Способ контроля содержания урана в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11 добавлением аммиака, фильтруют через ацетатцеллюлозную мембрану со свежеосажденной двуокисью марганца, растворяют мембрану с двуокисью марганца в соляной кислоте при кипении, восстанавлливают уран аскорбиновой кислотой и металлическим цинком до степени окисления IV, а затем определяют содержание урана в растворе фотометрическим методом с использованием арсеназо III в солянокислой среде. Техническим результатом является упрощение и повышение оперативности контроля, а также снижение предела обнаружения урана в 40 раз.

 

Изобретение относится к области аналитической радиохимии и обеспечения безопасной эксплуатации ядерных энергетических установок (ЯЭУ).

Уран, являющийся основой ядерного топлива, появляется в технологических средах ЯЭУ при нарушении герметичности тепловыделяющихся элементов (твэлов). При загрузке реактора ЯЭУ считается допустимым наличие не более 0,1% негерметичности твэлов [Никифоров А.С., Куличенко В.В., Жихарев М.И. Обезвреживание жидких радиоактивных отходов. - М., 1985, с.6-7]. При этом в начальный период эксплуатации ЯЭУ (до накопления продуктов деления) эта негерметичность приводит к выходу в теплоноситель только урана. Поэтому контроль содержания урана в технологических средах ЯЭУ обеспечивает безопасность установок на всех этапах их эксплуатации.

Наиболее распространенным способом определения урана в растворах является его предварительное отделение от примесей методами экстракции, ионного обмена или осаждения с последующим измерением содержания урана фотометрическим методом с использованием окрашивающих комплексообразователей (роданида, дибензоилметана, арсеназо) [Марченко З.К. Фотометрическое определение элементов. - М., Мир, Москва, 1971. С.414-426].

Так, известен метод отделения урана путем экстракции его из азотнокислых растворов кислородсодержащими растворителями, главным образом простыми и сложными эфирами и кетонами с последующим фотометрическим его определением с использованием роданида [Марченко З.К. Фотометрическое определение элементов. - М., Мир, Москва, 1971, с.415, 416-417].

Недостатками экстракционного способа являются использование вредных и пожароопасных органических растворителей, длительность процесса экстракции, а также то, что метод с использованием роданида, обладающий недостаточной чувствительностью, применяют в основном для определения урана в рудах и концентратах при относительно высоком его содержании.

Известен также сорбционный метод выделения урана на анионообменных смолах в виде анионных комплексов из растворов азотной, соляной или уксусной кислот в смеси с органическими растворителями такими, как метанол, этанол, ацетон, эфир, диоксан и другие смешивающиеся с водой растворители с последующим элюированием урана и фотометрическим его определением с использованием дибензоилметана [Марченко З.К. Фотометрическое определение элементов. - М., Мир, Москва, 1971, с.415, 418].

Основные недостатки этого способа те же, что и у экстракционного и, несмотря на более высокую чувствительность дибензоилметана, он применяется в основном при анализе урановых руд и минералов.

Аппаратурно наиболее простым методом отделения урана от примесей является осаждение в щелочной среде с использованием карбоната аммония и свежеосажденной двуокиси марганца (МnO2) [Марченко З.К. Фотометрическое определение элементов. -М., Мир, Москва, 1971, с.416], а наиболее чувствительным фотометрическим методом измерения с использованием арсеназо I в слабощелочной среде или арсеназо III в сильнокислой среде [Марченко 3. К. Фотометрическое определение элементов. - М., Мир, Москва, 1971, с.419-421], что позволяет определять и малые концентрации урана в технологических средах ЯЭУ. Данный способ по своей сущности и достигаемому техническому результату наиболее близок к заявляемому и выбран в качестве прототипа.

Недостатком данного способа является то, что осадительное отделение урана требует двукратного осаждения (переосаждения) и последующего длительного упаривания фильтратов для достижения исходного объема пробы, что исключает оперативность контроля, что особенно важно для технологических сред ЯЭУ. Кроме того, предел обнаружения урана в растворе в этом случае составляет ~ 50 мкг/л.

Задача, решаемая данным изобретением, заключается в упрощении и повышении оперативности контроля, снижении предела обнаружения урана.

