Зеркально-линзовый объектив

Объектив может быть использован для визуального наблюдения, фото и видео регистрации. Объектив содержит расположенные по ходу лучей четыре компонента: главное зеркало, вторичное зеркало с внутренним отражением, расположенный вблизи плоскости промежуточного изображения третий компонент и оборачивающую систему, состоящую из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе. Все преломляющие и отражающие поверхности выполнены сферическими. Третий компонент выполнен в виде двух близко расположенных положительной и отрицательной линз. Показатели преломления и коэффициенты основной средней дисперсии материалов линз, расположенных по ходу лучей, могут удовлетворять соотношению: 1,61<n1<1,67; 1,61<n2<1,67; 1,78<n3<1,91; 1,57<n4<1,65; 1,70<n5<1,81; 54<ν1<61; 55<ν2<64; 22<ν3<41; 33<ν4<55; 40<ν5<54. Положительная линза третьего компонента может быть выполнена двояковыпуклой или в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения, а отрицательная линза - в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения. Технический результат - расширение рабочего спектрального диапазона, повышение относительного отверстия и увеличение углового поля при сохранении высокого качества изображения. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области оптического приборостроения и может быть использовано в качестве объектива астрономического телескопа или зрительной трубы, предназначенных для визуального наблюдения, фото и видео регистрации наблюдаемых объектов.

Известна зеркально-линзовая система Грегори [Ceravolo, P, "All Spherical Catadoptric Gregorian Design For Meter Class Telescopes", The Society for Astronomical Sciences 22nd Annual Symposium on Telescope Science, 2003, c.39-44], состоящая из двух вогнутых зеркал и пары линзовых компонентов, расположенных по обе стороны от плоскости промежуточного изображения.

Недостатками этой системы являются малые угол поля зрения и величина относительного отверстия, которые ограничены остаточными аберрациями.

Наиболее близким аналогом к заявляемому устройству по технической сущности является зеркально-линзовый объектив [патент США №3529888, 1970, Catadioptric optical system for telescopes and the like, Fig.3, Table 3], состоящий из оптически связанных расположенных по ходу лучей четырех компонентов: главного зеркала, вторичного зеркала с внутренним отражением (линза Манжена), расположенного вблизи плоскости промежуточного изображения третьего компонента, оборачивающей системы. Третий компонент выполнен в виде одиночной плоско-выпуклой линзы. Оборачивающий компонент выполнен трехлинзовым и состоит из двух одинаковых плоско-выпуклых линз, обращенных плоскими сторонами навстречу друг другу, между которыми расположена третья двояковогнутая линза. Система обеспечивает прямое изображение, преломляющие и отражающие поверхности сферические, линзы выполнены из двух марок оптических стекол с одинаковым коэффициентом основной средней дисперсии.

Недостатками наиболее близкого аналога являются малые величины относительного отверстия, равного 1/8, и углового поля, а также ограниченный рабочий спектральный диапазон от 0,44 до 0,65 мкм, недостаточный для нужд фото и видео регистрации.

Конструктивное исполнение компонентов наиболее близкого аналога, использованние двух сортов стекол о одинаковым коэффициентом основной средней дисперсии не позволяют уменьшить число линз, повысить относительное отверстие при сохранении высокого качества изображения. Расширение спектрального диапазона у этой системы затруднено из-за недостаточных коррекционных возможностей третьего компонента. Итак, устранение указанных недостатков в наиболее близком аналоге невозможно без существенного изменения устройства оптической системы.

Задачей, на решение которой направлено заявляемое устройство, является создание конструкции зеркально-линзового объектива с высокими техническими характеристиками, который может использоваться в качестве объектива астрономического телескопа или зрительной трубы, предназначенных для визуального наблюдения, фото и видео регистрации наблюдаемых объектов.

Технический результат, достигаемый при решении поставленной задачи, заключается в расширении рабочего спектрального диапазона, повышении относительного отверстия и увеличении углового поля оптической системы при сохранении высокого качества изображения.

