Корреляционный измеритель высоты и составляющих вектора путевой скорости

Изобретение может быть использовано в бортовых навигационных системах. Достигаемый технический результат изобретения - расширение функциональных возможностей, повышение точности измерения вектора путевой скорости летательного аппарата. Указанный результат достигается за счет наличия ряда новых блоков с их взаимосвязями в составе заявленного измерителя, а также за счет излучения в направлении подстилающей поверхности и приема коротких пакетов радиоимпульсов, отраженных от подстилающей поверхности, которые в приемнике преобразуются в биполярные видеоимпульсы, флюктуирующие по амплитуде с частотой, определяемой доплеровским сдвигом частоты сигналов, а составляющие вектора путевой скорости определяются по максимуму взаимно-корреляционной функции пространственно разнесенных между собой отраженных от подстилающей поверхности сигналов, принимаемых разнесенными антеннами, расположенными на летательном аппарате, с учетом геометрии антенной системы. 2 з.п. ф-лы, 10 ил.

 

Изобретение относится к области радиолокации и может быть использовано в бортовых навигационных системах.

Известно устройство [1], реализующее способ измерения скорости летательного аппарата относительно подстилающей поверхности, заключающийся в определении корреляционной временной задержки по равенству коэффициента автокорреляции в одном из приемных каналов, коэффициенту взаимной корреляции сигналов двух приемников, вычислении коэффициента автокорреляции во втором приемном канале и нахождении временного положения максимума функции взаимной корреляции сигналов этих приемников. При этом для вычисления скорости используют среднее значение коэффициентов автокорреляции.

Основным недостатком данного устройства является использование двух приемных антенн, что не позволяет производить измерения с заданной точностью при эволюциях объекта над широким диапазоном типов поверхностей (море, лес и т.п.). Вариант расположения приемных антенн, предлагаемый в [1] не позволяет производить измерения при малых углах сноса (при отсутствии сноса), т.к. в этом случае максимум коэффициента взаимной корреляции определяется разносом антенн по поперечной оси летательного аппарата. При малых углах сноса коэффициент взаимной корреляции мал, что ведет к повышенным погрешностям измерения составляющих вектора путевой скорости. Повысить коэффициент взаимной корреляции возможно путем сближения приемных антенн, однако минимальное расстояние между антеннами ограничено их геометрическими размерами.

Кроме того, конструкция предлагаемой антенной системы не позволяет размещать устройство на относительно узкие и длинные борта летательных аппаратов.

Известен корреляционный измеритель скорости полета и угла сноса [2], который содержит четыре антенны, два приемника, два дискретизатора по времени, линию задержки, коммутатор, два перемножителя, направленный ответвитель, генератор тактовых импульсов, два фильтра нижних частот, передатчик, двигатель, индикатор пути, блок вычитания, блок слежения, три двухсторонних ограничителя, индикаторы скорости ветра и угла сноса, два блока совпадения и делитель.

Основным недостатком данного устройства является использование для оценки положения максимумов взаимно-корреляционных функций (ВКФ) пространственно разнесенных сигналов метода вилки при определении транспортного запаздывания, который не позволяет обеспечить высокую точность измерений составляющих вектора путевой скорости.

Наиболее близким по технической сущности является устройство [3], которое относится к средствам контроля и измерения толщины слоев разнородных по электрофизическим свойствам жидкостей, а также их относительного изменения. Устройство содержит синхронизатор, вычислительное устройство, аналого-цифровой преобразователь, фазовращатель, импульсный модулятор, управляемый аттенюатор, видеоусилитель, БОЗУ, блок регулировки усиления, блок регулировки ослабления, источник тока, управляемый напряжением, контроллер обмена, последовательно соединенные антенную систему, циркулятор, малошумящий УВЧ, фазовый детектор, направленный, ответвитель, дискретно управляемый СВЧ генератор, выход которого соединен со входом направленного ответвителя, второй выход которого соединен со вторым входом фазового детектора, первый вход которого соединен с выходом малошумящего усилителя, вход которого соединен с выходом циркулятора, вход/выход которого подключен к антенной системе, а первый выход направленного ответвителя соединен с первым входом импульсного модулятора, второй вход которого соединен со вторым выходом синхронизатора, выход импульсного модулятора соединен со вторым входом фазовращателя, первый вход которого соединен с первым выходом синхронизатора, а выход - с первым входом управляемого аттенюатора, выход которого соединен со входом циркулятора, а второй вход - с выходом источника тока, управляемого напряжением, вход которого соединен с выходом блока регулировки ослабления, все первые входы которого соединены по шине данных со всеми первыми входами блока регулировки усиления, всеми шестыми входами БОЗУ, всеми первыми входами/выходами контроллера обмена, все третьи входы/выходы которого являются входами/выходами измерителя, а также всеми двенадцатыми входами вычислительного устройства, второй, третий, четвертый, пятый выходы которого соединены соответственно со вторыми входами блока регулировки ослабления, блока регулировки усиления, контроллера обмена, БОЗУ, а шестой, седьмой, тринадцатый выходы - соответственно с третьим, четвертым, седьмым входами БОЗУ, восьмой, девятый выходы - соответственно со вторым и третьим входами синхронизатора, десятый, одиннадцатый выходы - соответственно со вторым и первым входами дискретно управляемого СВЧ генератора, первый вход - с четвертым выходом синхронизатора, первый вход которого соединен с первым выходом БОЗУ, первый вход которого соединен с третьим выходом синхронизатора и вторым входом АЦП, все выходы которого соединены со всеми пятыми входами БОЗУ, а первый вход АЦП - с выходом видеоусилителя, первый вход которого соединен с выходом фазового детектора, второй вход - с выходом блока регулировки усиления.