Техническим результатом изобретения является снижение предела обнаружения урана в технологических средах ЯЭУ и повышении оперативности контроля.

Сущность изобретения заключается в том, что в способе контроля содержания урана в технологических средах ЯЭУ, включающем отбор пробы, выделение урана путем осаждения в щелочной среде с использованием аммиачных соединений и свежеосажденной двуокиси марганца (МnO2), растворение осадка в горячей соляной кислоте (НСl) и определение урана в растворе фотометрическим методом с использованием арсеназо III в солянокислой среде, согласно изобретению щелочная среда пробы создается добавлением аммиака, а МnO2 осаждается на ацетатцеллюлозную мембрану, через которую затем фильтруется проба, затем мембрана с МnO2 растворяется в НС1 при кипячении, после охлаждения раствора уран восстанавливается аскорбиновой кислотой и металлическим цинком до степени окисления IV, а затем производится измерение содержания урана в солянокислом растворе фотометрическим методом.

По сравнению с известными способами, применяемыми для контроля содержания урана в технологических сред ЯЭУ, использование согласно изобретению ацетатцеллю-лозных мембран, на которые сначала наносится свежеосажденная МnO2, которая затем после фильтрации пробы растворяется вместе с мембраной в соляной кислоте, обеспечивается эффективное концентрирование и последующее надежное определение урана в ацетатцеллюлозной среде, что не следует явным образом из уровня техники, так как в способе - прототипе МnO2 используется лишь для отделения урана от примесей [Марченко З.К. Фотометрическое определение элементов. - М., Мир, Москва, 1971, с.416], и, следовательно, заявляемый способ соответствует критерию изобретательского уровня.

Способ осуществляется следующим образом.

Пробу технологических сред ЯЭУ подщелачивают добавкой аммиака до рН 9-11 и фильтруют через ацетатцеллюлозную мембрану со свежеосажденной двуокисью марганца (МnO2). МnO2 наносят на мембрану путем погружения ее в 0,4 М раствор пермарганата калия (КМnO4) в течение 10-20 секунд. После фильтрации пробы мембрану с МnO2 растворяют в 4 М растворе НСl при кипячении. В охлажденный раствор в пересчете на 1 литр добавляют ~5 г аскорбиновой кислоты и до 2 г металлического цинка для восстановления урана до степени окисления IV. После выдержки и перемешивания вносят 0,05% раствор арсеназо III и измеряют поглощение при 655 нм (красный светофильтр) относительно холостой пробы, в качестве которой используется продукт растворения ацетатцеллюлозной мембраны со свежеосажденной МnO2 без урана.

Поскольку предел обнаружения урана в растворе, подвергаемом фотометрическому анализу ~ 50 мкг/л, то реальный предел обнаружения зависит от объема пробы профильтрованной через ацетатцеллюлозную мембрану со свежеосажденной МnO2.

Примеры конкретного выполнения.

Пример 1 (Прототип). Пробу технологических сред ЯЭУ объемом 25 мл с содержанием урана 50 мкг/л подщелачивали карбонатом аммония до рН 11, добавляли КМnO4 для перевода урана в степень окисления VI, а затем небольшое количество спирта для восстановления избытка КМnO4 до МnO2 и нагревали для осаждения в виде карбонатов или гидроксидов большинства примесных тяжелых металлов. При этом ионы урана образовывали растворимые карбонатные комплексы. Реакционную смесь фильтровали и осадок промывали 1% раствором соды. Затем его растворяли в горячей 4 М НСl и снова осаждали карбонатом аммония. Объединенные фильтраты подкисляли НСl и упаривали до объема исходной пробы. Продолжительность подготовки пробы составляла не менее 4 часов.

К упаренному фильтрату добавляли 0,05% раствор арсеназо III, переносили в мерную колбу на 50 см3, доводили до метки 4 М НСl и измеряли поглощение при 655 нм относительно холостого опыта. Погрешность измерения составляла не более ±30% при доверительной вероятности 0,95.

