Устройство для интенсивного охлаждения силовых полупроводниковых приборов

Изобретение относится к электротехнике, а именно к полупроводниковой преобразовательной технике, и может быть использовано в статических преобразователях электрической энергии, в агрегатах на основе силовых полупроводниковых приборов. Сущность изобретения: в устройстве для интенсивного охлаждения силовых полупроводниковых приборов, включающем конденсатор, выполненный из отрезка прессованного профиля с внешним оребрением и внутренним каналом конденсации, соединенный с испарителем, заполненным полностью жидким промежуточным теплоносителем, испаритель пароконденсаторопроводом жестко соединен с конденсатором, который частично заполнен антифризом 65, в испарителе расположен интенсификатор кипения, выполненный в виде вертикальных ребер, которые выполнены из высокотеплопроводного металломатричного композиционного материала AlSiC. Размеры интенсификатора кипения в виде вертикальных ребер определены диаметром основания силового полупроводникового прибора. В качестве жидкого промежуточного теплоносителя используется перфтортриэтиламин. Изобретение позволяет повысить эффективность охлаждающего устройства, улучшить технологичность его изготовления, снизить материалоемкость, дифференцировать конструкцию устройства в зависимости от уровней мощностей тепловых потерь охлаждаемых силовых полупроводниковых приборов (СПИ). 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике, а именно, к полупроводниковой преобразовательной технике и может быть использовано в статических преобразователях электрической энергии, в агрегатах на основе силовых полупроводниковых приборов.

Известно охлаждающее устройство для силовых полупроводниковых приборов (СПП) на основе цельнометаллических алюминиевых прессованных профилей (Охладители воздушных систем охлаждения для полупроводниковых приборов. - М. Информэлектро, 1996, с.31).

Однако такие конструкции обладают низкой эффективность теплоотвода и большей материалоемкостью.

Наиболее близким техническим решением к заявленному является устройство для охлаждения силовых полупроводниковых приборов таблеточного типа на основе двухфазного термосифона (ДТС), состоящего из отрезка прессованного профиля из алюминиевого сплава с внешним оребрением и внутренними каналами, являющегося конденсатором, и испарителя из алюминиевого сплава, жестко соединенного с конденсатором. Испаритель частично заполнен жидким промежуточным теплоносителем (Исакеев А.И. и др. Эффективные способы охлаждения силовых полупроводниковых приборов. Л., Энергоиздат, 1982, с.105-111).

Недостатком данной конструкции является низкая технологичность изготовления из-за большого количества сварных соединений между конденсатором и испарителем, высокая материалоемкость.

Технический результат заключается в повышении эффективности охлаждающего устройства, улучшении технологичности его изготовления, снижении материалоемкости.

Сущность изобретения достигается тем, что в устройстве, включающем конденсатор, выполненный из отрезка прессованного профиля с внешним оребрением и внутренним каналом конденсации, соединенный с испарителем, заполненным полностью жидким промежуточным теплоносителем. Испаритель пароконденсаторопроводом жестко соединен с конденсатором, который частично заполнен антифризом 65. В испарителе расположен интенсификатор кипения, выполненный в виде вертикальных ребер. Вертикальные ребра интенсификатора кипения выполнены из высокотеплопроводного металломатричного композиционного материала AlSiC. Размеры интенсификатора кипения в виде вертикальных ребер определены диаметром основания силового полупроводникового прибора:

Dосн.спп=nb+(n+1)a=h+2,

где Dосн.спп - диаметр основания силового полупроводникового прибора

n - количество вертикальных ребер интенсификатора кипения, шт.,

a, b, h - геометрические размеры ребер и межреберных пространств, мм.

В качестве жидкого промежуточного теплоносителя используют перфтортриэтиламин. Объем перфтортриэтиламина, которым заполнено внутреннее пространство испарителя, равно:

Vпт=(h+2a)[nb+(n+1)a]2c-h2cn,

где Vпт - объем перфтортриэтиламина, мм3;

n - количество вертикальных ребер, шт.;

h, a, b, c - геометрические размеры ребер и межреберных пространств, мм.

Объем антифриза 65, которым частично заполнено внутреннее пространство конденсатора, равно:

,

где Vаф - объем антифриза, мм3;

Vпт - объем перфтортриэтиламина, мм3;

aконд. - коэффициент теплоотдачи при конденсации паров промежуточного теплоносителя, Вт/м2 °C;

r - теплота фазового перехода, Дж/кг;

Sвн.оребр. - площадь поверхности внешнего оребрения, мм2.

