмм в точках на частотах принятых сигналов и составлении из них путем объединения результирующей радиоголограммы , размещая частные радиоголограммы в упорядоченном пространстве координат местоположения каждого передающего приемного пункта и несущих частот с учетом частоты Доплера. Для восстановления формируют набор гипотез, включающих сочетание искомых и сопровождающих параметров, на интервале накопления частных радиоголограмм, с учетом возможных траекторий движения передатчиков, приемников и находящихся в зондируемом пространстве объектов, с помощью модели процесса зондирования вычисляют для каждой гипотезы опорную результирующую радиоголограмму , сопоставляют результирующую радиоголограмму со всеми опорными и судят о значении всех неизвестных параметров, определяя при этом значения искомых параметров. Применение способа в радиолокационных системах различных типов и назначения обеспечивает одновременное повышение информативности и упрощение радиотехнической части систем, реализующих заявленный способ. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к радиотехнике, преимущественно к радиолокации и в частности к активной радиолокации.

Общий прогресс радиолокационных систем (РЛС) различных типов и назначения, по пути повышения их информационных возможностей, состоит в увеличении числа пространственных каналов излучения и приема сигналов и повышении информативности зондирующих сигналов за счет увеличения их широкополосности и когерентной длительности. В этой связи важной проблемой современной радиолокации является разработка эффективных способов многоканального излучения, приема и обработки высокоинформативных зондирующих сигналов.

В современной радиолокации эта проблема решается рядом способов, принятых в качестве аналогов.

Известен способ, включающий направленное излучение и прием различных сигналов с внутриимпульсной модуляцией, их обработку, обеспечивающую сложение в фазе спектральных составляющих зондирующего сигнала (сжатие импульса), измерение времени запаздывания, частоты доплера и направления прихода волн [Теоретические основы. радиолокации. Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970. - 560 с.].

Основной недостаток этой группы аналогов состоит в сложности,, радиотехнической части устройств, необходимых для реализации способа и недостаточной информативности ввиду невозможности эффективной физической обработки многочастотных сигналов.

Другим направлением решения проблемы разработки эффективных способов многоканального излучения, приема и обработки высокоинформативных зондирующих сигналов является способ многопозиционной радиолокации [Черняк B.C. Многопозиционная радиолокация. - М.: Радио и связь., 1993. - 416 с.]. Способ основан на излучении и приеме сигналов системой разнесенных в пространстве пунктов, передаче принятых сигналов на пункт обработки и в совместной их физической обработке с помощью радиотехнических устройств. Возникающие при создании таких систем трудности в частности состоят в обеспечении передачи сигналов и в их совместной физической обработке.

Следует отметить, что в части повышения широкополосности и когерентной длительности сигналов важное место занимают многочастотные зондирующие сигналы, используемые в доплеровской радиолокации.

Известен способ радиолокации с использованием зондирующих сигналов с различными несущими частотами [RU, патент №2360265, МПК G01S 13/56, 2009 г.]. Способ заключается в том, что формируют зондирующие радиоимпульсы с различными несущими частотами, после излучения и приема радиоимпульсов осуществляют преобразование частоты путем перемножения зондирующих и принятых радиоимпульсов с одновременным мультиплексированием для выделения сигналов доплеровской частоты соответствующих несущих частот, затем определяют частоту и разницу фаз сигналов доплеровской частоты, получая информацию о радиальной скорости и дальности до цели.

Недостатком этого способа, как и других аналогов, является низкая информативность и сложность устройства необходимого для реализации способа, поскольку обработка сигналов осуществляется физически.

В части упрощения радиотехнических устройств, необходимых для реализации способа, важное место занимает радиоголография. При радиоголографическом способе радиолокации [Сафронов Г.С., Сафронова А.П. Введение в радиоголографию. - М.: Сов. радио, 1973. - 288 с., Голография. Методы и аппаратура. Под ред. В.М. Гинзбург и Б.М. Степанова. - М.: Сов. радио, 1974. - 376 с.]., во-первых, используются простые слабонаправленные антенны, во-вторых, радиоголографический процесс осуществляется в два этапа. Это позволяет на этапе обработки сигналов оперировать с частными голограммами (числами), зарегистрированными в отдельных точках приема сигналов. При многоканальном излучении и приеме сигналов высокая направленность передающей и приемной антенн достигается в результате обработки радиоголограммы, которая может быть осуществлена вычислительными методами.

Наиболее близким по технической сущности к предлагаемому способу является способ подповерхностного зондирования с синтезированием радиоголограмм и восстановлением по ним изображений [RU, патент, №2345381, МПК G01S 13/02, 2009 г.], основанный на излучении зондирующих сигналов из точек передающей антенны, приеме отраженных сигналов, регистрации частных радиоголограмм во всех точках приема сигналов и составлении из них результирующей радиоголограммы и восстановлении по ним изображений.

Основной недостаток прототипа состоит в его низкой информативности, ввиду того, что результирующая радиоголограмма является одночастотной. Для характерного в радиолокации случая, когда число приемных и передающих пунктов невелико, одночастотные радиоглолограммы обладают низкой информативностью и на практике не используются.