Пример 2 (Заявляемый способ). Отличается от примера 1 тем, что пробу с содержанием урана 1 мкг/л объемом 1 л подщелачивали аммиаком а затем фильтровали через ацетатцеллюлозную мембрану «Владипор» с размером пор 0,3-0,9 мкм (диаметром 35 мм) со свежеосажденной МnO2 под давлением 0,4 МПа. После фильтрации пробы мембрану промывали дистиллированной водой. Затем мембрану с МnO2 растворяли в 25 мл 4 М раствора НСl при кипячении. Продолжительность подготовки пробы за счет фильтрования через мембрану под давлением не превышала 2 часов. В охлажденный раствор добавляли ~150 мг аскорбиновой кислоты и до 2 г металлического цинка для восстановления урана до степени окисления IV. После выдержки и перемешивания вносили 0,05% раствор арсеназо III и измеряли поглощение при 655 нм (красный светофильтр) относительно холостой пробы, в качестве которой использовали продукт растворения ацетатцеллюлозной мембраны со свежеосажденной МnO2 без урана. Погрешность измерения составляла не более ±30% при доверительной вероятности 0,95.

Предлагаемый способ по сравнению с прототипом обеспечивает повышение предела обнаружения урана в растворе в 40 раз. При этом продолжительность процесса подготовки пробы сокращается в 2 раза при значительно меньшей трудоемкости.

В предлагаемом способе используются те же реагенты, выпускаемые в промышленных масштабах, что и в прототипе. Таким образом, предлагаемый способ является промышленно применимым.

Способ контроля содержания урана в технологических средах ядерных энергетических установок, включающий отбор пробы технологической среды, выделение урана путем осаждения в щелочной среде с использованием аммиачных соединений и свежеосажденной двуокиси марганца, растворение осадка в горячей соляной кислоте и определение содержания урана в растворе фотометрическим методом с использованием арсеназо III в солянокислой среде, отличающийся тем, что щелочную среду пробы создают добавлением аммиака, двуокись марганца осаждают на ацетатцеллюлозную мембрану, через которую затем фильтруют пробу, затем мембрану с осажденной двуокисью марганца растворяют в соляной кислоте при кипении с последующим охлаждением раствора, а уран перед контролем его содержания в растворе восстанавливают аскорбиновой кислотой и металлическим цинком до степени окисления IV.



 

Похожие патенты:
Изобретение относится к удалению радионуклидов стронция, рубидия, цезия, урана и некоторых токсичных ионов металлов из водных потоков. Радионуклиды и токсичные ионы металлов удаляют из воды сорбентами, в качестве которых используется крошка опок диаметром от 20 до 50 мм.

Изобретение относится к способу дезактивации жидких радиоактивных отходов. Способ дезактивации жидких отходов, содержащих один или несколько предназначенных для удаления радиоактивных химических элементов, содержащий следующие стадии: - стадию введения в контакт в первом реакторе жидких отходов с твердыми частицами; - стадию отстаивания суспензии во втором реакторе, в результате чего получают твердую фазу и жидкую фазу; - стадию разделения указанной твердой фазы и указанной жидкой фазы, часть указанной твердой фазы, полученной после стадии отстаивания, повторно направляют в первый реактор для осуществления стадии введения в контакт.
Изобретение относится к технологии обращения с жидкими радиоактивными отходами (ЖРО) атомных электростанций (АЭС) и может быть использовано в процессе переработки трапных вод и кубового остатка ЖРО АЭС для удаления радионуклида 60Со с концентрированием его в твердой фазе.
Изобретение относится к области аналитической радиохимии и технологии обработки радиоактивных вод. .

Изобретение относится к атомной энергетике, в частности к технологии обработки радиоактивных отходов атомной электростанции (АЭС). .
Изобретение относится к области переработки и утилизации радиоактивных отходов предприятий атомной промышленности. .

Изобретение относится к сорбционной технологии очистки от радионуклидов, прежде всего радионуклидов цезия, водной технологической среды атомных производств. .

Изобретение относится к атомной энергетике и может быть использовано при очистке и дезактивации оборудования, эксплуатируемого в среде жидкого свинцового теплоносителя, и переработке (обезвреживании) образующихся жидких радиоактивных отходов на стадиях их очистки, концентрирования и отверждения.