Соотношение плотностей перфтортриэтиламина и антифриза 65 равно:

ρпт=1,8ρаф,

где ρпт - плотность перфтортриэтиламина, кг/м3;

ρаф - плотность антифриза 65, кг/м3.

А соотношение температур насыщения перфтортриэтиламина и антифриза 65 равно:

Ts пт=0,6Ts аф,

где Ts пт - температура насыщения перфтортриэтиламина, °C;

Ts аф - температура насыщения антифриза 65, °C.

Устройство для интенсивного охлаждения силовых полупроводниковых приборов (фиг.1) включает испаритель 1, конденсатор 2, имеющий внешнее оребрение 3 и внутренний канал конденсации 4. Испаритель 1 соединен с конденсатором 2 жестко парокондесаторопроводом 5. Внутри испарителя 1 расположен интенсификатор кипения виде вертикальных ребер 6, выполненных из высокотеплопроводного металломатричного композиционного материала AlSiC. Испаритель 1 наполнен жидким промежуточным теплоносителем, например перфтортриэтиламином 7. Внутренний канал конденсации 4 конденсатора 2 частично заполнен антифризом 65 8. Снаружи к испарителю прижаты один или два силовых полупроводниковых прибора СПИ 9. Размеры интенсификатора кипения в виде вертикальных ребер 6 определены диаметром основания силового полупроводникового прибора СПП 9:

Dосн.спп=nb+(n+1)a=h+2,

где Dосн.спп - диаметр основания силового полупроводникового прибора,

n - количество вертикальных ребер интенсификатора кипения, шт.,

a, b, h - геометрические размеры ребер и межреберных пространств, мм.

Внутреннее пространство испарителя 1 заполнено промежуточным теплоносителем, например перфтортриэтиламином 7, объем которого определяется следующим образом:

Vпт=(h+2a)[nb+(n+1)a]2c-h2cn,

где Vпт - объем перфтортриэтиламина, мм3;

n - количество вертикальных ребер, шт;

h, a, b, c, - геометрические размеры ребер и межреберных пространств, мм.

Объем антифриза 65 8, которым частично заполнено внутреннее пространство внутреннего канала конденсации 4 конденсатора 2 равно:

,

где Vаф - объем антифриза, мм3;

Vпт - объем перфтортриэтиламина, мм3;

aконд. - коэффициент теплоотдачи при конденсации паров промежуточного теплоносителя, Вт/м2 °C;

r - теплота фазового перехода, Дж/ кг;

Sвн.оребр. - площадь поверхности внешнего оребрения, мм2.

Соотношение плотностей перфтортриэтиламина 7 и антифриза 65 8 равно:

ρпт=1,8ρаф,

где ρпт - плотность перфтортриэтиламина, кг/м3;

ρаф - плотность антифриза 65, кг/м3.

Соотношение температур насыщения перфтортриэтиламина и антифриза 65 равно:

Ts пт=0,6Ts аф,

где Тs пт - температура насыщения перфтортриэтиламин, °C;

Ts аф - температура насыщения антифриза 65, °C.

Устройство работает следующим образом. При работе силового полупроводникового прибора СПП 9, одного или двух, мощность тепловых потерь передается испарителю 1, далее интенсификатору кипения в виде вертикальных ребер 6. Перфтортриэтиламин 7 закипает на поверхностях интенсификатора кипения в виде вертикальных ребер 6. Пары перфтортриэтиламина 7 через пароконденсаторопровод 5, заполненного антифризом 65 8 попадают в конденсатор 2, внутренний канал конденсации 4 которого частично заполнен антифризом 65 8. Так как соотношение плотностей и температур насыщения перфтортриэтиламина 7 и антифриза 65 8 равно:

,

,

где ρпт - плотность перфтортриэтиламина, кг/м3;

ρаф - плотность антифриза 65, кг/м3;

Ts пт - температура насыщения перфтортриэтиламин, °C;