Техническим результатом данного изобретения является расширение области применения за счет повышение информативности способа.

Указанный результат достигается тем, что в известном способе активной радиолокации, основанном на излучении зондирующих сигналов из точек передающей антенны, приеме отраженных сигналов, регистрации частных радиоголограмм во всех точках приема сигналов, составление из них результирующей радиоголограммы и на восстановлении по ним изображения, новым является то, что излучают многочастотные зондирующие сигналы с разнесенными частотами, регистрируют частные радиоголограммы на всех частотах принятых сигналов, с учетом частот доплера, причем разнос частот и время излучения зондирующих сигналов выбирают такими, чтобы зарегистрированные частные голограммы были независимые, составляют результирующую радиоголограмму путем объединения независимых частных радиоголограмм, размещая частные радиоголограммы в упорядоченном пространстве координат местоположения каждого передающего и приемного пунктов, несущей и соответствующей ей доплеровской частоты в соответствии с информацией об их изменении во времени на интервале накопления частных радиоголограмм, с учетом возможных траекторий движения находящихся в зондируемом пространстве объектов, причем для восстановления формируют набор гипотез, включающих сочетание искомых и сопровождающих параметров, вычисляют для каждой гипотезы с помощью модели процесса зондирования опорную результирующую радиоголограмму , сопоставляют результирующую радиоголограмму со всеми опорными и судят о значении всех неизвестных параметров, определяя при этом значения искомых параметров.

Благодаря полному извлечению информации, содержащейся в тестирующих сигналах, открывается возможность достижение разрешающей способности РЛС соизмеримой с длиной волны излучаемых сигналов, при этом реальные цели (летательные аппараты, наземные объекты и т.п.) представляющие совокупность «блестящих» точек наблюдаются таковыми. То есть открываются перспективы реализации режима радиовидения целей и эффективного решения задач распознавания и идентификации целей. Более того, поскольку, радиотехническая часть РЛС становится простейшей (обеспечивающей лишь излучение и прием сигналов) открываются перспективы быстрого освоения новых диапазонов, в частности миллиметрового, что является основой дальнейшего повышения информационных возможностей РЛС.

Радикальным образом решается проблема создания многопозиционных РЛС (МП РЛС), поскольку, отпадает необходимость передачи на пункт совместной обработки (физической) сигналов. Вместо широкополосных сигналов для совместной обработки передаются результаты измерений (числа), которые действительно содержат необходимую информацию об объектах зондирования и не требуют для передачи сложных устройств. В результате открывается возможность создания сетецентрических РЛС (предназначенных для ведения сетецентрических войн), содержащих большое число простейших (а, следовательно, дешевых) автоматических передатчиков, огневое поражение части которых не только не существенно снижает информационных возможностей таких РЛС, но и становятся экономически не выгодным делом.

Кроме того, снижаются требования к внутренним коммуникациям РЛС с пространственно-распределенными элементами, в том числе в РЛС с антенными решетками, а также открываются перспективы создания многофункциональных РЛС с прямым доступом потребителей к первичной радиолокационной информации (к частным радиоголограммам), что существенно повысит оперативность и эффективность использования радиолокационной информации. За счет возложения всех функций по обработке радиолокационной информации на ЭВМ открываются перспективы создания РЛС, реализующих сложные и эффективные алгоритмы обработки радиолокационной информации с использованием искусственного интеллекта, обеспечивающих адаптацию и автоматизацию процессов функционирования РЛС и принятия эффективных решений на основе полученной радиолокационной информации.

Можно отметить и другие достоинства. В частности, на базе заявляемого способа радиолокации совершенно в ином свете представляется разрабатываемая концепция объединения в единую сеть существующих РЛС. Наряду с объединением вторичной радиолокационной информации, получаемой объединяемыми в единую систему РЛС, появляется возможность объединения результатов зондирования, что позволит существенно повысить информативность единой системы.

Решается также проблема радиолокации малозаметных наземных и воздушно-космических целей, а также целей, созданных с использованием техники «Стеле» (за счет создания простых (в конструктивном исполнении) разнесенных РЛС, одновременно работающих в различных диапазонах длин волн

Совершенно очевидным образом (за счет накопления и последующей совместной обработки результатов измерений) решаются задачи прямого, обратного и совместного, (включая движение объекта локации) синтезирования апертуры передающих и приемных антенн, обеспечивающих дальнейшее повышение информативности вычислительных РЛС.

Высокие информационные возможности заявляемого способа в РЛС открывают также реальные перспективы создания весьма эффективных средств радиолокации заглубленных объектов, разведки недр Земли, измерения радиолокационных характеристик (РЛХ) объектов, радиолокационного контроля материалов и изделий из них, строительных конструкций и т.д.