Недостатком прототипа рассматриваемого устройства является то, что он не измеряет составляющие вектора путевой скорости.

Целью изобретения является расширение функциональных возможностей устройства, повышение точности измерения вектора путевой скорости летательного аппарата.

Указанная цель достигается тем, что в устройство [3], содержащее синхронизатор, вычислительное устройство, аналого-цифровой преобразователь, фазовращатель, импульсный модулятор, управляемый аттенюатор, видеоусилитель, БОЗУ, блок регулировки усиления, блок регулировки ослабления, источник тока, управляемый напряжением, контроллер обмена, циркулятор, последовательно соединенные малошумящий УВЧ, фазовый детектор, направленный ответвитель, дискретно управляемый СВЧ генератор, выход которого соединен со входом направленного ответвителя, второй выход которого соединен со вторым входом фазового детектора, первый вход которого соединен с выходом малошумящего усилителя, а первый выход направленного ответвителя соединен с первым входом импульсного модулятора, второй вход которого соединен со вторым выходом синхронизатора, выход импульсного модулятора соединен со вторым входом фазовращателя, первый вход которого соединен с первым выходом синхронизатора, а выход - с первым входом управляемого аттенюатора, выход которого соединен с первым входом циркулятора, а второй вход которого соединен с выходом источника тока, управляемого напряжением, вход которого соединен с выходом блока регулировки ослабления, все первые входы которого соединены по. шине данных со всеми первыми входами блока регулировки усиления, всеми шестыми входами/выходами БОЗУ, всеми первыми входами/выходами контроллера обмена, все третьи входы/выходы которого являются входами/выходами измерителя, а также всеми двенадцатыми входами вычислительного устройства, второй, третий, четвертый, пятый выходы которого соединены соответственно со вторыми входами блока регулировки ослабления, блока регулировки усиления, контроллера обмена, БОЗУ, а шестой, седьмой, тринадцатый выходы - соответственно с третьим, четвертым, седьмым входами БОЗУ, восьмой, девятый выходы - соответственно со вторым и третьим входами синхронизатора, десятый, одиннадцатый выходы - соответственно со вторым и первым входами дискретно управляемого СВЧ генератора, первый вход - с четвертым выходом синхронизатора, первый вход которого соединен с выходом БОЗУ, первый вход которого соединен с третьим выходом синхронизатора и вторым входом АЦП, все выходы которого соединены со всеми пятыми входами БОЗУ, а первый вход АЦП - с выходом видеоусилителя, первый вход которого соединен с выходом фазового детектора, второй вход - с выходом блока регулировки усиления, введены антенный переключатель, блок управления антенным переключателем, антенная система [4], средняя из которых может использоваться в качестве приемопередающей антенны, при этом, второй вход/выход циркулятора соединен со вторым входом/выходом антенной системы, первый и третий выходы которой соединены с пятым и шестым входами антенного переключателя, выход которого соединен со входом малошумящего УВЧ, выход циркулятора соединен с первым входом антенного переключателя, второй, третий, четвертый входы которого соединены с первым, вторым, третьим выходами блока управления антенным переключателем, первый, второй, третий входы которого соединены соответственно с первым, вторым и пятым выходами синхронизатора.

Для измерения предельно малых высот передающая антенна может быть выполнена в виде отдельного блока, подключенного к выходу управляемого аттенюатора и разнесена с приемной антенной системой на определенное расстояние для обеспечения высокой развязки по наведенному в момент излучения на приемник «прямому» сигналу. При этом, на первый вход циркулятора подключается согласованная нагрузка.

Заявляемый корреляционный измеритель высоты и составляющих вектора путевой скорости излучает в направлении подстилающей поверхности и принимает короткие пакеты радиоимпульсов. При этом, радиоимпульсы в приемнике преобразуются в биполярные видеоимпульсы, огибающая которых флюктуирует по амплитуде с частотой, определяемой доплеровским сдвигом частоты сигналов, отраженных от подстилающей поверхности.

Составляющие вектора путевой скорости определяются по максимуму взаимно-корреляционных функции пространственно разнесенных между собой отраженных от подстилающей поверхности сигналов, принимаемыми разнесенными антеннами, расположенными на ЛА, с учетом геометрии антенной системы [5].

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием новых блоков и их связями между собой и с другими блоками прототипа.