Поставленная задача решается, а технический результат достигается тем, что зеркально-линзовый объектив состоит из оптически связанных расположенных по ходу лучей компонентов: главного зеркала, вторичного зеркала с внутренним отражением, расположенного вблизи плоскости промежуточного изображения третьего компонента, оборачивающей системы, обеспечивающей прямое изображение, причем, все преломляющие и отражающие поверхности выполнены сферическими, но в отличие от наиболее близкого аналога, третий компонент системы выполнен в виде двух близко расположенных положительной и отрицательной линз, оборачивающая система состоит из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе, при этом показатели преломления и коэффициенты основной средней дисперсии материалов линз, расположенных по ходу лучей, могут удовлетворять удовлетворять соотношению (1):

1,61<n1<1,67; 1,61<n2<1,67; 1,78<n3<1,91; 1,57<n4<1,65; 1,70<n5<1,81;

54<ν1<61; 55<ν2<64; 22<ν3<41; 33<ν4<55; 40<ν5<54.

В первом исполнении положительная и отрицательная линзы третьего компонента системы выполнены в виде менисков, обращенных вогнутыми сторонами к плоскости промежуточного изображения.

Во втором исполнении положительная линза третьего компонента системы выполнена двояковыпуклой, а отрицательная линза того же компонента выполнена в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения.

Выполнение третьего компонента системы в виде двух близко расположенных положительной и отрицательной линз позволяет осуществить лучшую коррекцию аберраций астигматизма и кривизны изображения и увеличить угловое поле системы.

Выполнение оборачивающей системы из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе и использование материалов линз с показателями преломления и коэффициентами основной средней дисперсии, удовлетворяющих соотношению (1), позволяет повысить область коррекции аберраций широких наклонных пучков лучей и сферохроматизма, увеличить относительное отверстие и рабочий спектральный диапазон системы.

Совокупность предлагаемых признаков позволяет решить поставленную задачу, исключение любого из них ведет к невозможности реализации зеркально-линзового объектива с заявленным техническим результатом.

Заявителем не выявлены технические решения, совпадающие с отличительными признаками предполагаемого изобретения. Зеркально-линзовый объектив с заявляемой совокупностью существенных признаков в известных источниках информации также не обнаружен.

Предложенное изобретение иллюстрируется следующими графическими материалами:

фиг.1 - оптическая схема объектива;

фиг.2 - график частотно-контрастной характеристики;

фиг.3 - точечные диаграммы.

Зеркально-линзовый объектив состоит из четырех компонентов: главного зеркала 1, вторичного зеркала с внутренним отражением 2, расположенной вблизи плоскости промежуточного изображения 5 третьего компонента 3, оборачивающей системы 4 (фиг.1). Третий компонент 3 системы выполнен в виде двух близко расположенных линз, положительной 6 и отрицательной 7. Оборачивающая система 4 состоит из двух линз, одна из которых - отрицательный мениск 9, обращенный вогнутой стороной ко второй двояковыпуклой линзе 8. При этом показатели преломления и коэффициенты основной средней дисперсии материалов линз удовлетворяют соотношению:

1,61<n1<1,67; 1,61<n2<1,67; 1,78<n3<1,91; 1,57<n4<1,65; 1,70<n5<1,81;

54<ν1<61; 55<ν2<64; 22<ν3<41; 33<ν4<55; 40<ν5<54.

Устройство работает следующим образом. Лучи света, отражаясь от главного зеркала 1, отражаются от вторичного зеркала с внутренним отражением 2 и собираются в плоскости промежуточного изображения 5. Далее лучи проходят через третий компонент 3, состоящий из линз 6 и 7, и фокусируются линзами 8 и 9 четвертого компонента 4 в фокальной плоскости 10.

В качестве конкретного примера рассчитан объектив со следующими характеристиками:

фокусное расстояние - 1500 мм;

относительное отверстие - 1:6;

рабочий спектральный диапазон - 0,4÷0,9 мкм,

основная длина волны - 0,546 мкм,

угловое поле в пространстве предметов - 30';

линейное поле в пространстве изображений - 13,1 мм.