Упрощение радиотехнической части устройств, реализующих заявляемый способ, заключается в следующем:

- отпадает необходимость в использовании сложных радиотехнических устройств физического формирования, излучения, приема и обработки сложных сигналов, поскольку их функции реализуются на этапе совместной обработки результатов измерений;

- снижаются требования к технике излучения и приема тестирующих сигналов, т.к. не требуется совместная настройка системы излучения тестирующих зондирующих сигналов (подобная той, которая необходима, например, при создании фазированных антенных решеток). Поскольку все возможные отклонения параметров сигналов от проектируемых значений могут быть учтены на этапе обработки сигналов;

- появляется возможность создания радиолокационной техники различных типов и назначения на базе унифицированных блочно-модульных изделий, обеспечивающих реализацию способа;

- обеспечивается органическая связь радиолокационной технологии с общим прогрессом в области технических средств и методов получения, передачи, хранения и цифровой обработки информации;

- снижение энергопотребления изделий, а, следовательно, их массы, габаритов и стоимости, повышение надежности.

В целом создание РЛС на основе заявляемого способа представляется революционным направлением совершенствования РЛС различных типов и назначения (в отличие от традиционного эволюционного направления совершенствования РЛС).

Существо заявляемого способа состоит в следующем.

В заявленном способе, во-первых, излучают многочастотный зондирующий сигнал, во-вторых, сигналов, обеспечивающих получение независимых частных радиоголограмм . (Независимость частных радиоголограмм обеспечивается за счет разнесения по частоте или времени излучения многочастотных сигналов.) Независимость частных радиоголограмм позволяет накапливать содержащуюся в них информацию об объекте зондирования путем увеличения размерности пространства результатов измерений, то есть путем объединения частных радиоголограмм. Так при регистрации частных радиоголограмм на совпадающей и ортогональных поляризациях размерность пространства результатов измерений увеличивают путем введения координаты ортогональной поляризации.

Полученная таким образом результирующая радиоголограмма, как и обычная голограмма, содержит полную информацию об объекте зондирования. Однако в отличие от обычной голограммы результирующая радиоголограмма содержит полную информацию об объекте зондирования на К частотах. То есть представляет собой К - мерную радиоголограмму, очевидным образом, являющуюся более информативной, чем одночастотная радиоголограмма, получаемая в прототипе.

При восстановлении , с учетом положений теории оценки параметров сигналов (Куликов Е.И., Трифонов А.П. Оценка параметров сигналов на фоне помех. М.: Сов. Радио, 1078. - 269 с., стр.200) проверяют расширенные гипотезы, включающие возможные значения искомых и сопровождающих параметров.

Проверку осуществляют путем сопоставления зарегистрированной радиоголограммы с опорной результирующей голограммой , вычисляемой с помощью математической модели процесса зондирования при заданных значениях искомых и сопровождающих параметров. При этом условие независимости частных радиоголограмм позволяет при сопоставлении и сравнивать их частные радиоголограммы путем вычисления скалярного произведения или расстояния в пространстве координат и , задаваемого исходя из решаемой радиолокационной задачи.

Принципиальная возможность отыскания по составляющих воздействий следует из линейности уравнений Максвелла процесса регистрации результирующей радиоголограммы и, вытекающего из этого принципа суперпозиции [Никольский В.В. Электродинамика и распространение радиоволн. - М: Наука. 1973. - 607 с., С.69].

Таким образом, действие заявляемого способа ограничено условиями применимости уравнений Максвелла. Однако для создания информационных радиолокационных систем это ограничение не является существенным, поскольку используемые в них уровни мощности излучаемых сигналов не приводят к нелинейным эффектам взаимодействия электромагнитных волн с объектами зондирования.

Таким образом, введение дополнительных по сравнению с прототипом операций излучения многоканальных зондирующих сигналов, обеспечивающих независимую регистрацию частных радиоголограмм на всех частотах, с учетом доплеровских, формирования результирующей радиоголограммы путем объединения частных радиоголограмм и восстановление результирующей радиоголограммы вычислительными методами, сопоставляя ее с опорными радиоголограммами, рассчитанными с помощью модели процесса зондирования, обеспечивает достижение заявляемого технического результата, что составляет существо изобретения.

Заявляемый способ, судя по доступным сведениям, является новым, поскольку впервые обеспечивает получение многочастотной радиоголограммы, по информативности многократно превышающую одночастотную.

Заявленный способ, имеет изобретательский уровень, поскольку из опубликованных данных известных технических решений явным образом не следует, что совокупность отличительных признаков приводит к расширению области применения способа. С одной стороны, достигаемый существенный технический эффект открывает новые направления исследований, многочастотная радиоголография и вычислительная радиолокация, обеспечивающая упрощение радиотехнической части РЛС различных типов и назначения, реализующих заявляемый способ, что имеет важное практическое значение. С другой стороны, технический эффект явным образом не следует из общих принципов радиоголографии и может быть достигнут только при проведении предложенной в изобретении последовательности действий.

Предварительный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, идентичным всем признакам заявляемого технического решения, отсутствуют, что указывает на соответствие заявляемого изобретения условию патентоспособности «новизна».