Ts аф - температура насыщения антифриза 65, °C,

то первое соотношение (1) показывает, что более тяжелый перфтортриэтиламин 7 полностью заполняет внутренний объем испарителя 1, а более легкий антифриз 65 8 располагается выше испарителя 1 и занимает частично внутренний канал конденсации 4 конденсатора 2. Второе соотношение (2) показывает, что более легкокипящий перфтортриэтиламин 7 может автоконденсироваться в объеме антифриза 65 8. В данной конструкции конденсация паров перфтортриэтиламина 7 происходит не только или нисколько на твердой внутренней поверхности конденсатора 2, а в значительной степени в объеме антифриза 65 8, которым частично заполнен конденсатор 2, то есть происходит наряду с конденсацией паров на твердой внутренней поверхности конденсатора 2 автоконденсация паров перфтортриэтиламина 7 в объеме антифриза 65 8, что значительно повышает эффективность процесса конденсации паров перфтортриэтиламина 7. Жидкий конденсат интенсивно стекает в объем перфтортриэтиламина 7, находящегося внутри испарителя 1, турбулизирует префтортриэтиламин 7, тем самым частично увеличивает эффективность теплообмена при кипении, что улучшает технологичность изготовления устройства и его металлоемкость, что в конечном итоге увеличивает эффективность работы устройства для интенсивного охлаждения силовых полупроводниковых приборов.

В ОАО «Электровыпрямитель» были проведены тепловые испытания макетов предлагаемого устройства, результаты которых превосходят на 40-50% результаты прототипа.

1. Устройство для интенсивного охлаждения силовых полупроводниковых приборов, включающее конденсатор, выполненный из отрезка прессованного профиля с внешним оребрением и внутренним каналом конденсации, соединенный с испарителем, заполненным жидким промежуточным теплоносителем, отличающееся тем, что испаритель, заполненный полностью жидким промежуточным теплоносителем, пароконденсаторопроводом жестко соединен с конденсатором, частично заполненным антифризом 65, при этом в испарителе расположен интенсификатор кипения, выполненный в виде вертикальных ребер.

2. Устройство по п.1, отличающееся тем, что вертикальные ребра интенсификатора кипения выполнены из высокотеплопроводного металломатричного композиционного материала AlSiC.

3. Устройство по п.1, отличающееся тем, что размеры интенсификатора кипения в виде вертикальных ребер определены диаметром основания силового полупроводникового прибора:
Dосн.спп=nb+(n+1)a=h+2,
где Dосн.спп - диаметр основания силового полупроводникового прибора, мм;
n - количество вертикальных ребер интенсификатора кипения, шт;
a, b, h, - геометрические размеры ребер и межреберных пространств, мм.

4. Устройство по п.1, отличающееся тем, что в качестве жидкого промежуточного теплоносителя использован перфтортриэтиламин.

5. Устройство по п.1, отличающееся тем, что объем перфтортриэтиламина, которым заполнено внутреннее пространство испарителя, равно:
Vпт=(h+2a)[nb+(n+1)a]2c-h2cn,
где Vпт - объем перфтортриэтиламина, мм3;
n - количество вертикальных ребер, шт;
h, a, b, c, - геометрические размеры ребер и межреберных пространств, мм.

6. Устройство по п.1, отличающееся тем, что объем антифриза 65, которым частично заполнено внутреннее пространство конденсатора, равно:
Vаф=Vптaконд.0,24r0,14Sвн.оребр.0,63,
где Vаф - объем антифриза, мм3;
Vпт - объем перфтортриэтиламина, мм3;
аконд - коэффициент теплоотдачи при конденсации паров перфтортриэтиламина, Вт/м2 °С;
r - теплота фазового перехода, Дж/кг;
Sвн.opeбp. - площадь поверхности внешнего оребрения, мм2.

7. Устройство по п.1, отличающееся тем, что соотношение плотностей и температур насыщения перфтортриэтиламина и антифриза 65 равно:
ρпт=1,8ρаф,
Ts пт=0,6Ts аф,
где ρпт - плотность перфтортриэтиламина, кг/м3;
ρаф - плотность антифриза 65, кг/м3;
Ts пт - температура насыщения перфтортриэтиламина, °С;
Ts аф - температура насыщения антифриза 65, °C.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к полупроводниковой преобразовательной технике и может быть использовано в статических преобразователях электрической энергии, в агрегатах на основе силовых полупроводниковых приборов.

Изобретение относится к устройству для рассеяния тепла для выделяющего тепло электрического компонента. Технический результат - обеспечение экономически эффективного устройства, обеспечивающего эффективное рассеяние тепла, а также облегчение монтажа/демонтажа и предотвращение деформации, вызываемой различиями в коэффициенте теплового расширения.

Изобретение относится к гибридным интегральным схемам СВЧ и предназначено для радиоэлектронных устройств различного назначения, в том числе радиолокационных станции с фазированными антенными решетками (ФАР).