По сравнению с наиболее близким аналогом, в примере конкретного исполнения увеличено относительное отверстие и угловое поле системы, спектральный диапазон шире более чем в два раза.

Для подтверждения высокого качества изображения, даваемого предлагаемой оптической системой зеркально-линзового объектива, далее приводятся характеристики, наиболее часто используемые для оценки качества изображения в оптических системах аналогичного назначения.

На фиг.2 показаны графики частотно-контрастной характеристики (ЧКХ) предлагаемого объектива. По оси абсцисс отложена пространственная частота в мм-1 отнесенная к плоскости изображения объектива, а по оси ординат - коэффициент передачи контраста в относительных единицах. Наложение кривых ЧКХ для различных угловых полей и их близость к дифракционной ЧКХ свидетельствует о том, что объектив обеспечивает дифракционно-ограниченное качество изображения, что позволяет использовать его, например, в астрономических телескопах, к которым, как известно, предъявляются самые жесткие требования по качеству изображения. Так, при коэффициенте передачи контраста 0,1 пространственная частота в плоскости изображений для всех точек изображения в пределах поля зрения составляет не менее 188 мм-1. При указанной величине фокусного расстояния в конкретном примере исполнения угловая величина в пространстве предметов, соответствующая пространственной частоте 188 мм-1 составляет 0,7 угловых секунды.

На фиг.3 представлены точечные диаграммы рассчитанного объектива для точки на оси, точки на краю поля и двух промежуточных точек поля. Окружность на диаграммах - кружок Эйри для основной длины волны, диаметр которого равен 8 мкм. Как видно из точечных диаграмм, поперечные аберрации рассчитанного объектива на оси составляют 5 мкм, а на краю поля достигают 17 мкм. При этом диаметр среднеквадратичного пятна рассеяния, для любой точки линейного поля в плоскости изображений, не превышает 4 мкм. Следовательно, рассчитанный объектив соответствует требованиям астрофотографии и позволяет продуктивно работать с любыми ПЗС-матрицами, так как размеры эффективного светочувствительного пятна у них в настоящее время составляют 4-6 мкм. В предлагаемом зеркально-линзовом объективе в указанном спектральном диапазоне достигается высокая степень коррекции продольной хроматической аберрации, величина которой равна 0,094 мм, что составляет менее 1/16000 от величины фокусного расстояния объектива.

Анализ качества изображения в примере конкретного исполнения подтверждает высокое качество изображения, даваемого предлагаемым зеркально-линзовом объективом по всему полю зрения при расширенном спектральном диапазоне, повышенных относительном отверстии и угловом поле.

Таким образом, реализация технических преимуществ предлагаемого устройства, обладающего совокупностью указанных отличительных признаков, позволяет создать конструкцию зеркально-линзового объектива с высокими техническими характеристиками, который может быть использован в качестве объектива астрономического телескопа или зрительной трубы, предназначенных для визуального наблюдения, фото и видео регистрации наблюдаемых объектов.

1. Зеркально-линзовый объектив, состоящий из оптически связанных расположенных по ходу лучей четырех компонентов: главного зеркала, вторичного зеркала с внутренним отражением, расположенного вблизи плоскости промежуточного изображения третьего компонента и оборачивающей системы, обеспечивающей прямое изображение, причем все преломляющие и отражающие поверхности выполнены сферическими, отличающийся тем, что третий компонент системы выполнен в виде двух близко расположенных положительной и отрицательной линз, оборачивающая система состоит из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе.

2. Зеркально-линзовый объектив по п.1, отличающийся тем, что показатели преломления и коэффициенты основной средней дисперсии материалов линз, расположенных по ходу лучей, удовлетворяют соотношению:
1,61<n1<1,67; 1,61<n2<1,67; 1,78<n3<1,91; 1,57<n4<1,65; 1,70<n5<1,81; 54<ν1<61; 55<ν2<64; 22<ν3<41; 33<ν4<55; 40<ν5<54.