Заявляемое техническое решение промышленно применимо, так как может использоваться в РЛС различных типов и назначения, одновременно обеспечивая при этом упрощение радиотехнической части РЛС, реализующих заявляемый способ, и повышение их информативности. Кроме того для реализации способа могут быть использованы стандартное оборудование и приборы.

На фиг.1 приведена структурная схема одноканального и на фиг.2 многоканального устройств, реализующих заявленный способ активной радиолокации. На фиг.3 приведена схема общего алгоритма обработки частных многочастотных радиоголограмм.

Одноканальное устройство, реализующее заявляемый способ активной радиолокации, структурная схема которого представлена на фиг.1, содержит: устройство обработки частных радиоголограмм (УО) 1; последовательно соединенные многочастотный генератор зондирующих сигналов (МЧГ) 2 и передающую антенну (ППА) 3, которая направлена в сторону зондируемого объекта (ЗО) 4, приемную антенну (ПА) 5, подключенную ко входу многочастотного приемника зондирующих сигналов (МЧГ) 6 и направленную в сторону зондируемого объекта (ЗО) 4. Выход (МЧГ) 6 соединен с (УО) 1.

На фиг.2 представлена схема многоканального устройства, содержащего: устройство обработки частных радиоголограмм (УО) 1, генераторы зондирующих сигналов на k частотах (k=1, …, K) N передающих каналов (Г2.1, …, 2.N), выходы которых соединены с передающими антеннами (ППА3.1, …, 3.N), направленными на зондирующий объект (ЗО) 4, приемные антенны (ПА5.1, …, 5.М), направленные на ЗО 4, выходы которых подключены ко входам приемников (П6.1, …, 6.М), соединенных с УО 1.

Одноканальное устройство, реализующее заявляемый способ активной радиолокации, структурная схема которого представлена на фиг.1, работает следующим образом.

Многочастотный генератор зондирующих сигналов (МЧГ) 2 одновременно или последовательно во времени формирует сигналы, которые излучает ППА 3. Отраженные от ЗО 4 сигналы принимает ПА 5, подает их на МЧП 6, который регистрирует частные радиоголограммы. Частные радиоголограммы. МЧП 6 передает на УО 1 для совместной обработки.

Многоканальное устройство, реализующее заявляемый способ активной радиолокации, структурная схема которого представлена на фиг.2, работает следующим образом.

Генераторы (Г2.1, …, 2.N) одновременно или последовательно во времени формируют сигналы на различных частотах, которые излучают ППА3.1, …, 3.N. Отраженные от ЗО 4 сигналы принимают ПА 5.1, …, 5.М, подают их на приемники П6.1, …, 6.М, которые регистрирует частные радиоголограммы. Частные радиоголограммы с приемников П6.1, …, 6.М передаются на УО 1 для их совместной обработки. Обработка частных радиоголограмм осуществляется вычислительными методами, поэтому УО 1 представляет собой универсальную ЭВМ. Общий алгоритм обработки частных голограмм приведен на фиг.3.

Поскольку способ характеризуется использованием технических средств, известных ранее [Голография. Методы и аппаратура. Под ред. В.М. Гинзбург и Б.М. Степанова. - М.: Сов. Радио, 1974. - 376 с.], то техническая осуществимость устройств, реализующих заявленный способ не вызывает сомнений.

Важная особенность функционирования устройств, схемы которых показаны на фиг.1, 2 по сравнению с классическими одночастотными [Сафронов Г.С., Сафронова А.П. Введение в радиоголографию. - М.: Сов. Радио, 1973. - 288 с., Голография. Методы и аппаратура. Под ред. В.М. Гинзбург и Б.М. Степанова. - М.: Сов. Радио. 1974. - 376 с.] состоит в том, что частные радиоголограммы на различных частотах регистрируются отдельно независимо друг от друга. При выборе частот в соответствии с заявляемым способом, частные радиоголограммы будут независимыми и «математически». Поэтому составленная из них результирующая радиоголограмма представляет собой вектор с независимыми компонентами.

Алгоритм обработки частных многочастотных радиоголограмм, полученных в одноканальном устройстве, при решении радиолокационной задачи измерения дальности цели, включает следующие операции:

1. Составление результирующей радиоголограммы путем объединения частотных радиоголограмм Гk, зарегистрированных на fk частотах (k=1, …, K);

2. Составление гипотез Hi, относительно значений дальности путем разбиения априорного интервала дальностей (R1,R2) на N элементов

где ΔR - величина разрешающего элемента по дальности, определяемая информативностью результирующего зондирующего сигнала, и принятия допущения о том, что цель (цели) находится в i-ом (i=1, …, N) элементе разрешения;

3. Вычисление для каждого i-го элемента дальностей компонентов опорной результирующей радиоголограммы (в соответствии с принятой моделью распространения радиоволн)

где Ri - дальность до i-го элемента разрешения, V - скорость распространения волн, φok - начальная фаза излучаемого сигнала на частоте fk, σ - коэффициент;

4. Вычисление скалярного произведения результирующей зарегистрированной радиоголограммы и вычисленной - опорной (для проверки принятых гипотез), т.е. для каждого i-го разрешаемого элемента по формуле [Г.Корн, Т.Корн. Справочник по математике. - М.: Наука. 1968. - 720 с, стр.399]

где γ(k) - весовая функция;

5. Регистрация максимумов Pi (i=1, …, N), соответствующих целям, находящихся на дальностях Ri.