Таким образом, заявляемое устройство соответствует критерию «новизна».

Сравнение заявляемого решения с другими техническими решениями показывает, что введенные блоки известны [3, 4, 6]. Однако, введение их в заявляемый корреляционный измеритель высоты и составляющих вектора путевой скорости в указанной совокупности признаков не обнаружено и приводит к расширению функциональных возможностей и повышению точности измерений, что позволяет сделать вывод о соответствии технического решения критерию «существенные отличия».

На фиг.1 представлена блок-схема корреляционного измерителя высоты и составляющих вектора путевой скорости. На фиг.2 представлена блок-схема антенного переключателя. На фиг.3 представлена блок-схема управления антенным переключателем. На фиг.4 представлена блок-схема синхронизатора (отличается от прототипа добавлением провода 83). На фиг.5 представлен алгоритм работы подпрограммы установки режима приемопередающего модуля при излучении радиоимпульсов и накоплении радиоимпульсов, отраженных от подстилающей поверхности. На фиг.6 представлены временные диаграммы работы блока управления антенным переключателем. На фиг.7 представлена антенная система корреляционного измерителя скорости и угла сноса летательного аппарата. На фиг.8 представлено восстановление отраженного сигнала методом нониуса. На фиг.9 представлен алгоритм программной регулировки усиления приемного тракта и мощности излучения. На фиг.10 представлен алгоритм работы подпрограммы вычисления продольной и боковой составляющих Vx и Vz.

Корреляционный измеритель высоты и составляющих вектора путевой скорости содержит дискретно управляемый СВЧ генератор 1, направленный ответвитель 2, импульсный модулятор 3, фазовращатель 4, управляемый аттенюатор 5, антенный переключатель 6, блок управления антенным переключателем 7, циркулятор 8, малошумящий УВЧ 9, фазовый детектор 10, видеоусилитель 11, АЦП 12, БОЗУ 13, синхронизатор 14, вычислительное устройство 15, контроллер 16 обмена, блок 17 регулировки усиления, блок 18 регулировки ослабления, источник 19 тока, управляемый напряжением, антенную систему 70, а также передающую антенну 71, согласованную нагрузку 72 при использовании передающей антенны в качестве отдельного блока.

При этом выход дискретно управляемого СВЧ генератора 1 соединен со входом направленного ответвителя 2, первый выход которого подключен к первому входу импульсного модулятора 3, второй вход которого подключен ко второму входу блока управления антенным переключателем 7 и второму выходу синхронизатора 14, первые и пятые выходы которого соединены соответственно с первыми и третьими входами блока управления антенным переключателем 7 и фазовращателя 4, второй вход которого соединен с выходом импульсного модулятора 3, а выход - с первым входом управляемого аттенюатора 5, выход которого соединен с первым входом циркулятора 8, выход которого соединен с первым входом антенного переключателя 6, а второй вход/выход - со вторым входом/выходом антенной системы 70, первый и третий выходы которой соединены соответственно с пятым и шестым входами антенного переключателя 6, второй, третий, четвертый входы которого соединены с первым, вторым, третьим выходами блока управления антенным переключателем (АП) 7, выход - со входом малошумящего УВЧ 9, выход которого соединен с первым входом фазового детектора 10, второй вход которого соединен со вторым выходом направленного ответвителя 2, а выход - с первым входом видеоусилителя, второй вход которого соединен с выходом блока 17 регулировки усиления, а выход - с первым входом АЦП 12, все выходы которого соединены.со всеми пятыми входами БОЗУ 13, первый вход которого соединен со вторым входом АЦП 12 и третьим выходом синхронизатора 14, четвертый выход которого соединен с первым входом вычислительного устройства 15, второй, третий, четвертый, пятый выходы которого соединены соответственно со вторыми входами блока 18 регулировки ослабления, блока 17 регулировки усиления, контроллера 16 обмена, БОЗУ 13, шестой, седьмой, тринадцатый выходы - соответственно с третьим, четвертым, седьмым входами БОЗУ 13, десятый, одиннадцатый выходы - соответственно со вторым и первым входами дискретно управляемого СВЧ генератора 1, восьмой, девятый выходы - соответственно со вторым и третьим входами синхронизатора 14, первый вход которого соединен с выходом БОЗУ 13, все шестые входы/выходы которого по шине данных соединены со всеми двенадцатыми входами/выходами вычислительного устройства 12, всеми первыми входами/выходами контроллера 16 обмена, все третьи входы/выходы которого являются входами/выходами корреляционного измерителя высоты и составляющих вектора путевой скорости, а также со всеми первыми входами блока 17 регулировки усиления, всеми первыми входами блока 18 регулировки ослабления, выход которого соединен со входом источника 19 тока, управляемого напряжением, выход которого соединен со вторым входом управляемого аттенюатора 5.

Передающая антенна 71 может быть выполнена в виде отдельного блока, подключенного к выходу управляемого аттенюатора 5. При этом, на первый вход циркулятора 8 подключается согласованная нагрузка 72.