3. Зеркально-линзовый объектив по п.1, отличающийся тем, что положительная и отрицательная линзы третьего компонента системы выполнены в виде менисков, обращенных вогнутыми сторонами к плоскости промежуточного изображения.

4. Зеркально-линзовый объектив по п.1, отличающийся тем, что положительная линза третьего компонента системы выполнена двояковыпуклой, а отрицательная линза того же компонента выполнена в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению, в частности, может быть использовано в космических телескопах. .

Изобретение относится к области оптической техники и предназначено для визуальных наблюдений и астрофотографических работ с ПЗС-матрицами. .

Изобретение относится к области оптического приборостроения и позволяет улучшить технические характеристики приемной оптической системы панорамного оптико-электронного прибора.

Изобретение относится к области оптического приборостроения, а именно к активно-импульсным (АИ) оптико-электронным приборам (ОЭП) с регистрацией изображений на базе импульсных ЭОП или телевизионных камер, и может быть использовано в них в качестве осветителя, использующего полупроводниковый лазер с большим углом расходимости излучения, обеспечивающего импульсную подсветку объектов, в том числе на выносных наблюдательных пунктах.

Изобретение относится к области оптического приборостроения и может быть использовано при изготовлении новых типов зеркально-линзовых телескопов, изображение в которых имеет вид квадрата или прямоугольника.

Изобретение относится к области оптического приборостроения и используется в обзорно-панорамных оптико-электронных приборах и системах, преобразующих трехмерное панорамное пространство в угловом поле, близком к полусфере, в плоское изображение на приемнике излучения и работающих как в видимом, так и в ИК-диапазоне спектра.

Способ может быть использован для наблюдения Земли из космоса с использованием матричной телевизионной системы для измерения ориентации визирной оси телекамеры по изображению горизонта Земли с помощью построения местной вертикали. Способ включает одновременное формирование двух полей зрения с коаксиально расположенными линзовым объективом формирования первого поля зрения и двухзеркальной системой формирования второго поля зрения. Перед узкоугольным линзовым объективом 30 по его оси зрения размещают двухзеркальную систему 10 с двумя встречно направленными выпуклыми зеркалами 11 и 12 с отверстиями и светофильтром 20 выравнивания световых потоков за ними. Два выпуклых зеркала 11 и 12 совместно с узкоугольным линзовым объективом 30 формируют периферийное, второе поле зрения, представляющее собой в фокальной плоскости кольцевую зону 13, вплотную примыкающую к изображению узкого поля зрения 14, при этом оба изображения узкого поля и кольцевой зоны проецируют на одну фотоприемную матрицу 40. Технический результат - одновременное наблюдение в одной фокальной плоскости одной фотоприемной матрицей изображений кольцевой зоны и узкого поля зрения. 5 ил.

Предлагаемое изобретение относится к оптическому приборостроению, а именно к объективам коллиматора, работающим в среднем ИК-диапазоне длин волн (для спектрального диапазона от 3 до 5 мкм), и может быть использовано в тепловизионных коллиматорах или в приемных тепловизионных объективах (в обратном ходе лучей) в различных приборах. Объектив коллиматора состоит из трех компонентов, причем первый компонент по ходу лучей выполнен в виде зеркала, обращенного выпуклостью к плоскости предметов, второй компонент выполнен в виде одиночного отрицательного мениска с отверстием в центре, обращенного выпуклостью к плоскости предметов, причем его выпуклая поверхность имеет зеркальное внутреннее покрытие и расположен он между первым компонентом и плоскостью предметов, и третьего мениска, обращенного выпуклостью к изображению и расположенного между первым компонентом и изображением, второй и третий компоненты выполнены из селенида цинка, а в первом компоненте зеркальное покрытие нанесено на выпуклую поверхность зеркала. Кроме того, радиус сферической оптической отражающей поверхности зеркала первого компонента по модулю равен радиусу выпуклой поверхности третьего компонента. Технический результат - повышение относительного отверстия, увеличение фокусного расстояния при упрощенной конструкции, повышенной технологичности и высоком качестве изображения. 1 з.п.ф-лы, 1 ил., 2 табл.