В целом описанный алгоритм соответствует алгоритму восстановления голограмм, т.е. облучению Гk элементов Г излучением с частотой fk, на которой он получен. Однако реально это можно осуществить только вычислительными методами.

В случае, если скорость распространения волн V точно не известна, а ее априорные значения находятся в интервале (V1,V2), тогда алгоритм обработки, при решении радиолокационной задачи измерения дальности цели, включает следующие операции:

1. Составление гипотез Hij относительно возможных значения дальности Ri и скорости Vj распространения волн путем разбиения интервалов (R1,R2) и (V1,V2) на N М элементов

где интервалы дискретизации по дальности ΔRV и скорости соответствующими размерами разрешающего элемента при совместной оценке R и V;

2. Вычисление компонентов опорной результирующей радиоголограммы для различных значений скорости Vj (J=1, …, М)

3. Вычисление скалярного произведения для различных гипотез Hij

4. Нахождение максимумов значений Pij, по которым судят о дальности целей и скорости распространения волн, определяя при этом искомое значение дальности цели.

Далее рассмотрим алгоритм обработки частных радиоголограмм в многоканальном многочастотном устройстве, функционирующем в режиме обзора.

Алгоритм обработки частных многочастотных радиоголограмм, полученных в многоканальном устройстве, содержащем N передающих каналов, антенны которых расположены в точках , и М приемных каналов с антеннами, расположенными в точках , включает следующие операции:

1. Составление из частных радиоголограмм Гikj, полученных на частотах fk при излучении сигнала с частотой fk из пункта и приеме его в пункте (i=1, …, N; j=1, …, M; k=1, …, K), результирующей радиоголограммы Г путем их объединения;

2. Составление проверяемых гипотез путем разбиения зондируемого пространства на разрешаемые элементы;

3. Вычисление для каждого l-го элемента компонентов опорной результирующей радиоголограммы

где Rril, Rρlj - расстояния от i-го передающего пункта и от j-го приемного пункта до l-го разрешаемого элемента;

4. Вычисление скалярного произведения результирующе радиоголограммы с опорной для каждого l-го элемента

по величине которого судят о наличии цели в l-м элементе разрешения.

Алгоритм является общим независимо от того находятся ли цели в ближней или в дальней зоне приемной и передающей антенн. Физический смысл алгоритма состоит в том, что апостериори, в процессе обработки частных радиоголограмм, передающая и приемная антенны фокусируются в зондируемую точку пространства (в представлении сигналов различных частот «замороженными» волнами).

Для практической реализации заявляемого способа важное значение имеют следующие обстоятельства.

Во-первых, по условиям регистрации частных радиоголограмм предполагается, что всеми зондирующими сигналами облучается один и тот же объект. Именно поэтому совместная обработка частных радиоголограмм приводит к увеличению получаемой информации об объекте зондирования. Так, если объектом зондирования является воздушно-космическое пространство, то частные радиоголограммы могут быть получены для отдельных его областей, выделяемых по времени или (и) по пространству. Например, при использовании многочастотных импульсно-когерентных сигналов частные радиоголограммы (исходя из времени запаздывания сигналов) регистрируются таким образом, чтобы все они соответствовали одному и тому же разрешаемому элементу.

Во-вторых, в число гипотез, проверяемых при восстановлении результирующей радиоголограммы, могут быть включены гипотезы, которые фиксируют не все искомые и сопровождающие параметры. Тем не менее вычисленные для таких гипотез опорные результирующие радиоголограммы будут в различной степени соответствовать результирующей радиоголограмме. Это обстоятельство может быть использовано для предварительного отбора гипотез с целью их последующего уточнения и анализа при решении задач поиска, обнаружения и распознавания сигналов [Сосулин Ю.Г., Фишман М.Н. Теория последовательных решений и ее применения. - М.: Радио и Связь, 1985. - 272 с.].

Возможность реализации последовательной процедуры проверки гипотез покажем на примере восстановления результирующей радиоголограммы с предварительной настройкой передающей и приемной антенн для зондирования и приема сигналов с заданного направления или (в зависимости от относительных размеров передающей и приемной антенн) из заданной пространственной области их фокусирования.