В состав антенного переключателя 6 входят первый СВЧ ключ 73, второй СВЧ ключ 74, третий СВЧ ключ 75. При этом, первый вход первого СВЧ ключа 73 является первым входом антенного переключателя 6, второй вход первого СВЧ ключа 73 является третьим входом антенного переключателя 6, выход которого соединен с выходами первого СВЧ ключа 73, второго и третьего СВЧ ключей 74 и 75, первые входы которых являются соответственно пятым и шестым входами антенного переключателя 6, а вторые входы- вторым и четвертым входами антенного переключателя 6.

В состав блока 7 (фиг.3) управления антенным переключателем входят блок 76 «НЕ», первый блок 77 «И-НЕ», второй блок 78 «И-НЕ», третий блок 79 «И-НЕ», четвертый блок 80 «И-НЕ», пятый блок 81 «И-НЕ», регистр сдвига 82. При этом, вход блока 76 «И-НЕ», являющийся первым входом блока 7 управления антенным переключателем, соединен со вторым входом второго блока 78 «И-НЕ», первый вход которого, являющийся вторым входом блока 7 управления антенным переключателем, соединен с первым входом первого блока 77 «И-НЕ», выход которого соединен соответственно с первыми входами третьего 79, четвертого 80, пятого 81 блоков «И-НЕ», выходы которых являются соответственно первым, вторым, третьим выходами блока 7 управления антенным переключателем, все третьи входы которых соединены между собой и выходом второго блока 78 «И-НЕ», а вторые входы - соответственно с первым, вторым, третьим выходами регистра 82 сдвига, первый вход которого соединен с выходом блока «НЕ» и вторым входом первого блока 77 «И-НЕ», а второй вход регистра 82 сдвига является пятым выходом синхронизатора 14 (фиг.4), сигнал 83 соединен со вторым входом триггера 28 флага излучения.

Корреляционный измеритель высоты и составляющих вектора путевой скорости работает следующим образом.

После подачи питания на измеритель вычислительное устройство 15 проводит сигналом 40 начальную установку триггера 28 флага излучения синхронизатора 14, сигналом 83 начальную установку регистра 82 сдвига блока 7 управления АП, сигналами 65 и 64 записывает нулевое значение усиления и ослабления в блоки 17 и 18 регулирования усиления и ослабления (Nуc=0, Nосл=0), записывает сигналами 52 и 53 по шине данных 55 в счетчик 44 адреса ОЗУ БОЗУ 13 нулевое значение кода (устанавливается тем самым низкий логический уровень сигнала 39-окончание режима излучения и накопления), проводит опрос контроллера 16 обмена с внешними системами, который переводит измеритель в режим измерения задержки отраженного от подстилающей поверхности сигнала, устанавливает сигналами 63 и 67 несущую частоту СВЧ - генератора 1 на середину рабочего диапазона.

После этого вычислительное устройство 15 запускает подпрограмму установки параметров приемопередающего модуля (ППМ) и старта излучения и накопления. Алгоритм работы подпрограммы приведен на фиг.5. Подпрограмма устанавливает несущую частоту Fнес на дискретно управляемом СВЧ - генераторе 1, записывает в блоки 17 и 18 регулировки усиления и ослабления значения усиления и ослабления, записывает нулевое значение кода в счетчик 44 адреса ОЗУ БОЗУ, запускает таймер на время tуcт.ппм - время установки параметров в ППМ (дискретно управляемый СВЧ - генератор 1, направленный ответвитель 2, импульсный модулятор 3, фазовращатель 4, управляемый аттенюатор 5, малошумящий УВЧ 9, фазовый детектор 10, видеоусилитель 11), после чего проводится запуск режима излучения и накопления, анализ флага излучения 42.

На фиг.6 показаны временные диаграммы работы блока 7 управления антенным переключателем в режиме излучения и накопления. Антенный переключатель 6 подключает на прием попеременно первую, вторую, третью антенны (фиг.7). Каждая антенна включается на прием радиоимпульсов в течение времени, равным длительности двух периодов излучения (периоды с фазами 0 и π/2). Через время, равное длительности шести периодов излучения зондирующих импульсов, повторяется цикл приема (на три приемные антенны) радиоимпульсов, отраженных от подстилающей поверхности.

Через циркулятор 8, приемопередающую антенну (вход/выход 2) антенной системы 8 обеспечивается излучение радиоимпульсов по направлению к подстилающей поверхности.

Принятые от подстилающей поверхности антенной системой 8 радиоимпульсы 95 (через второй СВЧ ключ 74), радиоимпульсы 94 (через третий СВЧ ключ 75), радиоимпульсы 96 через циркулятор 8, первый СВЧ ключ 73 поочередно поступают на вход малошумящего УВЧ 9 (сигнал 93). По окончании работы подпрограммы вычислительное устройство 15 считывает данные БОЗУ 13, после чего проводит обработку данных, сканируя по диапазону задержек, определяя временную задержку цифровых сигналов от подстилающей поверхности.

