Стеклокристаллический материал для свч-техники

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам (ситаллам) для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике. Техническим результатом изобретения является снижение термического коэффициента линейного расширения, стабилизация диэлектрической проницаемости и тангенса угла диэлектрических потерь, повышение предела прочности при центрально-симметричном изгибе. Стеклокристаллический материал для СВЧ-техники включает SiO2, Al2O3, TiO2, MgO и SiO2 в виде плакированного TiO2 аэросила, при следующем соотношении компонентов, мас.%: SiO2 - 35,5-38,3; SiO2 в виде плакированного TiO2 аэросила - 0,1; Al2O3 - 22,8-25,5; TiO2 - 16,1-18,8; MgO - 20,0-22,8. 2 табл.

 

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам (ситаллам) для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике.

Из литературных данных известно, что для изготовления стеклокристаллического материала готовят шихту определенного химического и гранулометрического состава. Дисперсность входящих в шихту компонентов лежит в пределах 0,7-1,2 мм (Павлушкин Н.М. «Химическая технология стекла и ситаллов» М. «Стройиздат», 1983, стр.94).

Известно стекло для стеклокристаллического материала (Бережной А.И. «Ситаллы и фотоситаллы» издательство «Машиностроение», 1966 г., стр.163-166), включающие следующие компоненты, масс.%: SiO2 - 56,0; Al2O3 - 20,0; ТiO2 - 9,0; MgO -15,0. Данный материал обладает высоким значением предела прочности при центральном симметричном изгибе (21,84 кгс/мм2).

Недостатком данного материала является низкое значение диэлектрической проницаемости (≈5) и высокое значение коэффициента линейного теплового расширения (КЛТР)=56,0·10-7 К-1.

Известно стекло для стеклокристаллического материала (патент США №4304603, МПК С03С 10/04, публикация 1981 г.), содержащий следующие компоненты, масс.%: SiO2 - 48,0-53,0; Аl2O3 - 21,0-25,0; TiO2 -9,5-11,5; MgO - 15,0-18,0; As2O3 - 0-1,0.

Этот материал характеризуется низким значением тангенса угла диэлектрических потерь, но температура варки этих стекол около Т=1600°C, что затрудняет получение качественного стекла.

Наиболее близким к предлагаемому изобретению по химическому составу является стеклокристаллический материал (патент РФ №2393124, МПК С03С 10/04, публикация.2010 г.) следующего состава: SiO2 - 35,5-38,5; Аl2O3 - 22,8-25,5; ТiO2 - 16,2-18,8; MgO - 20-22,7.

Недостатком данного материала является высокий КЛТР, равный (45-60)·10-7 К-1 и низкое значение предела прочности при центральном симметричном изгибе (4-7 кгс/мм2).

Целью предлагаемого изобретения является снижение термического коэффициента линейного расширения стеклокристаллического материала, стабилизация диэлектрической проницаемости и тангенса угла диэлектрических потерь, повышение предела прочности материала при центрально-симметричном изгибе.

Это достигается тем, что стеклокристаллический материал, включающий SiO2, Аl2O3, ТiO2, MgO, дополнительно содержит SiO2 в виде плакированного ТiO2 аэросила, при следующем соотношении компонентов, масс.%: SiO2 - 35,5-38,3; SiO2, в виде плакированного ТiO2 аэросила - 0,1; Аl2O3 - 22,8-25,5; ТiO2 - 16,1-18,8; MgO - 20,0-22,8.

Авторами экспериментально установлено, что сочетание предложенных компонентов в заявленном количественном соотношении дает возможность получать стеклокристаллический материал с низким значением КЛТР, высоким пределом прочности на изгиб, а также позволяет поддерживать диэлектрическую проницаемость и тангенс угла диэлектрических потерь в необходимом диапазоне значений.

Установлено, что именно введение SiO2 в количестве 0,1 масс.% в виде плакированного ТiO2 аэросила, позволяет получить стеклокристаллический материал с тонкодисперсной структурой. Это происходит за счет максимально равномерного распределения ТiO2 по объему расплава, при этом температура варки стекла составляет: 1540±10°C, температура выработки заготовок: 1485±25°C, температура термообработки заготовок: 1205±35°C. Скорость нагрева заготовок до температуры термообработки составляет: 1,2-5°C/мин, выдержка при температуре термообработки 3-8 часов, скорость охлаждение заготовок до комнатной температуры: 1,3-3,3°C/мин.

Сырьевые материалы, применяемые для варки стекла должны соответствовать следующим условиям: содержание СaО≤0,2 масс.%, (Na2O+K2O+Li2O)≤0,20 масс.%, Fe2O3≤0,2 масс.%. Аэросил, марки «А-175», с размером частиц SiO2=15-30 нм., имеющий удельную поверхность 175±25 м2/г, с содержанием Fe2O3≤0,003 масс.%., производства Калушского ОЭН НАН Украины, ТУ У24.6-05540209-003-2003, плакированный вакуумно-дуговым способом пленкой ТiO2, толщиной 5-20 нм.