Зеркально-линзовый объектив состоит по ходу луча из плосковыпуклой линзы, обращенной выпуклостью к плоскости предметов, на центральную часть плоской поверхности которой нанесено зеркальное покрытие, зеркала Манжена, обращенного вогнутостью к плоскости предметов, в центре которого выполнено отверстие, и положительного склеенного мениска, обращенного выпуклостью к плоскости предметов. Плосковыпуклая линза и зеркало Манжена выполнены из одного материала, средняя дисперсия которого находится в интервале 63≥υD≥66. Расстояние от первой линзы до склеенного мениска находится в пределах от 0,35×f′ до 0,45×f′, где: υD - средняя дисперсия (число Аббе) для линии D спектра, а f′ - фокусное расстояние объектива. Технический результат - повышение качества изображения путем снижения хроматизма положения, исправления кривизны изображения и уменьшение габаритов прибора, в котором используется данный объектив. 4 ил., 1 табл.

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и линзу между ними, установленную на двойном фокусном расстоянии по ходу пучка от измерительного объема. Сборки обеспечивают фокусировку отраженного пучка в той же точке. Одна сборка, содержащая линзу и плоское зеркало или только вогнутое зеркало, направляет лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 и более в зависимости от числа установленных сборок оптических элементов. Технический результат - повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка за счет многократного прохождения лазерного пучка через измерительный объем. 2 н.п. ф-лы, 2 ил.

Оптический элемент (2) для коллимирования света из источника (3) света выполнен из единого куска материала и содержит: впускную сторону (5), выполненную с возможностью приема света, выпускную сторону (6), выполненную с возможностью обеспечения излучения коллимированного света, и тело элемента, продолжающееся от впускной стороны (5) до выпускной стороны (6). Тело элемента имеет поперечное сечение, перпендикулярное оптической оси (z), образованное посредством осей x и y, перпендикулярных друг другу. Выпускная сторона (6) имеет овальную форму в поперечном сечении. Оптический элемент (2) имеет радиус y кривизны вдоль оси y больше, чем радиус x кривизны вдоль оси x, благодаря чему распределение коллимированного света, излучаемого из выпускной стороны (6), имеет поперечное сечение овальной формы (CE), перпендикулярное оптической оси (z). Коэффициент преломления тела элемента выше, чем коэффициент преломления окружающей его среды, и радиусы x и y кривизны выбираются таким образом, чтобы соответствовать условию полного внутреннего отражения. Технический результат - обеспечение асимметричного распределения света с увеличенной разностью в ширине пучка в двух перпендикулярных направлениях визирования. 2 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к формирующей изображение оптической системе, датчику для проверки ценных документов с такой оптической системой и к способу отображения точки предмета. Оптическая система имеет плоский анизотропный ретроотражающий участок, который зеркально отражает компоненты излучения в первой плоскости падения, но ретроотражает компоненты излучения во второй плоскости падения. Первый отображающий участок формирует на ретроотражающем участке растянутое в виде линии во второй плоскости падения промежуточное изображение точки предмета. Второй отображающий участок отображает растянутое в виде линии промежуточное изображение в точку изображения. Технический результат - компактность конструкции. 3 н. и 13 з.п. ф-лы, 7 ил.