Излучение и тактирование АЦП 12 и запись в БОЗУ 13 начинаются в момент времени t0(фиг.8) [3]. Радиоимпульсы излучаются по тактам с номерами 0, km+1, 2km+3, …, nk(m+1), … (фиг.8а, 8б), где m - параметр нониуса, k - расширитель временного диапазона для сигнала и n - номер излучения, Тизл - период тактовых импульсов.

Преобразование принятого сигнала (фиг.8в) в АЦП 12 и запись в БОЗУ 13 проводится по каждому такту с периодом Тозу (фиг.8г, 8д). Если выполняется условие совпадения фронтов тактовых импульсов излучения и тактирования АЦП 12 и БОЗУ 13:

Условие (1) можно записать в виде:

где Fизл=1/Тизл - частота тактовых импульсов излучения; Fозу=1./Тозу - частота тактовых импульсов АЦП 12 и БОЗУ 13.

Если второе и последующие излучения выдавать в моменты

n*(km+1)*Тизл, то следующий такт АЦП 12 и БОЗУ 13 придет в момент

n*(k(m-1)+1)*Toзy с задержкой dtn, то из уравнения:

n*(km+1)*Тизл+dtn=n*(k(m-1)+1)*Тозу

можно показать, что n-тое излучение начинается раньше n*(k(m-1)+1) тактового импульса АЦП 12 и БОЗУ 13 на величину:

dtn=n*Тозу/m.

Отсюда получаем, что для восстановления принятого сигнала с шагом Тозу/m необходимо Nизл=m, а объем БОЗУ 13 Lозу определяется из уравнения:

m*(km+1)*Тизл=Lозу*Тозу, тогда объем БОЗУ 13, необходимой для восстановления принятого сигнала, равен Lозу=(km+1)(m-1).

Выше проведенные рассуждения позволяют получить, что для восстановления значения принятого сигнала на задержке i*dt в цифровом виде можно вывести выражение:

Ui=ОЗУ{(i mod M)*m+[i/M]},

где скобки {…} означают содержимое ячейки ОЗУ с данным номером, выражение (i mod М) - остаток от деления i на М, и скобка […] - целая часть числа, М=k(m-1)+1.

На фиг.8е показан пример восстановленного сигнала для k=1, m=8.

При отражении от подстилающей поверхности изменение ослабления отраженных сигналов на входе малошумящего УВЧ 9 может составлять порядка 30 дБ, что приводит к флюктуациям амплитуды и изменению крутизны фронта отраженного сигнала и, как следствие, к дополнительной погрешности измерения задержки отраженного сигнала и высоты полета летательного аппарата.

Для поддержания стабильной крутизны фронта восстановленного сигнала на задержке i*dt вычислительное устройство 15 запускает после окончания каждого цикла излучения и накопления подпрограмму автоматической регулировки усиления видеоусилителя 11 и мощности излученных радиоимпульсов посредством блока 17 регулировки усиления, блока 18 регулировки усиления и источника 19 тока УН соответственно (фиг.9). Проводится оценка уровня восстановленного отраженного сигнала. Если уровень сигнала превышает пороговый, то производится уменьшение излучаемой мощности и усиления видеоусилителя 11, если не превышает порога, то увеличение.

После стабилизации крутизны фронта отраженного сигнала (примерно 5-6 излученных пакетов радиоимпульсов) вычислительное устройство 15 выдает результат измеренной высоты полета в контроллер обмена 16 и переводит измеритель в режим измерения продольной и поперечной составляющих вектора путевой скорости.

Включается алгоритм работы подпрограммы вычисления продольной и боковой составляющих Vx и Vz (фиг.10).

Одним из факторов, влияющих на точность измерения составляющих вектора скорости, является положение сигнального строба (сечения) на отраженном от подстилающей поверхности сигнале. На максимуме импульса обеспечивается максимальная мощность флюктуации сигнала, поэтому сечение на огибающей отраженного от подстилающей поверхности сигнала устанавливается в области его максимума. Затем, на этом сечении производится выборка значений сигнального среза, запоминание их в БОЗУ 13.

Поскольку, ослабления сигналов в СВЧ - трактах каждой из приемных антенн могут несколько отличаться, то для обеспечения точности измерения составляющих вектора путевой скорости, перед построением ВКФ в вычислительном устройстве 15 производится нормирование мощности сигналов по каждой из трех антенн:

, , , k=0…N-1,

где , , - значения исходных ненормированных сигналов, принятых на 1-ю, 2-ю и 3-ю антенны в моменты времени tk; если отсчитывать время от начала пакета, то

t0=0, t1=Δt,…, tN-1=(N-1)·Δt,

где Δt=временной шаг оцифровки сигнала,

N - количество отсчетов времени;

, , - нормированные сигналы, принятые на 1-ю, 2-ю и 3-ю антенны в те же моменты времени tk;

, , - средние значения исходных сигналов на промежутке времени от t0 до tN-1;

U0 - константа, задающая средний уровень нормированных сигналов. Вычисляются мгновенные значения взаимно корреляционных функций между сигналами, принятых 1-й и 2-й и 2-й и 3-й антеннами.