Поскольку положения передающих и приемных элементов, а также частоты излучаемых и принимаемых ими сигналов считаются известными, а область их фокусирования задается, то можно рассчитать весовые коэффициенты опорной результирующей радиоголограммы, соответствующие зондированию выбранной области пространства. Сопоставление зарегистрированной и опорной радиоголограмм осуществляют с помощью вычисления скалярного произведения, т.е. частные радиоголограммы, записанные в координатах местоположения передающих элементов, умножают на коэффициенты, фокусирующие передающую антенну, а частные радиоголограммы, записанные в координатах местоположения приемных антенн, умножают на коэффициенты, фокусирующие приемную антенну. Поскольку причины возникновения фазовых соотношений при этом не известны, то полученные массивы сопоставления зарегистрированной и опорной радиоголограмм некогерентно суммируются, а о наличии сигналов, приходящих из зондируемой области, судят по величине полученной суммы. Описанная процедура соответствует изложенной в книге на стр.41, …, 43 [Иванкин Е.Ф., Понькин В.А. Теоретические основы получения и защиты информации об объектах наблюдения. - М.: Горячая линия - Телеком, 2008. - 448 с.]. Отличие состоит лишь в том, что при вычислении весовых коэффициентов, обеспечивающих фокусирование приемной и передающей антенн, учитываются различные частоты излучаемых и принимаемых сигналов.

Таким образом, заявляемый способ технически реализуем на базе существующих радиотехнических устройств, обеспечивает достижение существенного эффекта и может быть использован для создания высокоинформативных и простых по устройству радиолокационных систем различных типов и назначения.

1. Способ активной радиолокации, включающий излучение зондирующих сигналов из ri(i=1,…, N) точек передающей антенны, прием отраженных сигналов, регистрацию частных радиоголограмм во всех точках приема сигналов, составление из них результирующей радиоголограммы и восстановление по ним изображений, отличающийся тем, что излучают многочастотные зондирующие сигналы с разнесенными частотами, регистрируют частные радиоголограммы на всех частотах принятых сигналов с учетом частот Доплера, причем разнос частот зондирующих сигналов выбирают таким, чтобы зарегистрированные частные голограммы были независимые, затем составляют результирующую радиоголограмму путем объединения независимых частных радиоголограмм, размещая частные радиоголограммы в упорядоченном пространстве координат местоположения каждого передающего и приемного пунктов, несущей и соответствующей ей доплеровской частоты в соответствии с информацией об их изменении во времени на интервале накопления частных радиоголограмм с учетом возможных траекторий движения находящихся в зондируемом пространстве объектов, причем для восстановления формируют набор гипотез, включающих сочетание искомых и сопровождающих параметров, вычисляют для каждой гипотезы с помощью модели процесса зондирования опорную результирующую радиоголограмму , сопоставляют результирующую радиоголограмму со всеми опорными и судят о значении всех неизвестных параметров, определяя при этом значения искомых параметров.

2. Способ по п.1, отличающийся тем, что частные радиоголограммы регистрируют на совпадающей и ортогональной поляризациях.



 

Похожие патенты:

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества.

Изобретение относится к области радиолокации и может быть использовано на вертолетах. Достигаемый технический результат изобретения - расширение функциональных возможностей, повышение точности измерения координат и вероятности обнаружения цели, сокращение времени обзора воздушного пространства с увеличением зоны обзора по углу места, повышение электромагнитной устойчивости многодиапазонного вертолетного радиолокационного комплекса.

Изобретение относится к радиолокационным системам летательных аппаратов. Достигаемый технический результат - создание многофункциональной, многодиапазонной, малогабаритной, масштабируемой радиолокационной системы.

Заявляемые технические решения относятся к области радиолокации, в частности к области обнаружения радиолокационных целей обзорными радиолокационными станциями с узким лучом в условиях пассивных помех, создаваемых распределенными в пространстве отражателями.

Изобретение относится к области навигационной измерительной техники и предназначено для измерения скорости подвижных объектов. .

Изобретение относится к области автоматического регулирования величин, определяющих местоположение движущегося объекта, и может быть использовано в радиолокационных системах управления.

Изобретение относится к системам обнаружения объектов и может быть использовано в радиолокации для распознавания цели. .

Изобретение может быть использовано в радиолокационных станциях для стабилизации вероятности ложной тревоги при действии импульсных помех. Достигаемый технический результат - стабилизация вероятности ложной тревоги при сохранении возможности обнаружения слабого сигнала при частичном перекрытии его с более сильным. Указанный технический результат достигается тем, что в заявленном способе сжимают принятый сигнал в фильтре сжатия в канале с ограничением, сравнивают сжатый сигнал с порогом обнаружения, принимают решения об обнаружении сигнала, если сжатый сигнал превысил порог, при этом дополнительно сжимают принятый сигнал в фильтре сжатия в линейном канале, сравнивают уровень сжатого сигнала с порогом линейного канала, принимают решение об обнаружении k-го сигнала, где k - порядковый номер сигнала, сжатого в момент времени tk и имеющего уровень Uогрk в канале с ограничением, не достигшего порога в канале с ограничением, если этот сигнал в линейном канале имеет уровень Uлинk, превышающий порог линейного канала и если в интервале tk±T, Т - длительность излученного сигнала, существует i-ый сжатый сигнал, где i - порядковый номер сигнала, сжатого в момент времени ti, имеющий уровень Uлинi, превысивший порог обнаружения в линейном канале, и соответствующий ему сжатый сигнал, обнаруженный в канале с ограничением и имеющий уровень Uогрi, и выполняется условие .