Изобретение относится к сорбентам, полученным на основе микросфер зол-уноса тепловых электростанций, и может быть использовано для очистки жидких отходов от радионуклидов. Синтез сорбента включает осаждение активного компонента на поверхности микросфер путем перемешивания их с раствором ферроцианида щелочного металла (осадитель), удаление избытка раствора осадителя, по которому определяют удерживаемый микросферами объем осадителя. К смеси, состоящей из микросфер и осадителя, добавляют раствор соли переходного металла, выдерживают до разделения фаз, после чего удаляют жидкую фазу, а полученный сорбент сушат. По второму варианту синтез сорбента включает обработку микросфер раствором соли ванадия, или циркония, или вольфрама с последующим удалением избытка раствора, по которому определяют удерживаемый микросферами объем раствора соли, а затем в полученную смесь добавляют осадитель, которым служит кислый раствор ферроцианида щелочного металла, смесь компонентов выдерживают до разделения фаз, после чего жидкую фазу удаляют, а полученный сорбент сушат. В обоих вариантах сушку сорбента проводят при температуре 60-80°С в течение 1-2 часов или при комнатной температуре в течение 15-20 часов до воздушно-сухого состояния. Сорбент, получаемый заявленным способом, эффективен для извлечения радионуклидов, например цезия, кобальта, церия, европия и др., обладает хорошими кинетическими характеристиками и высокой плавучестью, что позволяет использовать его для очистки жидких радиоактивных растворов низкой и средней активности. 2 н. и 9 з.п.ф-лы, 6 ил., 6 пр., 1 табл.
Изобретение относится к технологии сорбционного извлечения радионуклидов цезия из водных растворов. Способ извлечения радионуклидов цезия включает фильтрацию водного раствора через селективный сорбент, представляющий собой ферроцианид железа-калия на носителе, десорбцию цезия из сорбента щелочным раствором, содержащим Трилон Б и оксалат калия. Полученный при десорбции элюат далее фильтруют через сорбент, представляющий собой ферроцианид никеля-калия. Технический результат заключается в снижении времени извлечения цезия и минимизации объема получаемого концентрата, содержащего радионуклиды цезия. 1 табл., 2 пр.

Изобретение относится к области радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в моче людей, пострадавших от радиационных инцидентов и в пробах различных технологических растворов. Способ извлечения радионуклидов из водных растворов включает фильтрацию раствора через селективный сорбент, помещенный в капельную камеру устройства, применяемого для внутривенного переливания инфузионных растворов, и приготовление препарата, удобного для гамма-спектрометрического измерения. Техническим результатом является повышение экспрессности метода при сохранении высокой эффективности и уменьшении погрешности измерений и искажения результатов вследствие поглощения фильтрами измеряемого гамма-излучения. 1 з. п. ф-лы, 3 ил.

Изобретение относится к области переработки радиоактивных растворов. Состав экстракционно-хроматографического материала для селективного выделения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов содержит три компонента. В качестве комплексообразующих компонентов состав содержит 33 % метилтриоктиламмоний нитрата (МТОАН) и 1-16% фосфорилподанда. В качестве матрицы состав содержит макропористый сферический гранулированный сополимер стирола с дивинилбензолом. В качестве фосфорилподанда используют производные 1,5-бис[2-(оксиэтоксифосфорил)-4-(алкил)фенокси-3-оксапентана общей формулы I, где Alk - алкил C1-C12. Техническим результатом является расширение спектра высокоэффективных селективных сорбентов для извлечения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов. 8 ил.

Заявленное изобретение относится к системе для очистки потока отходов, преимущественно жидких или водных радиоактивных отходов, для их безопасной утилизации и превращения их в одну или две формы, включая водную форму для безопасного сброса в окружающую среду и отверждаемую форму для безопасной утилизации. При осуществлении заявленного изоберетения предусмотрена реализация пяти шагов, обозначенных как I-V. Синхронизация выбора сорбирующих веществ и мультирецикловой опции для удаления целевых веществ из потока отходов предусмотрена как этап шага II (сорбция или изотопное восстановление с помощью порошкового сорбента). Другие шаги соотносятся с сорбционным шагом (II), включая окисление (I) для дезактивации или разрушения существующих хелирующих агентов, твердо-жидкостную сепарацию (III) и селективный ионный обмен (IV) для достижения конечного желаемого результата обработки потока отходов. Завершающим шагом является конечная обработка (V). Техническим результатом является возможность применения заданной специфической стратегии для целевого элемента с помощью синхронизации выбора сорбирующих веществ и мультирецикловой опции для удаления целевых веществ из потока радиоактивных отходов. 3 н. и 25 з.п. ф-лы, 1 ил.