,

,

где В - количество отсчетов времени в базовом интервале, использующемся при построении ВКФ;

К - количество отсчетов построения ВКФ (подразумевается, что выполняется условие B+K≤N, где N - количество отсчетов времени оцифрованного сигнала);

Z - номер отсчета ВКФ, соответствующий 0-й задержке между сигналами (подразумевается, что выполняются условия Z<К и Z+K≤N);

- взаимная корреляционная функция между сигналами, принятыми на 1-ю и 2-ю антенну, k принимает значения от 0 до К-1 и соответствует значениям ВКФ при задержках между сигналами τk:

τ0=-Z·Δt, τ1=(-Z+1)·Δt,…, τZ=0, τZ+1=Δt,…, τK-1=(K-Z-1)·Δt,

где Δt - дискрет построения ВКФ, равный временному шагу оцифровки сигнала;

- взаимная корреляционная функция между сигналами, принятыми 2-й и 3-й антеннами, k принимает значения от 0 до К-1;

, , - нормированные сигналы, принятые на 1-ю, 2-ю и 3-ю антенны в моменты времени tj.

Мгновенные ВКФ помещаются в магазин, позволяющий хранить ВКФ, построенные по М последним пакетам излучения и усредняются обыкновенным суммированием

,

,

где - значения ВКФ из магазина, вычисленной по пакету с номером i, между сигналами, принятыми на 1-ю и 2-ю антенну, k принимает значения от 0 до К-1 и соответствует значениям ВКФ при задержках между сигналами τk;

- значения усредненной по М последним пакетам ВКФ между сигналами, принятыми на 1-ю и 2-ю антенну, k принимает значения от 0 до K-1;

- значения ВКФ из магазина, вычисленной по пакету с номером i, между сигналами, принятыми на 2-ю и 3-ю антенну, k принимает значения от 0 до K-1;

- значения усредненной по М последним пакетам ВКФ между сигналами, принятыми на 2-ю и 3-ю антенну, k принимает значения от 0 до K-1.

Количество усреднений М устанавливается адаптивно к уровню ВКФ.

Для точного определения положения максимумов ВКФ производится аппроксимация ВКФ параболой методом наименьших квадратов с использованием треугольной весовой функции.

Уравнение параболы можно записать в виде

Fpk=a·k2+b·k+c.

Параметры а, b и с определяются из системы уравнений

где a, b, с - искомые коэффициенты аппроксимирующей функции;

2М+1 - количество точек, по которым производится аппроксимация;

N - номер дискрета, на который приходится максимум ВКФ;

FN+j - значения усредненной ВКФ при задержках между сигналами τN+j;

- треугольная весовая функция.

Использование треугольной весовой функции при аппроксимации обусловлено стремлением снизить влияние искажения формы боковых склонов на точность определения положения максимума ВКФ.

По известным параметрам параболы определяется положение ее вершины и, следовательно, максимума ВКФ (в относительных единицах)

,

где Nt - положение максимума ВКФ (в относительных единицах);

а, b - найденные коэффициенты аппроксимирующей функции.

Переход к транспортным задержкам в единицах времени осуществляется по формуле

,

где - транспортная задержка между сигналами;

Nt - положение максимума ВКФ (в относительных единицах);

Δt - дискрет построения ВКФ, равный временному шагу оцифровки сигнала.

Поскольку запись сигналов, принимаемых 1-й, 2-й и 3-й антеннами производится не в одни и те же моменты времени, то при определении транспортных задержек между сигналами возникает методическая ошибка. С учетом структуры пакета излучения она составляет 1/3 дискрета ВКФ. Поэтому перед вычислением составляющих вектора скорости производится поправка

,

где - найденная транспортная задержка между сигналами;

τ - транспортная задержка после коррекции;

Δt - дискрет построения ВКФ, равный временному шагу оцифровки сигнала.

Для уменьшения случайной составляющей погрешности перед вычислением проекций вектора скорости производится усреднение транспортных задержек между сигналами

,

τ - мгновенная транспортная задержка в текущем пакете;

- усредненная транспортная задержка, полученная в предыдущем пакете;

- усредненная транспортная задержка в текущем пакете,

b - количество усреднений транспортных задержек.

Взаимное расположение излучающей и приемных антенн, дает формулы для вычисления составляющих вектора скорости [4, 5]

,

,

где Vx, Vz - составляющие вектора скорости в проекции на оси связанной системы координат;

τ1 - транспортная задержка между сигналами, принятыми на 1-ю и 2-ю антенны;

τ2 - транспортная задержка между сигналами, принятыми на 2-ю и 3-ю антенны;

Х0 и Y0 - параметры антенной системы (фиг.7).

После измерения высоты полета и составляющих Vx и Vz цикл измерения вышеуказанных параметров повторяется периодически.

Использование изобретения позволяет расширить функциональные возможности устройства, повысить точность измерения составляющих вектора путевой скорости летательного аппарата.