Изобретение относится к средствам защиты микроэлектронного оборудования от внешних разрушающих факторов, таких как высокотемпературные огневые воздействия, ударные перегрузки, статические давления, а также от длительного воздействия повышенной температуры, и может быть использовано при создании защищенных бортовых накопителей полетной информации для самолетов и вертолетов, а также защищенных накопителей информации для других транспортных средств.

Изобретение относится к устройствам для отвода тепла от электронных компонентов. .

Изобретение относится к способам охлаждения и теплоотвода, например к способам охлаждения компьютерного процессора. .

Изобретение относится к измерительной технике, более конкретно к устройству измерения перемещений, имеющих большое значение в робототехнике, прецизионных механизмах при эксплуатации сооружений и металлоконструкций и т.д.

Изобретение относится к области электроники, в частности к устройству отвода теплоты от кристалла полупроводниковой микросхемы, и может быть использовано для охлаждения кристаллов процессоров и полупроводниковых микросхем, выделяющих при работе тепловую энергию.

Изобретение относится к электронной технике и может быть использовано для монтажа и одновременно для отвода тепла от активных элементов как отдельных изделий электронной техники, так и радиоэлектронных устройств различного назначения.

Изобретение относится к устройствам для отвода тепла от электронных компонентов. .

Изобретение относится к модулю полупроводникового преобразователя электроэнергии. Технический результат - создание модуля полупроводникового преобразователя электроэнергии с охлаждаемой ошиновкой (8) по меньшей мере двух модулей (2, 4) силовых полупроводниковых приборов, который можно нагружать электрически сильнее по сравнению со стандартным модулем полупроводникового преобразователя электроэнергии, при этом может выдерживаться допустимая температура для изоляционного слоя (32) и материала ламинирования ошиновки (8). Достигается тем, что модуль полупроводникового преобразователя электроэнергии, содержащий по меньшей мере два модуля (2, 4) силовых полупроводниковых приборов, которые механически соединены с обеспечением теплопроводности с жидкостным теплоотводом (6), и которые с помощью ошиновки (8), которая имеет по меньшей мере два изолированных друг от друга с помощью изоляционного слоя (32) шинопровода (26, 28; 28, 30), соединенных электрически с контактами (10, 12, 14) модуля полупроводникового преобразователя электроэнергии, изоляционный слой (32) имеет два изолирующих слоя (36, 38), которые соединены с замыканием по материалу друг с другом так, что между этими обоими изолирующими слоями (36, 38) имеется полое пространство (40) заданной формы, которое на стороне входа и выхода заканчивается по меньшей мере в одной боковой поверхности (48, 50) этого изоляционного слоя (32), и это полое пространство (40) на стороне входа и выхода снабжено соответствующим патрубком (42), которые соединены каждый с возможностью прохождения жидкости с жидкостным теплоотводом (6). 15 з.п. ф-лы, 3 ил.

Изобретение относится к системам охлаждения и теплоотвода, например к устройствам для охлаждения компьютерного процессора. Технический результат - получение сверхнизких температур в процессе охлаждения и теплоотвода. Это достигается тем, что применяются светоизлучающие термомодули. Светоизлучающий термомодуль позволяет уменьшить паразитный кондуктивный перенос со стороны горячего спая, который нагревается гораздо меньше за счет того, что часть энергии уходит в виде излучения, а не преобразуется в тепло на горячем спае. Уменьшение кондукции между горячими и холодными спаями позволяет выполнять р-n-переходы и сами спаи в виде тонких пленок. Конструкция термоэлектрического устройства представляет собой каскадный (многослойный) термомодуль, состоящий из термомодулей, в которых в качестве полупроводниковых ветвей р-типа 4 и n-типа 5 выбраны такие материалы, что протекающий ток на одном из спаев 2 будет формировать излучение, а не нагрев, как в обычном термомодуле, причем в другом спае 3 будет происходить поглощение тепловой энергии в соответствии с эффектом Пельтье. Каскады разделены электроизолирующими слоями 1 с высокой прозрачностью и теплопроводностью. Питание осуществляется постоянным током от источника 6. 1 ил.