Изобретение касается области радиационной экологии и биогеохимии и предназначено для концентрирования Th из морской воды и определения его содержания, которое может быть использовано для измерения скорости седиментационных процессов в морских водоемах. Способ определения концентрации тория-234 в морской воде состоит в том, что концентрирование тория-234, растворенного в морской воде, выполняют в последовательно соединенных адсорберах, содержащих диоксид марганца, и осуществляют прямую радиометрию адсорбированного 234Th по его основному β-излучению. Каждый адсорбер работает в радиально точном режиме, который обеспечивают путем размещения дискового адсорбера между диафрагмами. Исследуемая проба воды поступает в центральную часть адсорбера с помощью диафрагмы с центральным отверстием, затем перетекает к периферии сорбирующей поверхности с помощью диафрагмы с периферийными прорезями.

Изобретение относится к средствам морской радиоэкологии и биогеохимии. Способ определения концентрации тория-234 в морских донных отложениях состоит в том, что в качестве трассера радиохимического выхода используют естественный долгоживущий α-излучающий изотоп 232Th, исходную активность которого определяют в части пробы по γ-излучению свинца-212 при соблюдении условия радиоактивного равновесия между Th и Pb, а другую часть пробы, отделив торий от сопутствующих элементов методом оксалатного осаждения, используют для жидкостно-сцинтилляционного (ЖС) спектрометрического анализа активности 234Th и 232Th по и β- и α-излучению, после чего рассчитывают радиохимический выход тория (R) и исходную концентрацию тория-234 (234Thисх, Бк/кг) по приведенным формулам. Изобретение обеспечивает повышение эффективности и надежности определения содержания 234Th.

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л. Техническим результатом является возможность повышения степени очистки от радионуклидов и микроэлементов загрязненных объектов радиохимической промышленности. 1 табл.

Группа изобретений относится к сорбентам и их применению. Сорбент анионов сурьмы содержит частицы или гранулы оксида циркония и характеризуется коэффициентом распределения анионов сурьмы, по меньшей мере, 10000 мл/г при рН в диапазоне от 2 до 10, причем указанные частицы имеют средний размер от 10 нм до 100 мкм, для которых скорость потока составляет от 100 до 10000 объемов слоя в час и указанные гранулы имеют средний размер от 0,1 до 2 мм, для которых скорость потока составляет от 10 до 50 объемов слоя в час. Также предложен способ получения нового сорбента, а также способы удаления сурьмы и, возможно, технеция из водных растворов, в частности из жидких ядерных отходов. Достаточно высокий коэффициент распределения делает этот материал привлекательным для применения в промышленности. Способ получения прост и сорбент может быть получен из легкодоступных веществ при умеренных условиях. 5 н. и 15 з.п. ф-лы, 5 ил., 5 табл.

Изобретение относится к сельскому хозяйству и защите окружающей среды, в частности к средствам для дезактивации почв, зараженных радиоактивными элементами. Средство для дезактивации почв, зараженных радиоактивными элементами, содержит в своем составе поли-N,N-диалкил-3,4-диметиленпирролидиний галогенид общей формулы в которой R1 и R2 означают независимо друг от друга линейный или разветвленный алкил с 1-6 атомами углерода и X означает фтор, хлор, бром, йод или тетрафторборат, причем средняя молекулярная масса полимера составляет от 75000 до 100000 г/моль. Заявлен также способ дезактивации почв, зараженных радиоактивными элементами, с применением указанных средств. Технический результат - заявленное вещество связывает радиоактивные элементы, снижает содержание их водорастворимых форм, продолжительно действует на структуру почв и урожайность, упрощает процесс дезактивации земель, зараженных радиоактивными элементами. 2 н. и 6 з.п. ф-лы, 8 табл., 6 пр.
Наверх