Использование: изобретение относится к поисковым устройствам, которые обнаруживают объект, на основе приема сигналов, появляющихся в результате вторичного переизлучения с изменением спектра зондирующего сигнала. Сущность: способ обнаружения заключает в том, что в направлении предполагаемого расположения объекта, содержащего нелинейный элемент, излучается двухчастотный зондирующий сигнал, спектр которого содержит спектральные составляющие, сосредоточенные возле частот f1 и f2, и принимается сигнал обратного рассеяния в диапазоне частот, близких к частотам f1 и f2. При этом зондирующий сигнал с частотой f2 имеет амплитудную модуляцию с частотой F, а решение о наличии в зоне обнаружения объекта, содержащего нелинейный элемент, принимается при появлении амплитудной модуляции с частотой F у спектральной компоненты, спектр которой сосредоточен в близи частоты f1. Технический результат: повышение эффективности обнаружения объектов, содержащих нелинейные элементы. 1 ил.

Заявляемые технические решения относятся к области радиолокации. Достигаемый технический результат - обеспечение требуемого уровня вероятности ложной тревоги в условиях воздействия импульсных помех при обеспечении возможности обнаружения групповых целей. Изобретение основано на совместном использовании канала обработки принятого сигнала с ограничением его амплитуды и линейного канала, то есть канала без ограничения амплитуды принятого сигнала. Указанный технический результат достигается тем, что в заявленном способе осуществляют сжатие сигнала в первом фильтре сжатия после ограничения принятого сигнала, сравнение уровня сжатого сигнала с первым порогом, сжатие принятого сигнала во втором фильтре сжатия и сравнение уровня сжатого сигнала со вторым порогом, принятие решения об обнаружении цели, если превышены оба порога. Устройство, реализующее способ, содержит: канал с ограничением, включающий последовательно соединенные ограничитель, первый фильтр сжатия и первое пороговое устройство; линейный канал, включающий последовательно соединенные второй фильтр сжатия и второе пороговое устройство; схему совпадения «и», причем вход ограничителя и вход второго фильтра сжатия соединены и являются входом устройства, выход первого порогового устройства соединен с первым входом схемы совпадения «и», а выход второго порогового устройства канала соединен со вторым входом схемы совпадения «и», выход которой является выходом устройства. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации и может быть использовано в обзорных радиолокационных станциях с двумерным электронным сканированием и механическим вращением антенны по азимуту при обзоре пространства последовательным перемещением луча. Достигаемый технический результат - уменьшение временных и энергетических затрат при обзоре пространства радиолокационной станцией в условиях большого количества целей и помех во многих положениях луча. В заявляемом способе обзора пространства радиолокационной станцией с последовательным перемещением луча столбцами по углу места, двухэтапным обнаружением сигнала, отраженного от цели, луч в столбце перемещают зигзагообразно с помощью двумерного электронного сканирования, в каждом положении луча излучают зондирующий сигнал, принятый отраженный сигнал сравнивают с порогами первого и второго этапов обнаружения, цель в текущем положении луча в дискретах по дальности, в которых превышен порог второго этапа обнаружения, считают обнаруженной, если при этом хотя бы в одном из двух соседних положений луча в столбце, осмотренных в предыдущие моменты времени, в дискретах по дальности, выбранных с учетом ошибок измерения дальности и возможного перемещения цели за время между этапами, превышен порог первого этапа обнаружения. 5 ил.

Изобретение относится к области радиотехники и может быть использовано для идентификации и охраны различных объектов. Технический результат - повышение эффективности идентификации метки. Система радиочастотной идентификации на поверхностных акустических волнах, содержащая приемопередатчик с антенной и N групп линий задержки на поверхностных акустических волнах, представляющих радиочастотные метки, каждая линия задержки имеет приемопередающие встречно-штыревые преобразователи и отражательные встречно-штыревые преобразователи, система дополнительно содержит передающую антенну метки, приемную антенну метки, циркулятор метки, передающую антенну считывателя, приемную антенну считывателя и циркулятор считывателя, первый вход/выход которого соединен со считывателем, второй выход циркулятора подключен к передающей антенне считывателя, которая посредством радиоканала связана с приемной антенной метки, которая подключена ко второму входу циркулятора метки, первый вход/выход которого соединен с меткой, а третий выход циркулятора метки соединен с передающей антенной метки, которая связана радиоканалом с приемной антенной считывателя, которая присоединена к третьему входу циркулятора считывателя. 1 ил.