Литература

1. Авторское свидетельство СССР №1596934, кл. G01S 13/58. Опубл. 28.04.1988 г.

2. Лобач В.Т., Уваров С.Н., Боков Г.И. Корреляционный измеритель скорости полета и угла сноса. Авторское свидетельство СССР №1503527, кл. G01S 13/60. Опубл. 28.07.1987 г.

3. Патент РФ №2188399 от 21.06.1999 г., кл. 7 G01F 23/284. Опубл. 21.06.1999 г.

4. Авторское свидетельство СССР №01689897 от 08.07.1991 г., кл. G01S 13/48 «Приемная антенная система корреляционного измерителя скорости и угла сноса летательного аппарата». Авт. Банников В.М., Дядьков Н.А. Опубл. 07.11.1991 г.

5. Боркус М.К., Черный А.Е. Корреляционные измерители путевой скорости и угла сноса летательных аппаратов. М. Сов. радио - 1973 г.

6. СВЧ ключи. Режим доступа: http://www.eltech.spb.ru/pdf/270.pdf.

1. Корреляционный измеритель высоты и составляющих вектора путевой скорости, содержащий синхронизатор, вычислительное устройство, аналого-цифровой преобразователь (АЦП), фазовращатель, импульсный модулятор, управляемый аттенюатор, видеоусилитель, буферное оперативное запоминающее устройство (БОЗУ), блок регулировки усиления, блок регулировки ослабления, источник тока, управляемый напряжением, контроллер обмена, циркулятор, малошумящий усилитель высокой частоты (УВЧ), фазовый детектор, направленный ответвитель, дискретно управляемый серхвысокочастотный (СВЧ) генератор, выход которого соединен со входом направленного ответвителя, второй выход которого соединен со вторым входом фазового детектора, первый вход которого соединен с выходом малошумящего УВЧ, первый выход направленного ответвителя соединен с первым входом импульсного модулятора, второй вход которого соединен со вторым выходом синхронизатора, выход импульсного модулятора соединен со вторым входом фазовращателя, первый вход которого соединен с первым выходом синхронизатора, а выход - с первым входом управляемого аттенюатора, выход которого соединен с первым входом циркулятора, второй вход управляемого аттенюатора соединен с выходом источника тока, управляемого напряжением, вход которого соединен с выходом блока регулировки ослабления, все первые входы которого соединены по шине данных со всеми первыми входами блока регулировки усиления, всеми шестыми входами/выходами БОЗУ, всеми первыми входами/выходами контроллера обмена, все третьи входы/выходы которого являются входами/выходами измерителя, а также всеми двенадцатыми входами вычислительного устройства, второй, третий, четвертый, пятый выходы которого соединены соответственно со вторыми входами блока регулировки ослабления, блока регулировки усиления, контроллера обмена, БОЗУ, а шестой, седьмой, тринадцатый выходы - соответственно с третьим, четвертым, седьмым входами БОЗУ, восьмой, девятый выходы - соответственно со вторым и третьим входами синхронизатора, десятый, одиннадцатый выходы - соответственно со вторым и первым входами дискретно управляемого СВЧ-генератора, первый вход - с четвертым выходом синхронизатора, первый вход которого соединен с выходом БОЗУ, первый вход которого соединен с третьим выходом синхронизатора и вторым входом АЦП, все выходы которого соединены со всеми пятыми входами БОЗУ, а первый вход АЦП - с выходом видеоусилителя, первый вход которого соединен с выходом фазового детектора, второй вход - с выходом блока регулировки усиления, второй вход - с выходом блока регулировки усиления, отличающийся тем, что, с целью расширения функциональных возможностей устройства, повышения точности измерения вектора путевой скорости летательного аппарата, в него введены антенный переключатель, блок управления антенным переключателем, антенная система приемопередающего модуля, при этом второй вход/выход циркулятора соединен со вторым входом/выходом антенной системы, первый и третий выходы которой соединены с пятым и шестым входами антенного переключателя, выход которого соединен со входом малошумящего УВЧ, выход циркулятора соединен с первым входом антенного переключателя, второй, третий, четвертый входы которого соединены с первым, вторым, третьим выходами блока управления антенным переключателем, первый, второй, третий входы которого соединены соответственно с первым, вторым и пятым выходами синхронизатора.

2. Корреляционный измеритель высоты и составляющих вектора путевой скорости по п.1, отличающийся тем, что одна из антенн антенной системы выполнена в виде приемопередающей.

3. Корреляционный измеритель высоты и составляющих вектора путевой скорости по п.1, отличающийся тем, что передающая антенна антенной системы приемопередающего модуля выполнена в виде отдельного блока, подключенного к выходу управляемого аттенюатора, а первый вход циркулятора подключен к согласованной нагрузке.



 

Похожие патенты:

Изобретение относится к навигации, в частности предназначено для измерения скорости морских подвижных объектов. .

Изобретение относится к радиолокации и может быть использовано в радионавигации, метеорологии, геодезии. .