В таблице 1 приведены примеры конкретного выполнения составов стеклокристаллического материала масс.%:

Таблица 1
Наименование компонента Номер стекла
1 2 3
SiO2, масс.% 35,5 36,9 38,3
Al2O3, масс.% 22,8 24,3 25,5
MgO, масс.% 22,8 21,2 20,0
TiO2, масс.% 18,8 17,5 16,1
SiO2, аэросил, плакированный TiO2, масс.% 0,1 0,1 0,1

Сочетание приведенного состава и выбранного режима термообработки заготовок при Т=1205±35°C позволило снизить КЛТР и повысить предел прочности на изгиб. При этом удалось добиться стабильных значений диэлектрической проницаемости и тангенса угла диэлектрических потерь за счет равномерной тонкодисперсной структуры получаемого стеклокристаллического материала.

В таблице 2 приведены свойства синтезированных стеклокристаллических материалов.

Таблица 2
Наименование показателя Обозначение и единицы измерения 1 2 3 Прототип (материал по патенту РФ №2393124)
1 2 3 4 5 6
Диэлектрическая проницаемость при 1010 Гц ε 7,4 7,25 7,15 7-7,5
Тангенс угла диэлектрических потерь при 1010 Гц tgα·104 3 2 1,9 ≤3
Коэффициент теплового линейного расширения (КЛТР) при 20-300°С α·107, K-1 38 36 40 55-70
Предел прочности при изгибе σи, кгс/мм 11,5 11,0 10,0 4-7

Из приведенных в таблице 2 данных видно, что предлагаемый состав стеклокристаллического материала позволяет значительно снизить температурный коэффициент линейного расширения, повысить предел прочности на изгиб, а также добиться стабилизации диэлектрической проницаемости получаемого стеклокристаллического материала при невысоких значениях тангенса угла диэлектрических потерь.

Стеклокристаллический материал для СВЧ-техники, включающий SiO2, Al2O3, TiO2, MgO, отличающийся тем, что в состав дополнительно вводят SiO2 в виде плакированного TiO2 аэросила, при следующем соотношении компонентов, мас.%:

SiO2 35,5-38,3
SiO2 в виде плакированного TiO2 аэросила 0,1
Al2O3 22,8-25,5
TiO2 16,1-18,8
MgO 20,0-22,8



 

Похожие патенты:
Изобретение относится к области ресурсосберегающих технологий и касается стеклокристаллического материала на основе шлаковых отходов ТЭС. .
Изобретение относится к стеклокристаллическому материалу для напольной и облицовочной плитки. .
Изобретение относится к технологии силикатов, в частности к составам каменного литья, изделия из которого могут использоваться в строительстве. .
Изобретение относится к технологии силикатов, в частности к составам каменного литья, изделия из которого могут использоваться в строительстве. .

Изобретение относится к оптической промышленности, в частности к технологии изготовления градиентных оптических элементов, используемых при конструировании оптических систем.

Изобретение относится к способу и композиции для получения дисперсных, биологически активных или рассасывающихся кристаллических биосиликатов для применения при лечении заболеваний полости рта.
Изобретение относится к технологии силикатов, в частности к составам каменного литья, используемого в строительстве. .
Изобретение относится к материалам для светотехники. Технический результат изобретения заключается в повышении термомеханической устойчивости и устойчивости окраски к термическим ударам ИК-прозрачной стеклокерамики для светофильтра, обладающей поглощением в видимой области спектра и пропусканием в ближней ИК области спектра. Прозрачная стеклокерамика содержит следующие компоненты, мол.%: SiO2 - 55-65; Al2O3 - 15-25; MgO - 15-25; Na2O - 0-1; К2О - 0-1; Li2O - 0-2,0; TiO2 - 8-12; CoO - 1,5-4,0; СеО2 - 2,0-6,0. Стеклокерамика содержит кристаллические фазы: кобальтсодержащую алюмомагниевую шпинель, титанаты и силикаты церия. 2 табл.
Изобретение относится к составам декоративно-облицовочных материалов. Технический результат изобретения заключается в повышении морозостойкости декоративно-облицовочного материала. Декоративно-облицовочный материал включает, мас.%: измельченное листовое стекло; 75,0-77,0 молотый туф 18,0-19,0; жидкое калиевое стекло 5,0-6,0. 1 табл.