Изобретение относится к измерительной технике и предназначено для определения состояния морской поверхности. Устройство содержит радиолокационную станцию, включающую антенну, синхронизатор, датчик углового положения антенны, который соединен механической связью с основанием антенны, электронный ключ, индикатор, а также приемник и передатчик. При этом выход синхронизатора соединен со входом передатчика, а выход передатчика соединен со входом электронного ключа. Устройство дополнительно снабжено аналого-цифровым преобразователем и соединенным с ним на выходе вычислительным устройством. Передатчик радиолокационной станции содержит модулятор и генератор сверхвысокой частоты, вход которого соединен с выходом модулятора. При этом второй выход синхронизатора соединен со входом индикатора, первый выход синхронизатора соединен со входом модулятора передатчика, а его генератор сверхвысокой частоты соединен на выходе со входом электронного ключа, выход которого соединен со входом приемника, а выход приемника соединен со вторым входом индикатора. Второй выход приемника соединен со входом аналогового канала аналого-цифрового преобразователя, второй вход которого - вход синхронных цифровых данных - соединен с выходом датчика углового положения антенны, второй выход которого соединен с третьим входом индикатора, а третий вход аналого-цифрового преобразователя - вход внешней синхронизации - соединен с третьим выходом синхронизатора, а антенна электрически связана с электронным ключом. Технический результат: упрощение, повышение точности измерений характеристик волнения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиолокационным измерениям эффективной площади рассеяния (ЭПР) объектов и может быть использовано на открытых радиоизмерительных полигонах. Комплекс содержит последовательно соединенные приемник, вычислитель, импульсный передатчик, антенный переключатель (АЛ) и антенну, при этом второй выход АП соединен со входом приемника, а также поворотное устройство (ПУ) с опорой, измеряемый объект (ИО) и пульт управления, который первым, вторым и третьим выходами соединен со вторым входом передатчика, входом ПУ и вторым входом вычислителя соответственно, кроме того вычислитель третьим входом соединен с выходом ПУ, а также содержит устанавливаемое на подстилающей поверхности в центре первой зоны Френеля антенны радиопоглощающее устройство (РУ), ширину которого выбирают не менее малой оси эллипса первой зоны Френеля антенны, а высоту определяют по формуле Hэ=a×H0/(a+R-Rэ), где а - большая полуось эллипса первой зоны Френеля антенны, Но - высота размещения ИО над подстилающей поверхностью, R - расстояние между антенной и ИО, Rэ - расстояние между антенной и РУ, кроме того, содержит радиопоглощающую накидку на верхнюю часть ПУ. Достигаемый технический результат - повышение точности измерения амплитудной диаграммы ЭПР объектов за счет устранения влияния на результаты измерений зеркально отраженного от подстилающей поверхности и обратно рассеянного верхней частью ПУ облучающего поля, а также электродинамического взаимодействия между ИО и верхней частью ПУ. 1 ил.

Изобретение относится к радиолокации и может быть использовано на открытых радиоизмерительных полигонах. Радиолокационный стенд содержит последовательно соединенные приемник, вычислитель, импульсный передатчик, антенный переключатель и антенну, при этом второй выход антенного переключателя соединен со входом приемника, а также поворотное устройство с опорой, измеряемый объект и пульт управления, который первым, вторым и третьим выходами соединен со вторым входом передатчика, входом поворотного устройства и вторым входом вычислителя, соответственно, кроме того, вычислитель третьим входом соединен с выходом поворотного устройства, а также содержит устанавливаемое на подстилающей поверхности в центре первой зоны Френеля антенны отражательное устройство, ширину которого выбирают не менее малой оси эллипса первой зоны Френеля антенны, а высоту определяют по формуле Нэ=а×Но/(а+R-Rэ), где а - большая полуось эллипса первой зоны Френеля антенны, Но - высота размещения измеряемого объекта над подстилающей поверхностью, R - расстояние между антенной и измеряемым объектом, Rэ - расстояние между антенной и отражательным устройством, кроме того, опора выполнена с возможностью перемещения в вертикальной плоскости. Достигаемый технический результат - повышение точности измерения амплитудной диаграммы эффективной площади рассеяния объектов. 1 ил.

Изобретение относится к области радиолокации и может быть использовано в системах управления воздушным движением. Достигаемый технический результат - уменьшение габаритов без увеличения времени сканирования. Указанный результат достигается за счет того, что трехкоординатный радиолокатор содержит два блока фазирования, два преобразователя положения луча в направление, линию задержки, два элемента ИЛИ, блок вторичной обработки, индикатор, узконаправленное по горизонтали электрическое сканирующее устройство, узконаправленное по вертикали электрическое сканирующее устройство, определенным образом соединенные между собой. 2 ил.

Изобретение относится к медицине. Портативное устройство для бесконтактной выборочной проверки жизненных показателей пациента содержит: датчик расстояния для последовательного обнаружения изменений расстояния во времени относительно грудной клетки пациента, калькулятор частоты дыхания для определения дыхательной активности на основе обнаруженных изменений расстояния во времени. Кроме того, устройство содержит две ручки, приспособленные для того, чтобы пациент держал устройство обеими руками так, чтобы датчик расстояния был направлен на грудную клетку пациента. Причем ручки содержат электроды для регистрации ЭКГ. При этом устройство содержит оптический датчик для измерения методом фотоплетизмографии, который расположен так, чтобы когда держат устройство, палец пациента автоматически ложился на оптический датчик. Изобретение позволяет повысить удобство и простоту выборочной проверки дыхательного акта пациента за счет обеспечения направления датчика расстояния на грудь пациента обеими руками. 13 з. п. ф-лы, 6 ил.
Наверх