Изобретение относится к области навигации наземных транспортных средств, в частности к стендовому оборудованию для проверки путевых систем. .

Изобретение относится к области навигации, а точнее к измерению параметров волнения с помощью неконтактных измерителей. .

Изобретение относится к радионавигации и может использоваться для управления летательными аппаратами при вождении их по заданным траекториям, преимущественно для управления летательными аппаратами сельскохозяйственной авиации при проведении авиационно-химических работ.

Изобретение относится к навигации, в частности для измерения скорости подвижных объектов. .

Импульсно-доплеровская радиовысотомерная система (РВС) предназначена для управления полетом летательных аппаратов. Технический результат - повышение скрытности излучения и максимальной измеряемой высоты (ИВ) без увеличения излучаемой мощности. Сущность изобретения состоит в том, что в направлении подстилающей поверхности излучают пачку зондирующих радиоимпульсов, причем число излучаемых импульсов (ИИ) и период их повторения программно выбираются так, чтобы обеспечить максимальное количество (ИИ) за время априорной задержки, задаваемой контроллером обмена (КО), и одновременно исключить неоднозначность ИВ и попадание излученного сигнала в зону неопределенности, в которой производится поиск отраженного сигнала (ОС), принимают пачку отраженных от подстилающей поверхности радиоимпульсов, преобразуют видеоимпульсы в последовательность цифровых двоичных сигналов (ЦЦС) с частотой дискретизации, запоминают эту последовательность синхронно с началом пачки излученных радиоимпульсов и по окончании излучения определяют адрес ячейки памяти (ЯП), соответствующий априорной задержке ОС относительно начала пачки излучения, производят узкополосную доплеровскую фильтрацию ЦДС, считываемых последовательно из ЯП в диапазоне поиска адресов памяти, накапливают суммарный результат фильтрации по всем ЦДС принимаемой пачки при каждой величине оцениваемой задержки, принимают решение о наличии сигнала по превышению наперед заданного порога накопления, определяют задержку ОС относительно начала пачки излученных радиоимпульсов, выдают информацию об ИВ на выход РВС через КО. 5 ил.

Импульсно-доплеровская радиовысотомерная система предназначена для использования в бортовых навигационных системах летательных аппаратов. Достигаемый технический результат - расширение диапазона измерения и повышение точности измерения составляющих вектора путевой скорости летательного аппарата. Указанный результат достигается за счет того, что система излучает в направлении подстилающей поверхности и принимает короткие пакеты радиоимпульсов, отраженных от подстилающей поверхности, которые одновременно принимаются тремя идентичными приемными каналами, преобразуются в биполярные видеоимпульсы, флюктуирующие по амплитуде с частотой, определяемой доплеровским сдвигом частоты сигналов, оцифровываются, запоминаются в оперативном запоминающем устройстве, обрабатываются вычислительным устройством, а составляющие вектора путевой скорости определяются по максимуму взаимно корреляционной функции пространственно- разнесенных между собой отраженных от подстилающей поверхности сигналов, принимаемымх разнесенными антеннами, расположенными на летательном аппарате, с учетом геометрии антенной системы.1 з.п.ф-лы, 8 ил.

Изобретение относится к области радиолокации и может быть использовано при разработке антенных устройств для бортовых корреляционных измерителей высоты и составляющих вектора путевой скорости летательного аппарата. Достигаемый технический результат - снижение погрешности и увеличение точности измерений. Указанный результат достигается за счет того, что антенное устройство радиовысотомерной системы с повышенной точностью измерения поперечной составляющей вектора скорости отличается от известных наличием дополнительных двух приемных антенн и передающей антенны с их взаимосвязями в составе антенного устройства, что позволяет при полете над поверхностью компенсировать медленно меняющиеся погрешности поперечной составляющей вектора скорости, вызванные взаимным влиянием антенн, снизить погрешность поперечной составляющей вектора скорости путем увеличения поперечного разноса антенн. 3 ил.

Изобретение относится к области радиолокации и может быть использовано в бортовых навигационных системах. Достигаемый технический результат - повышение устойчивости и точности измерения составляющих вектора путевой скорости летательного аппарата над гладкой водной поверхностью. Указанный результат достигается за счет того, что радиовысотомерная система (РВС) с адаптацией к гладкой водной поверхности содержит быстродействующий широкополосный усилитель с определенными взаимосвязями и логикой применения в составе РВС, излучающей в направлении подстилающей поверхности и принимающей отраженные от подстилающей поверхности короткие пакеты радиоимпульсов, которые в приемнике преобразуются в биполярные видеоимпульсы, флюктуирующие по амплитуде с частотой, определяемой доплеровским сдвигом частоты сигналов, а составляющие вектора путевой скорости определяются по максимуму взаимно-корреляционной функции пространственно разнесенных между собой отраженных от подстилающей поверхности сигналов, принимаемых разнесенными антеннами, расположенными на летательном аппарате с учетом геометрии антенной системы. 13 ил.
Наверх