Изобретение относится к средствам для обнаружения новых кристаллических соединений в системах, не кристаллизующихся в экспериментах ДТА/ДСК в монолитном состоянии. Техническим результатом изобретения является выявление новых кристаллических соединений для стеклообразующих эвтектических систем. В способе поиска новых кристаллических соединений в стеклообразующих эвтектических оксидных системах используют стекло с составом, отличающимся от состава эвтектики не больше чем на 1-1.5 мол.%. Сначала выполняют первый дифференциально-термический анализ или дифференциальную сканирующую калориметрию (ДТА/ДСК) порошка стекла, определяют начало и конец эффекта стеклования, температуру начала кристаллизации и температуру ликвидуса. Затем тигель помещают в печь, нагретую до температуры, на 70-100°C превосходящей температуру ранее определенного ликвидуса, выдерживают при этой температуре 10-20 минут, охлаждают на воздухе. Затем тигель второй и третий раз подвергают ДТА/ДСК и по отличию температуры эндотермического эффекта плавления в третьем ДТА/ДСК от температуры эвтектики и ликвидусного плавления, определенных по результатам первого ДТА/ДСК, судят об образовании в монолитном стекле новой кристаллической фазы. 2 ил.

Изобретение относится к области оптического материаловедения, в частности к способу локальной кристаллизации легированных стекол под действием лазерного излучения. Техническим результатом изобретения является осуществление возможности кристаллизации стекла. Способ локальной микрокристаллизации оксидных стекол осуществляют с использованием стекла с легирующей добавкой Nd2O3 в концентрации от 0,3 до 3%(мол.). Применяют импульсный лазер на парах меди, генерирующий одновременно желтую и зеленую линии с суммарной средней мощностью от 5 до 15 Вт, частотой следования импульсов до 12,8 кГц. Пучок лазера перемещают относительно образца, помещенного в печь и нагретого до температуры на 10-150°C ниже температуры стеклования выбранных составов стекол в мол. %, а именно: La2O3 22-24,7, В2О3 24,5-25,5, GeO2 49,5-50,5, Nd2O3 0,3-3 или Li2O 23,7-25,3, В2О3 24,3-25,8, GeO2 49,2-50,7, Nd2O3 1-3 (сверх 100%) или Li2O 29,8-30,3, Nb2O3 24,7-25,5, SiO2 44,5-45,8, Nd2O3 1,5-3 (сверх 100%). 3 ил., 4 пр.
Группа изобретений относится к стеклокерамическим материалам для изготовления стоматологического восстановительного материала, к способу изготовления такого материала , а также к самому стоматологическому восстановительному материалу. Согласно способу изготовления стоматологического восстановительного материала, содержащего стеклокерамику на основе силиката лития, аморфное стекло следующего состава, в % по весу: SiO2 55-70, Li2O 17-20, ZrO2 8-20, Al2O3 0-8%, K2O 0-8% и добавки 0-15%, подвергают по меньшей мере одной термической обработке, представляющей собой двухстадийную обработку с первой температурой, составляющей от 600 до 800°С, и второй температурой, составляющей от 780 до 900°С, с получением окрашенной в цвет зуба стеклокерамики, пропускающей свет с длиной волны от 360 нм до 740 нм (согласно измерению в соответствии с DIN EN 410 на спектрофотометре Minolta CM-3610d), с прочностью по меньшей мере 250 МПа (измеренной в соответствии с DIN ISO 6872), и имеющей цвет зуба, причем в ходе указанной по меньшей мере однократной термической обработки происходит по меньшей мере частичная кристаллизация за счет повышенных температур. Из указанной стеклокерамики получают стоматологический восстановительный материал с помощью процесса съема материала, выбранного из группы, состоящей из фрезерования, шлифования и лазерной абляции, и перед стоматологическим применением стоматологический восстановительный материал подвергают конечной обработке, которая представляет собой полировку, глазурование, герметизацию, нанесение покрытия и облицовку облицовочной керамикой или глазурью, причем прочность стоматологического восстановительного материала составляет по меньшей мере 250 МПа (измеренная в соответствии с DIN ISO 6872). Предлагается также стоматологический восстановительный материал, получаемый по вышеуказанному способу, и окрашенная в цвет зуба стеклокерамика для изготовления стоматологического восстановительного материала, пропускающая свет с длиной волны от 360 нм до 740 нм (согласно измерению в соответствии с DIN EN 410 на спектрофотометре Minolta CM-3610d), обладающая прочностью по меньшей мере 250 МПа (измеренной в соответствии с DIN ISO 6872) и имеющая следующий состав, в % по весу: SiO2 55-70, Li2O 17-20, ZrO2 8-20, Al2O3 0-8%, K2O 0-8% и добавки 0-15%. Использование группы изобретений обеспечивает получение стоматологического восстановительного материала, обладающего высокой прочностью и химической стойкостью, при этом поддающегося механической обработке. 3 н. и 9 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к способу получения стеклокремнезита. Способ получения стеклокремнезита включает подготовку стеклогранулята, засыпку его в форму, спекание и отжиг. Перед засыпкой в форму осуществляется смешение стеклогранулята, глины и колеманита при массовом соотношении 16:3:1-16:3:2 соответственно, а спекание происходит при 680-710°С. Технический результат – увеличение прочности на сжатие. 4 табл.