Изобретение относится к области теплотехники, в частности к регулировке температурных режимов теплонагруженных устройств, и может быть использовано в твердотельной и вакуумной электронике, в авиационном двигателестроении, а также других областях техники. Тепловой диод содержит, по меньшей мере, два находящихся в контакте теплопроводных материала, причем находящимися в контакте материалами образованы слои, материалы которых имеют разную дебаевскую температуру, при этом, по крайней мере, часть слоев выполнена из материалов, дебаевская температура которых последовательно возрастает от слоя к слою. Технический результат - снижение инерционности работы, повышение эффективности передачи тепла и расширение области применения. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к охлаждающему блоку мощного полупроводникового устройства (100). Блок содержит теплоотвод с активным охлаждением (102) и контроллер (208; 300), контроллер (208; 300) выполнен с возможностью регулирования эффективности охлаждения теплоотвода (102) в зависимости от температуры полупроводникового перехода, проводящего большой ток, содержащегося в мощном полупроводниковом устройстве (100), причем контроллер (208; 300) выполнен с возможностью приема сигнала температуры, определяющего фактически измеренное значение температуры полупроводникового перехода, проводящего большой ток, при этом контроллер (208; 300) содержит модуль выбора, выполненный с возможностью выбора между режимом управления с обратной связью и режимом управления с упреждением для регулирования эффективности охлаждения. Изобретение обеспечивает регулирование охлаждения в зависимости от температуры полупроводникового перехода, проводящего большой ток. 4 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к теплотехнике и может быть использовано для поддержания и регулирования температуры. Изобретение позволяет повысить быстродействие регулирования температуры при сохранении устойчивости микронагревателя к термоудару, его надежностных и ресурсных характеристик. Микронагреватель содержит резистор нагрева, токовводы и контактные площадки, являющиеся продолжением токовводов, резистор нагрева выполнен в виде трехслойного меандра, токовводы и контактные площадки выполнены в едином технологическом цикле методом микроэлектронного напыления всех трех слоев: тугоплавкого химически пассивного токопроводящего слоя металла, напыленного на изолирующую подложку; резистора нагрева, токовыводов и котактных площадок из меди; тугоплавкого химически пассивного токопроводящего слоя металла, причем нанесение первого и второго слоев из тугоплавкого металла выполнено с перекрытием по отношению к слою резистора нагрева, токовводов и контактных площадок, а сверху вся структура защищена слоем из органического диэлектрика, в котором в области контактных площадок сформированы «окна» для подсоединения к ним внешних электрических проводников. 1 ил.

Изобретение относится к охлаждающему устройству, использующему искусственные струи. Технический результат - улучшение активного охлаждения посредством принудительной конвекции. Достигается тем, что в устройстве (1) искусственного струйного охлаждения для охлаждения объекта (5), содержащем преобразователь (10), адаптированный так, чтобы производить волны скорости, и камеру (4), выполненную с возможностью принимать волны скорости через задействованное отверстие (8). Камера (4) является достаточно большой для того, чтобы производить у задействованного отверстия (8) внутреннюю искусственную струю внутри камеры (4). Кроме того, камера (4) выполнена с возможностью содержать объект (5), таким образом обеспечивая возможность охлаждения объекта (5) внутренней искусственной струей. Такая компоновка обычно допускает многофункциональное использование существующей камеры, содержащей подлежащий охлаждению объект, и для ее первоначальной цели (например, отражатель в лампе или модуль подсветки СИД), и в качестве камеры, производящей внутренние искусственные струи, поэтому охлаждающее устройство обычно фактически не требует дополнительного пространства и веса и может обеспечиваться по низкой цене. 3 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к электротехническим средствам обеспечения рабочих характеристик интегральных схем (ИС) в защищенной бортовой аппаратуре, в частности, микропроцессоров и микроконтроллеров, путем термостабилизации поверхности корпуса ИС. Технический результат - повышение эффективности работы устройства, увеличение надежности функционирования аппаратуры во всем диапазоне ее рабочих температур и повышение стабильности рабочих характеристик устройства. Достигается тем, что в устройстве стабилизации температуры электронных компонентов, содержащем плату (например, печатную плату) для размещения на ней электрорадиоэлементов, схему регулирования температуры и электрически соединенные с ней нагревательный элемент и датчик температуры, расположенный на рабочей поверхности платы, на печатной плате установлена своей контактной стороной по меньшей мере одна интегральная схема, требующая термостабилизации, с размещенным на ее противоположной стороне плоским радиатором, а нагревательный элемент установлен на площадке, выполненной в центральной части радиатора на его наружной поверхности, причем выводы нагревательного элемента подключены к схеме регулирования температуры через контактные площадки печатной платы. При этом площадь поверхности радиатора, прилегающей к наружной поверхности корпуса интегральной схемы, не меньше площади поверхности корпуса интегральной схемы. 10 з.п. ф-лы, 5 ил.