Объектив может использоваться для работы в видимом и ближнем ИК-диапазоне длин волн. Объектив коллиматора содержит первичное зеркало, на первую по ходу лучей поверхность которого нанесено зеркальное покрытие, вторичное зеркало с зеркальным покрытием на кольцевой периферийной части, причем отражающие поверхности зеркал обращены друг к другу, двухлинзовый оптический элемент, установленный за первичным зеркалом со стороны пространства изображений и состоящий по ходу лучей из одиночной отрицательной линзы, обращенной вогнутой поверхностью к пространству изображений, и одиночной двояковыпуклой линзы. Первичное и вторичное зеркала выполнены в виде сплошных плоско-параллельных пластин, на первичном зеркале зеркальное покрытие нанесено в его центральной зоне, периферийная часть - прозрачная. На первой со стороны предмета поверхности в центральной зоне вторичного зеркала расположен тест-объект, выполненный в виде прозрачной марки или перекрестия на непрозрачном фоне. Технический результат - увеличение фокусного расстояния, диаметра выходного зрачка при упрощенной конструкции и повышенной технологичности при сохранении высокого качества изображения. 1 ил., 2 табл.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, линзовый корректор аберраций, выполненный в виде трех одиночных осесимметричных линз из разных оптических материалов: двояковыпуклой, двояковогнутой и положительного мениска, второе зеркало в виде внеосевого фрагмента выпуклого зеркала, обращенного выпуклостью к линзовому корректору аберраций, третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, и апертурную диафрагму, совпадающую с оправой первой поверхности второй линзы корректора аберраций. Центры кривизны всех оптических поверхностей расположены на одной общей оси. В меридиональном сечении объектива первое зеркало расположено ниже оптической оси, а второе и третье - выше оптической оси. Оптические силы, показатели преломления и коэффициент дисперсии удовлетворяют соотношениям, приведенным в формуле изобретения. Технический результат - повышение качества изображения зеркально-линзового объектива с относительным отверстием не менее 1:6 без центрального экранирования в пределах углового поля 13,8° в широком спектральном диапазоне (450÷1800) нм и повышение его технологичности. 1 з.п. ф-лы, 3 ил., 1 табл.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого гиперболического зеркала, линзовый компенсатор аберраций видимого канала из плосковыпуклой и двояковыпуклой линз и отрицательного мениска, второе зеркало в виде внеосевого фрагмента сферического выпуклого зеркала и третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала. На первую поверхность первой линзы линзового компенсатора аберраций видимого канала нанесено спектроделительное покрытие, пропускающее излучение в диапазоне 450-1000 нм и отражающее в диапазоне 1500-1700 нм. В ходе отраженных лучей введен линзовый компенсатор аберраций инфракрасного канала из трех линз в виде внеосевых фрагментов двояковыпуклой, двояковогнутой и двояковыпуклой линз, в меридиональном сечении расположенных выше оптической оси. Центры кривизны всех оптических поверхностей расположены на одной общей оси. В меридиональном сечении первое зеркало расположено ниже оптической оси, а второе и третье зеркала - выше оптической оси. Выполняются соотношения, указанные в формуле изобретения. Технический результат - повышение качества изображения в пределах углового поля 10° в широком спектральном диапазоне 450-1700 нм объектива без центрального экранирования и повышение технологичности. 2 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к оптическому приборостроению и касается зеркального автоколлимационного спектрометра. Спектрометр состоит из входной щели, объектива и плоской отражательной дифракционной решетки. Входная щель расположена в фокальной плоскости объектива и смещена относительно его оптической оси. Объектив состоит из трех зеркал. Первое зеркало выполнено внеосевым в виде эллипсоида с положительной оптической силой, в 1,5-2,5 раза большей, чем у третьего зеркала. Второе зеркало выполнено сферическим с отрицательной оптической силой, в 2,5-3,5 раза большей, чем у третьего зеркала. Третье зеркало выполнено в виде внеосевого гиперболического фрагмента с положительной оптической силой, близкой к силе всего объектива. Расстояния между первым, вторым и третьим зеркалами в 1,5…2 раза меньше фокусного расстояния всего объектива. Оптические оси зеркал совмещены с оптической осью объектива. Перед плоскостью изображения расположена плоскопараллельная пластина с показателем преломления 1,4-1,6 и толщиной 0,005-0,02 от фокусного расстояния объектива. Дифракционная решетка выполнена с углом блеска, рассчитанным для спектра первого порядка. Технический результат заключается в повышении качества и однородности изображения. 3 ил., 1 табл.
Наверх