Группа изобретений относится к способу изготовления стоматологического восстановительного материала, а также к самому стоматологическому восстановительному материалу. Предлагаемый способ изготовления стоматологического восстановительного материала, содержащего стекломатериал или стеклокерамику на основе силиката лития, характеризуется тем, что: а) аморфное стекло состава: 50-75% по весу SiO2, 17-25% по весу Li2O, 10-20% по весу стабилизатора, выбранного из группы, состоящей из ZrO2, HfO2 и их смесей, 0-10% по весу Al2O3, 0-10% по весу K2O, и 0-20% по весу добавок, обеспечивают в виде заготовки, б) указанную заготовку преобразуют в стоматологический восстановительный материал посредством по меньшей мере одного процесса преобразования, представляющего собой процесс литья по выплавляемым восковым моделям, причем в ходе указанного процесса преобразования происходит по меньшей мере частичная кристаллизация за счет повышенных температур; при этом стабилизатор присутствует по существу в аморфном состоянии. Предлагается также стоматологический восстановительный материал, изготовленный с помощью вышеуказанного способа. Полученный стоматологический восстановительный материал имеет высокие показатели прочности, прозрачности и химической стойкости. 2 н. и 26 з.п. ф-лы, 3 табл., 3 пр., 3 ил.

Группа изобретений относится к области производства литиево-силикатной стеклокерамики, способам получения и применения такой стеклокерамики. Способ изготовления литиево-силикатной стеклокерамики, включающей: оксид четырехвалентного металла, выбранный из ZrO2, TiO2, СеО2, GeO2, SnO2 и смесей таковых, по меньшей мере, 12,1 массовых % Li2O, от 0 до менее 0,1 массового % La2O3, от 0 до менее 1,0 массового % K2О и от 0 до менее 2,0 массовых % Na2O, содержит этапы, на которых: (a) исходное стекло, включающее компоненты стеклокерамики, подвергают термической обработке при температуре в 480-520°С в течение 10-30 мин для формирования стекла с зародышами, которые являются пригодными для формирования кристаллов дисиликата лития, и (b) стекло с зародышами подвергают термической обработке при температуре в 640-740°С для формирования стеклокерамики с дисиликатом лития в качестве основной кристаллической фазы, причем продолжительность второй термической обработки на стадии (b) составляет 10-60 мин. Предлагается также литиево-силикатная стеклокерамика, полученная вышеуказанным способом, и применение ее в качестве материала для реставрации зубов, в частности, для покрытия материалов для реставрации зубов или для изготовления материалов для реставрации зубов. Использование группы изобретений обеспечивает получение стеклокерамики, содержащей в качестве основной кристаллической фазы дисиликат лития, при непродолжительных термических обработках и при достаточно низких температурах процесса кристаллизации. При этом формование полученной стеклокерамики в желаемый материал для реставрации зубов может быть осуществлено при помощи прессования или машинной обработки. 3 н. и 18 з.п. ф-лы, 1 табл., 16 пр.
Изобретение относится к производству бомз-подставок для обжига крупногабаритных керамических изделий из стеклокерамики литийалюмосиликатного состава. Измельчают мокрым способом закристаллизованное стекла, либо забракованные после термообработки изделия, либо использованные бомз-подставки, либо отливки произвольной формы, получаемые из шликеров, оставшихся в подпиточных емкостях формовых комплектов после окончания набора стеклокерамических изделий до получения водного шликера с плотностью 2,10÷2,20 г/см3, с тониной помола с остатком на сите 0,063 мм 7,1÷12,5%. Формуют заготовки в гипсовых формах. Отформованные заготовки подвергают сушке в сушильных шкафах в течение 10÷20 часов при температуре не выше 80 градусов Цельсия, либо при естественных условиях в течение не менее 48 часов. Технический результат – упрощение производства бомз-подставок.

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50 мкм/с на глубине от 100 мкм. Частоту следования фемтосекундных импульсов задают в пределах 25-100 кГц, а среднюю мощность - в пределах 0,1-1,2 Вт. Используют стекло следующего состава, мол.%: La2O3 14,9-26, В2O3 23-26, GeO2 49-52, Nd2O3 0,1-10. Технический результат – получение однородных кристаллических линий со встроенными в кристаллическую решетку ионами неодима в объеме стекла. 5 ил., 3 пр.
Наверх