Изобретение относится к электронной технике. Процесс изготовления многокристальных трехмерных ИС методом вертикальной сборки с применением технологии TSV включает в себя формирование в кристаллах на кремниевой пластине сквозных медных проводников с выступами над лицевой или тыльной стороной утоненных пластин. Предлагается одновременно с травлением глубоких вертикальных отверстий (ГВО) в кремнии вытравить и глубокие вертикальные траншеи (ГВТ) по границам кристаллов и одновременно с ГВО в кремнии заполнить их стенки металлом с аналогично сформированными выступами. Сквозные вертикальные проводники (СВП) и сквозные теплоотводящие рамки (СТР) на соединяемых пластинах одновременно соединяются, при этом герметизируется пространство между соединенными кристаллами, значительно увеличивается прочность соединения кристаллов. Создается теплоотводящая система как от каждого кристалла, так и от всей сборки кристаллов. Изобретение позволяет полностью электрически экранировать многокристальную сборку, включая и возможность создания электрического экрана между соединяемыми кристаллами, а также возможность уменьшить ширину межкристальных дорожек до уровня порядка единиц микрометров. 10 з.п. ф-лы, 23 ил.

Изобретение относится к электротехнике, а именно к полупроводниковой преобразовательной технике, и может использоваться в статистических преобразователях электрической энергии, в агрегатах на основе силовых полупроводниковых приборов и модулей. Сущность изобретения достигается тем, что устройство включает термосифон, содержащий конденсатор с внешним оребрением и внутренними каналами конденсации, соединенный с испарителем, заполненным жидким промежуточным теплоносителем. Испаритель с конденсатором соединены через расходный коллектор, а сверху над конденсатором расположен паровой коллектор. Дополнительно содержит второй идентичный термосифон. В испарителях расположены внутренние вертикальные ребра. Между трубчатыми конденсаторами термосифонов расположена изоляционная вставка. В каждом термосифоне трубчатый конденсатор состоит из пучка вертикальных трубок, каждая из которых имеет внутреннее спиралевидное ребро. Сверху к паровым коллекторам термосифонов жестко прикреплены клапаны избыточного давления. Количество вертикальных трубок и геометрические размеры вертикальных трубок в пучке трубчатого конденсатора одного термосифона определяется по формуле. Между трубчатыми конденсаторами термосифонов расположена изоляционная вставка из пресс-материала определенных размеров. Испарители термосифонов заполнены жидким промежуточным теплоносителем, перфтортриэтиламином, таким образом, что 70-75% по высоте их внутренние вертикальные ребра находятся в среде жидкости, остальные части внутренних вертикальных ребер - вне жидкости. Каждая вертикальная трубка трубчатого конденсатора имеет внутреннее спиралевидное ребро, высота которого определяется по формуле. Изобретение позволяет повысить эффективность охлаждающего устройства, улучшить технологичность изготовления, снизить материалоемкость устройства, дифференцировать конструкцию устройства в зависимости от уровней мощностей тепловых потерь охлаждаемых силовых полупроводниковых приборов (СПП). 4 з.п. ф-лы, 2 ил.

Изобретение относится к металлокерамической связанной подложке и, в частности, к объединенной подложке с жидкостным охлаждением, и к способу ее изготовления. Технический результат - уменьшение затрат на материалы и изготовление, и уменьшение изгиба (деформации формы), повышение прочности и теплоизлучающей производительности. Достигается тем, что объединенная подложка 1 с жидкостным охлаждением, в которой металлическая монтажная плата 15, изготовленная из алюминия или сплава алюминия, соединена с одной поверхностью керамической подложки 10, одна поверхность пластинчатой металлической базовой пластины 20, изготовленной из алюминия или сплава алюминия, соединена с другой поверхностью керамической подложки 10, и радиатор 30 жидкостного типа охлаждения, состоящий из экструзионного материала, соединен с другой поверхностью металлической базовой пластины 20, в которой отношение между толщиной t1 металлической монтажной платы 15 и толщиной t2 металлической базовой пластины 20 удовлетворяет t2/t1≥2, где толщина t1 металлической монтажной платы 15 составляет от 0,4 до 3 мм, а толщина t2 металлической базовой пластины 20 составляет от 0,8 до 6 мм. 3 н. и 16 з.п. ф-лы, 21 ил., 3 табл., 5 пр.
Наверх